Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

EE482: Digital Signal Processing Applications

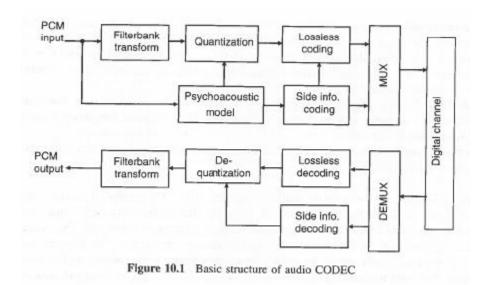
Spring 2014 TTh 14:30-15:45 CBC C222

Lecture 13 Audio Signal Processing 14/04/01

Outline

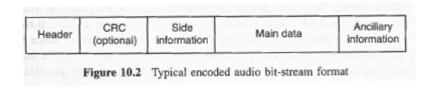
- Audio Coding
- Audio Equalizers
- Audio Effects

Audio Signal Processing


- Digital audio processing used in many consumer electronics
 - Mp3 players, televisions, etc.
- CD audio format:
 - 16-bit PCM @ 44.1Khz → stereo 1411.2 kbps
 - Great for uncompressed CD-quality sound
 - Not well-suited for modern media consumption
 - Uncompressed storage and transmission
 - Multi-channel audio (e.g. surround sound systems)
 - "Professional" audio high sampling rate (96 kHz)
- Techniques are required to enable high quality sound reproduction efficiently

Audio Coding

- Differences with speech
 - Much wider bandwidth (not just 300-1000 Hz)
 - Uses multiple channels
 - Psychoacoustic principles can be utilized for coding
 - Do not code frequency components below hearing threshold
- Lossy compression used based on noise shaping
 - Noise below masking threshold is not audible
- Entropy coding applied
 - Large amount of data from high sampling rate and multi-channels


Audio Codec

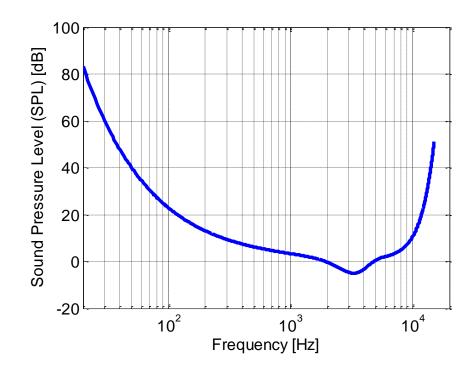
Codec = coder-decoder

- Filterbank transform
 - Convert between full-band signal (all frequencies) into subbands (modified discrete cosine transform MDCT)
- Psychoacoustic model
 - Calculates thresholds according to human masking effects and used for quantization of MDCT
- Quantization
 - MDCT coefficient quantization of spectral coefficients
- Lossless coding
 - Use entropy coding to reduce redundancy of coded bitstream
- Side information coding
 - Bit allocation information
- Multiplexer
 - Pack all coded bits into bitstream

Encoded Bit Stream

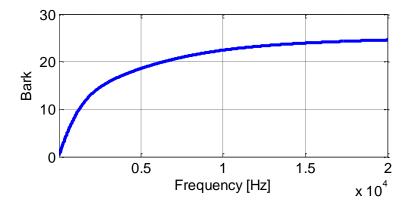
- Header
 - Contains frame format information and synchronization word (e.g. bit rate, sampling frequency, etc.)
- CRC cyclic redundancy check
 - Error detection code to protect the header
- Side information
 - Decoder information (parameters)
- Main data
 - Coded spectral coefficients and lossless encoded data
- Ancillary information
 - User defined info (e.g. track title, album, etc.)

Auditory Masking Effects


- Psychoacoustic principle that a low-level signal (maskee) becomes inaudible when a louder signal (masker) occurs simultaneously
- Human hearing does not respond equally to all frequency components
- Auditory masking depends on the spectral distribution of masker and maskee
 - These will vary in time
- Will do noise shaping during encoding to exploit human hearing

Quiet Threshold

- First step of perceptual coding
 - Shape coding distortion spectrum
- Represent a listener with acute hearing
 - No signal level below threshold will be perceived
- Quiet (absolute) threshold


$$T_q(f) = 3.64 \left(\frac{f}{1000}\right)^{-0.8} - 6.5e^{-0.6\left(\frac{f}{1000} - 3.3.\right)^2} + 10^{-3} \left(\frac{f}{1000}\right)^4 dB$$

- Most humans cannot sense frequencies outside of 20-20k Hz
 - Range changes in time and narrows with age

Masking Threshold

- Threshold determined by stimuli at a given time
 - Time-varying threshold
- Human hearing non-linear response to frequency components
- Divide auditory system into 26 critical bands (barks)
 - $z(f) = 13 \tan^{-1}(0.00076f) + 3.5 \tan^{-1}[(f/7500)^{2}]$ bark
 - Higher bandwidth at higher frequencies
 - Difficult to distinguish frequencies within the same bark
- Simultaneous masking
 - Dominant frequency masks (overpowers) frequencies in same critical band
 - No need to code any other frequency components in bark
- Masking spread
 - Masking effect across adjacent critical bands
 - Use triangular spread function
 - +25 dB/bark lower frequencies
 - -10 dB/bark higher frequencies

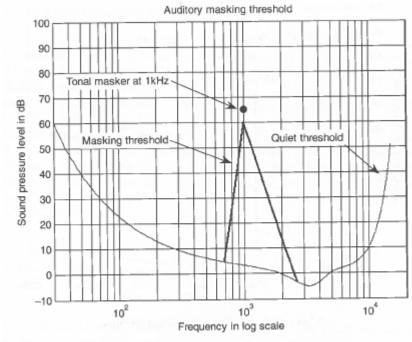


Figure 10.3 Auditory masking thresholds

Example 10.1

- Masking with multiple tones
 - 65 dB tone at 2kHz
 - 40 dB tone at 1.5 and 2.5 kHz
- Use quiet threshold first
 - All pass absolute threshold
- Using masking threshold
 - 65 dB tone is dominant
- Simultaneous masking
 - Examine barks (no overlap)
- Masking spread
 - 2.5 kHz masked
 - 1.5 kHz needs to be coded

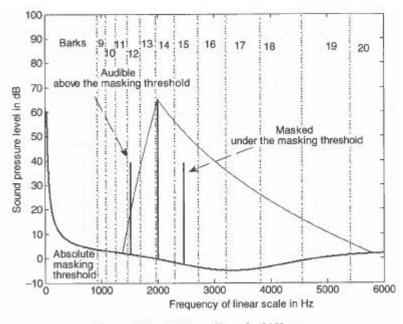


Figure 10.4 Masking effect of a 2 kHz tone

Frequency Domain Coding

- Representation of frequency content of signal
- Modified discrete cosine transform (MDCT) widely used for audio
 - DCT energy compaction (lower # of coefficients)
 - Reduced block effects
- MDCT definition

$$X(k) = \sum_{n=0}^{N-1} x(n) \cos \left[\left(n + \frac{N+2}{4} \right) \left(k + \frac{1}{2} \right) \frac{2\pi}{N} \right]$$

$$x(n) = \sum_{k=0}^{N/2-1} X(k) \cos \left[\left(n + \frac{N+2}{4} \right) \left(k + \frac{1}{2} \right) \frac{2\pi}{N} \right]$$

•
$$n = 0, 1, ..., N - 1$$

•
$$k = 0,1,...,(N/2) - 1$$

- Notice half coefficients for each window
 - Lapped transform (designed with overlapping windows built in)
- Like with FFT, windows are used but muse satisfy more conditions (Princen-Bradley condition)
 - Window applied both to analysis (MDCT) and synthesis (iMDCT) equations

Audio Coding

- Entropy (lossless) coding removes redundancy in coded data without loss in quality
- Pure entropy coding (lossless-only)
 - Huffman encoding statistical coding
 - More often occurring symbols have shorter code words
 - Fast method using a lookup table
 - Cannot achieve very high compression
- Extended lossless coding
 - Lossy coder followed by entropy coding
 - 20% compression gain
 - MP3 perceptual coding followed by entropy coding
- Scalable lossless coding
 - Can have perfect reproduction
 - Input first encoded, residual error is entropy coded
 - Results in two bit streams
 - Can choose lossy lowbit rate and combine for high quality lossless

MP3 Algorithm

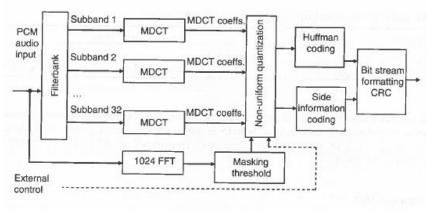
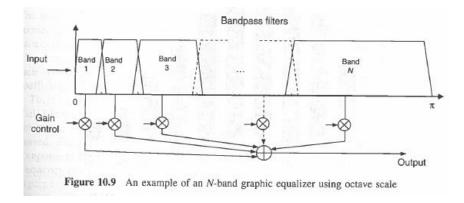


Figure 10.7 Block diagram of MP3 encoder

- Filterbank splits audio into 32 subbands
 - Each decimated to 32-36 MDCT coefficients
 - $32 \times 36 = 1152$ samples per frame
- Each band processed separately
 - MDCT block length of 18 and 6
 - Requires windows of 36 and 12 for 50% overlap
 - Longer blocks give better frequency resolution (stationary signals)
 - Shorter block length for better time resolution during transients

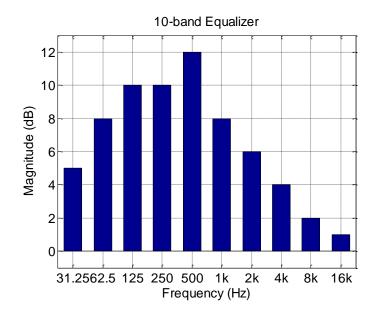

- 1152 samples per frame (~26 msec)
 - □ 1152/2 = 576 MDCT coefficients/frame
- Coefficients quantized using psychoacoustic model with masking threshold computed using 1024-pont FFT coefficients
- Control parameters
 - Sampling rate (kHz) 48, 44.1, 32
 - Bit rate (kbps) 320, 256, ..., 32
- Huffman coding of quantized MDCT coefficients
 - Arrange coefficients in order of increasing frequency
 - More energy in lower frequencies
 - Results in more efficient Huffman coding
- Frequency bins divided into three regions for efficient coding
 - Run-zero high frequency area with no energy
 - Count-1 are containing values of [-1, 0, 1]
 - Big-value coded with high precision
 - Further divided into 3 sub regions and each is Huffman coded

Audio Equalizers

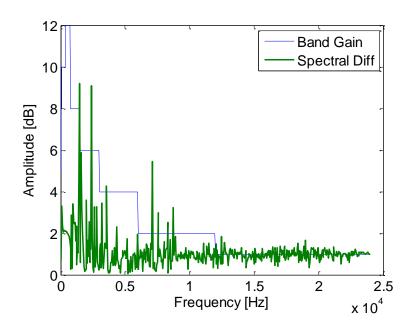
- Spectral equalization uses filtering techniques to reshape magnitude spectrum
 - Useful for recording and reproduction
- Example uses
 - Simple filters to adjust bass and treble
 - Correct response of microphone, instrument pickups, loudspeakers, and hall acoustics
- Parametric equalizers provide better frequency compensations but require more operator knowledge than graphic equalizers

Graphic Equalizers

 Use of several frequency bands to display and adjust the power of audio frequency components



- Input signal decomposed with bank of parallel bandpass filters
- Separate gain control for each band
- Signal power in each band estimated and displayed graphically with a bar


- Divide spectrum using octave scale (doubling scale)
- Bandpass filters can be realized using IIR filter design techniques
- DFT bins of audio signal X(k)
 need to be combined to form the
 equalizer frequency bands
 - Use octave scaling to combine

Example 10.4

- Graphic equalizer to adjust signal
- Select bands
 - Use octave scaling
 - bandFreqs =
 {'31.25','62.5','125','250','500',
 '1k','2k','4k','8k','16k'};

Parametric Equalizers

- Provides a set of filters connected in cascade that are tunable in terms of both spectral shape and filter gain
 - Not fixed bandwidth and center as in graphic
 - Use 2nd-order IIR filters

Parameters:

- f_s sampling rate
- f_c cutoff frequency [center (peak) or midpoint (shelf)
- Q quality factor [resonance (peak) slope (shelf)]
- $Gain boost in dB (max \pm 12 dB)$

Shelf Filters

- Low-shelf
 - Boost frequencies below cuttoff and pass higher components
- High-shelf
 - Boost frequencies above cuttoff and pass rest
- See book for equations

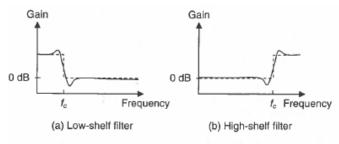
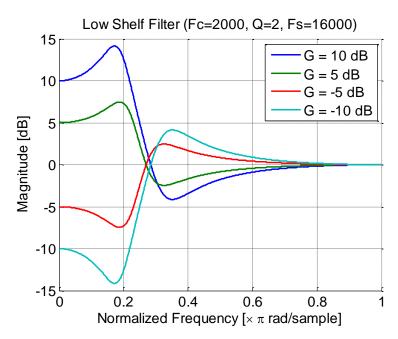
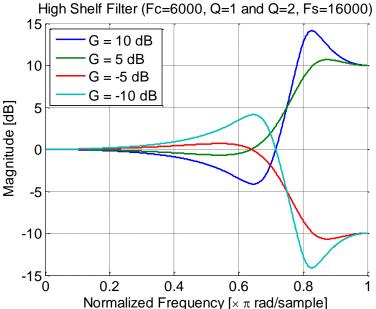
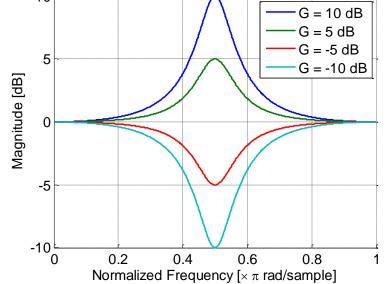




Figure 10.11 Magnitude responses of shelf filters

- Ex 10.6
 - Shape of shelf filter with different gain parameters



Peak Filter

- Peak filter amplify certain narrow frequency bands
- Notch filter attenuate certain narrow frequency bands
- E.g. loudness of certain frequency
- See book for equations

- Ex 10.5
 - Shape of peak filter for different parameters

Peak/Notch Filter (Fc=4/16, Q=2, Gain(dB)=10,5,-5,-10, Fs=16000

Example 10.7

- Implement parametric equalizer
 - $f_s = 16,000 \text{ Hz}$
- Cascade 3 filters:
 - Low-shelf filter
 - $f_c = 1000$, Gain = -10 dB, Q = 1.0
 - High-shelf filter
 - $f_c = 4000$, Gain = 10 dB, Q = 1.0
 - Peak filter
 - $f_c = 7000$, Gain = 10 dB, Q = 1.0

- Play example file outside of powerpoint
 - Left channel original signal
 - Right channel filtered

Audio (Sound) Effects

- Use of filtering techniques to emphasize audio signal in "artistic" manner
- Will only mention and give examples of some common effects
 - Not an in-depth look

Sound Reverberation

- Reverberation is echo sound from reflected sounds
- The echoes are related to the physical properties of the space
 - Room size, configuration, furniture, etc.
- Use impulse response to measure

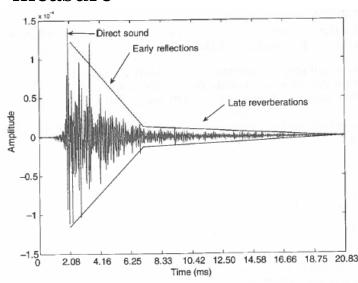
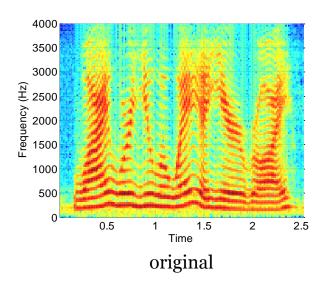
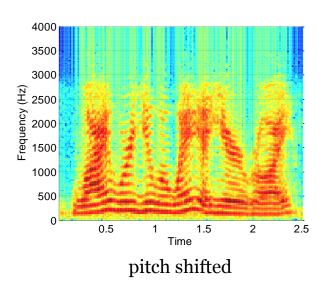


Figure 10.15 An example of a room impulse response

- Direct sound
 - First sound wave to reach ear
- Reflected sound
 - The echo waves that arrive after bouncing off a surface
- Example 10.8
- Use hall impulse response to simulated reverberated sound
- Input

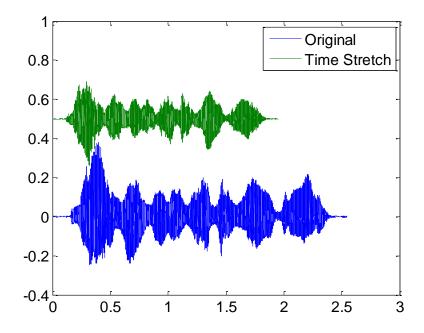

Output



Pitch Shift

- Change speech pitch (fundamental frequency)
- All frequencies are adjusted over the entire signal
 - Chipmunk voice

- Example 10.9a
 - Adjust pitch
- See audio files



Time Stretch

- Change speed of audio playback without affecting pitch
- Audio editing: adjust audio to fit a specific timeline

- Example 10.9b
 - Adjust play time
- See audio files

Tremolo

- Amplitude modulation of audio signal
 - y(n) = [1 + AM(n)]x(n)
 - A max modulation amplitude
 - M(n) slow modulation oscillator

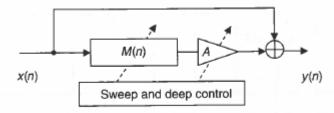
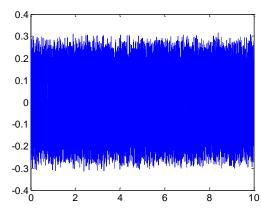
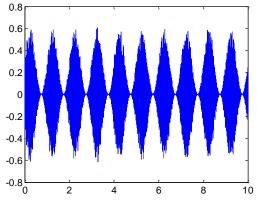




Figure 10.23 A block diagram of tremolo using low-frequency modulation

- $M(n) = \sin(2\pi f_r nT)$
 - f_r modulation rate

- Example 10.10
 - $A = 1, f_r = 1 Hz$
 - White noise input at $f_s = 8000 \ Hz$

Spatial Sounds

- Audio source localization determined by the way it is perceived by human ears
 - Time delay and intensity differences

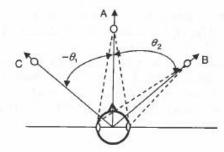


Figure 10.25 The sound source A directly in front of the head and the source B displaced at the θ_2^o azimuth

- Sounds in different positions arrive differently at ears
 - Interaural time difference (ITD) - delay between sounds reaching ear for localization
 - Iteraural intensity difference (IID) - loudness difference for localization

- Binaural audio demos
 - Great home fun
 - http://www.youtube.com/watc h?v=IUDTlvagjJA
 - http://www.youtube.com/watch?v=3FwDa7TWHHc
 - http://www.qsound.com/demo s/binaural-audio.htm
 - http://www.studio36o.org/sto ry/126833-adventures-3dsound/