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Autocorrelation 

• Specifies statistical relationship of signal at 
different time lags (𝑛 − 𝑘) 

▫ 𝑟𝑥𝑥 𝑛, 𝑘 = 𝐸 𝑥 𝑛 𝑥 𝑘  

▫ Similarity of observations as a function of the time 
between them (repeating pattern, time-delay, etc.) 

• We consider wide sense stationary (WSS) 
processes 

▫ Statistics do not change with time 

▫ Mean independent of time 

▫ Autocorrelation only depends on time lag 

 𝑟𝑥𝑥 𝑘 = 𝐸 𝑥 𝑛 + 𝑘 𝑥 𝑛  

4 



Expected Value 

• Value of random variable “expected” if random 
variable process repeated infinite number of 
times 

▫ Weighted average of all possible values 

• Expectation operator 

▫ 𝐸 . =  . 𝑓 𝑥 𝑑𝑥
∞

−∞
 

▫ 𝑓(𝑥) – probability density function of random 
variable 𝑋 

• Favorites are mean and variance 

▫ Mean - 𝐸 𝑥(𝑛) =  𝑥(𝑛)𝑓 𝑥 𝑑𝑥
∞

−∞
= 𝑚𝑥 

▫ Variance - 𝐸 𝑥 𝑛 − 𝑚𝑥
2  
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White Noise 

• Very popular random signal 

▫ Typical noise model 

▫ 𝑣(𝑛) with zero mean and variance 𝜎𝑣
2  

• Autocorrelation 

▫ 𝑟𝑣𝑣 𝑘 = 𝜎𝑣
2𝛿 𝑘  

▫ Statistically uncorrelated except at zero time lag 

• Power spectrum 

▫ 𝑃𝑣𝑣 𝜔 = 𝜎𝑣
2,     𝜔 ≤ 𝜋 

▫ Uniformly distributed over entire frequency range 
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General Adaptive Filter 
• Signal characteristics in practical applications are time varying 

and/or unknown  
▫ Must modify filter coefficients adaptively in an automated fashion to 

meet objectives 
• Two components 

▫ Digital filter – defined by coefficients 
▫ Adaptive algorithm – automatically update filter coefficients (weights) 

 
 
 
 
 
 
 

• Adaption occurs by comparing filtered signal 𝑦(𝑛) with a desired 
(reference) signal 𝑑(𝑛) 
▫ Minimize error 𝑒(𝑛) using a cost function (e.g. mean-square error) 
▫ Continually lower error and get 𝑦 𝑛  closer to 𝑑(𝑛) 

8 



FIR Adaptive Filter 
 

 

 

 

• 𝑦 𝑛 =  𝑤𝑙 𝑛 𝑥(𝑛 − 𝑙)𝐿−1
𝑙=0  

▫ Notice time-varying weights 

• In vector form 

▫ 𝑦 𝑛 = 𝒘𝑇 𝑛 𝒙 𝑛 =
𝒙𝑇 𝑛 𝒘 𝑛  

▫ 𝒙 𝑛 =
𝑥 𝑛 , 𝑥 𝑛 − 1 , … , 𝑥 𝑛 − 𝐿 + 1 𝑇 

▫ 𝒘 𝑛 =
𝑤0 𝑛 , 𝑤1 𝑛 , … , 𝑤𝐿−1 𝑛 𝑇 

• Error signal 

▫ 𝑒 𝑛 = 𝑑 𝑛 − 𝑦 𝑛 = 𝑑 𝑛 −
𝒘𝑇 𝑛 𝒙 𝑛  

• Use mean-square error (MSE) 
cost function 

• 𝜉 𝑛 = 𝐸 𝑒2 𝑛  

• 𝜉 𝑛 = 𝐸 𝑑2 𝑛 − 2𝒑𝑇𝒘 𝑛 +
𝒘𝑇 𝑛 𝑹𝒘 𝑛  

▫ 𝒑 = 𝐸 𝑑 𝑛 𝒙 𝑛 =
𝑟𝑑𝑥 0 , 𝑟𝑑𝑥 1 , … , 𝑟𝑑𝑥 𝐿 − 1 𝑇 

▫ 𝑹 – autocorrelation matrix 

 𝑹 = 𝐸[𝒙 𝑛 𝒙𝑇 𝑛 ] 

 

 

 

• Error function is quadratic 
surface 

▫ Can use gradient descent  

▫ 𝑤 𝑛 + 1 = 𝑤 𝑛 −
𝜇

2
𝛻𝜉 𝑛  
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LMS Algorithm 
• Practical applications do not 

have knowledge of 𝑑 𝑛 , 𝑥 𝑛  

▫ Cannot directly compute 
MSE and gradient 

▫ Stochastic gradient algorithm 

• Use instantaneous squared 
error to estimate MSE 

▫ 𝜉 𝑛 = 𝑒2 𝑛  

• Gradient estimate 

▫ 𝛻𝜉 𝑛 = 2 𝛻𝑒 𝑛 𝑒 𝑛  

 𝑒 𝑛 = 𝑑 𝑛 − 𝑤𝑇 𝑛 𝑥(𝑛) 

▫ 𝛻𝜉 𝑛 = −2𝑥(𝑛)𝑒 𝑛  

• Steepest descent algorithm 

▫ 𝑤 𝑛 + 1 = 𝑤 𝑛 + 𝜇𝑥 𝑛 𝑒 𝑛  

 

• LMS Steps 

1. Set 𝐿, 𝜇, and 𝒘(0) 

▫ 𝐿 – filter length 

▫ 𝜇 – step size (small e.g. 0.01) 

▫ 𝒘(0) – initial filter weights 

2. Compute filter output 

▫ 𝑦 𝑛 = 𝒘𝑇 𝑛 𝒙 𝑛  

3. Compute error signal 

▫ 𝑒 𝑛 = 𝑑 𝑛 − 𝑦 𝑛  

4. Update weight vector 
▫ 𝑤𝑙 𝑛 + 1 = 𝑤𝑙 𝑛 + 𝜇𝑥 𝑛 − 𝑙 𝑒 𝑛 ,

   𝑙 = 0,1, … 𝐿 − 1 

 

• Notice this requires a reference 
signal 

• Must choose small 𝜇 for stability  
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Practical Applications 
• Four classes of adaptive filtering 

applications 

• System identification – determine 
unknown system coefficients 

 

 

 

 

 

 

• Prediction – estimate future 
values 

 

 

• Noise cancellation – remove 
embedded noise 

 

 

 

 

 

 

• Inverse modeling – estimate 
inverse of unknown system 
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Linear Predictive Coding (LPC) 
• Speech production model with 

excitation input, gain, and 
vocal-tract filter 

 

 

 

 

 

• Gain represents amount of air 
from lungs and voice loudness 

• Unvoiced (e.g. “s”, “sh”, “f”) – 
no vibration 

▫ Use white noise for excitation 
signal 

 

• Voiced (e.g. vowels) – caused 
by vibration of vocal-cords 
with rate of vibration the pitch 

▫ Modeled with periodic pulse 
with fundamental (pitch) 
frequency  

▫ Generate periodic pulse train 
for excitation signal 

• Vocal tract model 

▫ Vocal tract is a pipe from 
vocal cords to oral cavity 

▫ Modeled as all pole filter 

 Match formants 

▫ Most important part of LPC 
model (changes shape to 
make sounds) 
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Code-Exited Linear Prediction (CELP) 

• Algorithms based on LPC 
approach using analysis by 
synthesis scheme 

• Three main components: 

• LPC vocal tract model (1/𝐴(𝑧)) 

▫ Solve using Levinson-Durbin 
recursive algorithm with 
autocorrelation normal 
equations 

 

 

 

 

▫ More coefficients  better 
match to speech 

• Perceptual-based 
minimization (𝑊 𝑧 ) 

▫ Control sensitivity of error 
calculation 

▫ Shape noise so it appears in 
regions where the ear cannot 
detect it 

 Place in louder regions of 
spectrum 

• Voice activity detection 

▫ Critical for reduced coding 

14 



Noise Subtraction 
 

 

 

 

• Input is noisy speech + 
stationary noise 
▫ Estimate noise characteristics 

during silent period between 
utterances with VAD system 

• Spectral subtraction – 
implemented in frequency 
domain 
▫ Based on short-time 

magnitude spectra estimation 

▫ 𝑆 𝑘 = 𝐻 𝑘 𝑋 𝑘  

 𝐻 𝑘 = 1 −
𝐸 𝑉 𝑘

𝑋 𝑘
 

 

 

 

 

 

 

 

 

 

 

• Subtract estimated noise mag 
spectrum from input signal 

• Reconstruct enhanced speech 
signal using IFFT 
▫ Coefficients are difference in 

mag and original phase 
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Speech Recognition 
 

 

 

 

• Feature extraction 

▫ Represent speech content 
with mel-frequency cepstrum 
(MFCC) coefficients 

 𝑐 𝑛 = ℱ−1 log 𝑋 𝑒𝑗𝜔  

▫ Rate of change in spectrum 
bands 

▫ MFCC use non-linear 
frequency bands to mimic 
human perception 

 

• Recognizer system 

▫ Pattern recognition problem 

▫ Must design templates and 
method to meaningfully 
compare speech signals 

▫ Big issues: unequal length 
data 

▫ Two solutions: 

 Dynamic time warping 
(DTW) – optimal alignment 
technique for sequences 

 Hidden Markov model – 
probabilistic model of 
speech with phoneme state 
transitions 
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Audio Coding 

• Techniques are required to enable high quality 
sound reproduction efficiently 

• Differences with speech 
▫ Much wider bandwidth (not just 300-1000 Hz) 
▫ Uses multiple channels 
▫ Psychoacoustic principles can be utilized for coding 

 Do not code frequency components below hearing 
threshold 

• Lossy compression used based on noise shaping 
▫ Noise below masking threshold is not audible 

• Entropy coding applied  
▫ Large amount of data from high sampling rate and 

multi-channels 
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Audio Codec 
• Codec = coder-decoder 

 
• Filterbank transform 

▫ Convert between full-band 
signal (all frequencies) into 
subbands (modified discrete 
cosine transform MDCT) 

• Psychoacoustic model 
▫ Calculates thresholds 

according to human masking 
effects and used for 
quantization of MDCT 

• Quantization 
▫ MDCT coefficient quantization 

of spectral coefficients 
• Lossless coding 

▫ Use entropy coding to reduce 
redundancy of coded bitstream 

• Side information coding 
▫ Bit allocation information 

• Multiplexer 
▫ Pack all coded bits into 

bitstream 
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Auditory Masking Effects 

• Psychoacoustic principle that a low-level signal 
(maskee) becomes inaudible when a louder 
signal (masker) occurs simultaneously 

• Human hearing does not respond equally to all 
frequency components 

• Auditory masking depends on the spectral 
distribution of masker and maskee 

▫ These will vary in time 

• Will do noise shaping during encoding to exploit 
human hearing 
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Quiet Threshold  
• First step of perceptual coding 

▫ Shape coding distortion 
spectrum 

• Represent a listener with acute 
hearing 
▫ No signal level below 

threshold will be perceived 

• Quiet (absolute) threshold 

▫ 𝑇𝑞 𝑓 = 3.64
𝑓

1000

−0.8
 −

6.5𝑒
−0.6

𝑓

1000
−3.3.

2

+

10−3 𝑓

1000

4
 dB 

• Most humans cannot sense 
frequencies outside of 20-20k 
Hz 
▫ Range changes in time and 

narrows with age 
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Masking Threshold 
• Threshold determined by stimuli at a given 

time 
▫ Time-varying threshold 

• Human hearing non-linear response to 
frequency components 

• Divide auditory system into 26 critical 
bands (barks) 
▫ 𝑧 𝑓 =

13 tan−1 0.00076𝑓 + 3.5 tan−1[ 𝑓/7500 2] 
bark 

▫ Higher bandwidth at higher frequencies 
▫ Difficult to distinguish frequencies within 

the same bark 

• Simultaneous masking 
▫ Dominant frequency masks (overpowers) 

frequencies in same critical band 
▫ No need to code any other frequency 

components in bark 

• Masking spread 
▫ Masking effect across adjacent critical 

bands 
▫ Use triangular spread function 

 +25 dB/bark lower frequencies 
 -10 dB/bark higher frequencies 
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Frequency Domain Coding 
• Representation of frequency content of signal 
• Modified discrete cosine transform (MDCT) widely used for 

audio 
▫ DCT energy compaction (lower # of coefficients) 
▫ Reduced block effects 

• MDCT definition 

▫ 𝑋 𝑘 =  𝑥 𝑛 cos 𝑛 +
𝑁+2

4
𝑘 +

1

2

2𝜋

𝑁
𝑁−1
𝑛=0  

▫ 𝑥 𝑛 =  𝑋 𝑘 cos 𝑛 +
𝑁+2

4
𝑘 +

1

2

2𝜋

𝑁

𝑁/2−1
𝑘=0  

 𝑛 = 0,1, … , 𝑁 − 1 

 𝑘 = 0,1, … , 𝑁/2 − 1 
▫ Notice half coefficients for each window 

 Lapped transform (designed with overlapping windows built in) 

• Like with FFT, windows are used but muse satisfy more 
conditions (Princen-Bradley condition) 
▫ Window applied both to analysis (MDCT) and synthesis (iMDCT) 

equations 

23 



Audio Coding 
• Entropy (lossless) coding removes 

redundancy in coded data without 
loss in quality 

• Pure entropy coding (lossless-only) 
▫ Huffman encoding – statistical 

coding  
 More often occurring symbols 

have shorter code words 
 Fast method using a lookup table 

▫  Cannot achieve very high 
compression 

• Extended lossless coding 
▫ Lossy coder followed by entropy 

coding 
▫ 20% compression gain 

 MP3 – perceptual coding followed 
by entropy coding 

• Scalable lossless coding 
▫ Can have perfect reproduction 
▫ Input first encoded, residual error 

is entropy coded 
▫ Results in two bit streams 

 Can choose lossy lowbit rate and 
combine for high quality lossless 
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Audio Equalizers 

• Spectral equalization uses filtering techniques to 
reshape magnitude spectrum 
▫ Useful for recording and reproduction 

 
• Example uses 

▫ Simple filters to adjust bass and treble 
▫ Correct response of microphone, instrument pick-

ups, loudspeakers, and hall acoustics 
 

• Parametric equalizers provide better frequency 
compensations but require more operator 
knowledge than graphic equalizers 
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Graphic Equalizers 
• Use of several frequency bands 

to display and adjust the power 
of audio frequency components 

 

 

 

 

 

 

 

• Input signal decomposed with 
bank of parallel bandpass filters 

• Separate gain control for each 
band 

• Signal power in each band 
estimated and displayed 
graphically with a bar 

 

• Divide spectrum using octave 
scale (doubling scale) 

• Bandpass filters can be realized 
using IIR filter design 
techniques 

• DFT bins of audio signal 𝑋(𝑘) 
need to be combined to form the 
equalizer frequency bands 
▫ Use octave scaling to combine 
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Example 10.4 
• Graphic equalizer to adjust 

signal 

 

• Select bands 

▫ Use octave scaling 
▫ bandFreqs = 

{'31.25','62.5','125','250','500',

'1k','2k','4k','8k','16k'}; 
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Parametric Equalizers 

• Provides a set of filters connected in cascade that 
are tunable in terms of both spectral shape and 
filter gain 
▫ Not fixed bandwidth and center as in graphic 
▫ Use 2nd-order IIR filters 

 
• Parameters: 

▫ 𝑓𝑠 - sampling rate 
▫ 𝑓𝑐 - cutoff frequency [center (peak) or midpoint 

(shelf) 
▫ 𝑄 – quality factor [resonance (peak) slope (shelf)] 
▫ 𝐺𝑎𝑖𝑛 – boost in dB (max ±12 dB) 
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Shelf Filters 
• Low-shelf 

▫ Boost frequencies below 
cuttoff and pass higher 
components 

• High-shelf  

▫ Boost frequencies above 
cuttoff and pass rest 

• See book for equations  

 

 

 

 

 

• Ex 10.6 

▫ Shape of shelf filter with 
different gain parameters 
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Peak Filter 
• Peak filter – amplify certain 

narrow frequency bands 

• Notch filter – attenuate certain 
narrow frequency bands 

• E.g. loudness of certain 
frequency 

• See book for equations  

 

• Ex 10.5 

▫ Shape of peak filter for 
different parameters 
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Example 10.7 
• Implement parametric 

equalizer 

▫ 𝑓𝑠 = 16,000 Hz 

 

• Cascade 3 filters: 

▫ Low-shelf filter 

 𝑓𝑐 = 1000, 𝐺𝑎𝑖𝑛 =
− 10 𝑑𝐵, 𝑄 = 1.0 

▫ High-shelf filter 

 𝑓𝑐 = 4000, 𝐺𝑎𝑖𝑛 = 10 𝑑𝐵, 𝑄 =
1.0 

▫ Peak filter 

 𝑓𝑐 = 7000, 𝐺𝑎𝑖𝑛 = 10 𝑑𝐵, 𝑄 =
1.0 

 

• Play example file outside of 
powerpoint 

▫ Left channel – original signal 

▫ Right channel - filtered 
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Audio (Sound) Effects 

• Use of filtering techniques to emphasize audio 
signal in “artistic” manner 

 

• Will only mention and give examples of some 
common effects 

▫ Not an in-depth look 
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Sound Reverberation 
• Reverberation is echo sound 

from reflected sounds 

• The echoes are related to the 
physical properties of the 
space 
▫ Room size, configuration, 

furniture, etc. 

• Use impulse response to 
measure  

• Direct sound 
▫ First sound wave to reach ear 

• Reflected sound 
▫ The echo waves that arrive 

after bouncing off a surface 

 

• Example 10.8 

• Use hall impulse response to 
simulated reverberated sound 

 

• Input 

 

 

• Output 
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Pitch Shift 
• Change speech pitch 

(fundamental frequency) 

• All frequencies are adjusted 
over the entire signal 

▫ Chipmunk voice 

 

• Example 10.9a 

▫ Adjust pitch 

• See audio files 
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Time Stretch 
• Change speed of audio 

playback without affecting 
pitch 

• Audio editing: adjust audio to 
fit a specific timeline 

 

• Example 10.9b 

▫ Adjust play time 

• See audio files 
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Tremolo 
• Amplitude modulation of 

audio signal 

▫ 𝑦 𝑛 = 1 + 𝐴𝑀 𝑛 𝑥 𝑛  

 𝐴 – max modulation 
amplitude 

 𝑀(𝑛) – slow modulation 
oscillator 

 

 

 

 

 

▫ 𝑀 𝑛 = sin(2𝜋𝑓𝑟𝑛𝑇) 

 𝑓𝑟 - modulation rate 

 

• Example 10.10 

▫ 𝐴 = 1, 𝑓𝑟 = 1 𝐻𝑧 

▫ White noise input at 
𝑓𝑠 = 8000 𝐻𝑧 
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Spatial Sounds 
• Audio source localization 

determined by the way it is 
perceived by human ears 
▫ Time delay and intensity 

differences 
 
 
 
 
 
 
 

• Sounds in different positions 
arrive differently at ears  
▫ Interaural time difference 

(ITD) - delay between sounds 
reaching ear for localization 

▫ Iteraural intensity difference 
(IID) - loudness difference for 
localization 

• Binaural audio demos 
▫ Great home fun 
▫ http://www.youtube.com/watc

h?v=IUDTlvagjJA 
▫ http://www.youtube.com/watc

h?v=3FwDa7TWHHc 
▫ http://www.qsound.com/demo

s/binaural-audio.htm 
▫ http://www.studio360.org/sto

ry/126833-adventures-3d-
sound/ 
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