
http://www.ee.unlv.edu/~b1morris/ee482/

Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

EE482: Digital Signal Processing

Applications

Spring 2014

TTh 14:30-15:45 CBC C222

Lecture 15

Image Processing

14/04/15

Outline

• Digital Images

• Color

• Histogram Equalization

• Image Filtering

2

Digital Image Processing

• Extension of 1D signal processing to 2D signal

▫ E.g. vector valued signal domain or 2D range

▫ Many common principles and ideas

• Many specific concepts arise from images

▫ Large signals (e.g. 10 M pixel image) video

▫ Need for very efficient and optimized processing

▫ Use of hardware accelerators (e.g. graphic
processing units)

3

Digital Images
• Set of data samples mapped

onto a 2D grid of points
▫ 𝑥 𝑚, 𝑛 = 𝑣 ; 𝑀 × 𝑁 image

 𝑚 = 0,… ,𝑀 − 1 ; column
(width) index

 𝑛 = 0, … ,𝑁 − 1 ; row
(height) index

 Be aware: this is not the
same notation as Matlab

 Row, column indexing
beginning with 1 index

▫ Each sample is known as a
pixel

• Image resolution
▫ Ability to distinguish spatial

details (dots/pixels per inch)

▫ Analogous to sampling
frequency

• Image value
▫ Grayscale – 𝑣 = [0,255] (8-bit

byte)
 0 – black, 255 – white

▫ Color - 𝑣 = [𝑅, 𝐺, 𝐵] (24-bit
value)
 Mixing of primary Red,

Green, and Blue colors

 Typically thought of as color
“channels”

4

Color
• Color comes from underlying

physical properties

• However, humans do not
perceive color in the same
physical process
▫ There is some subjectivity (e.g.

color similarity)

• Cones in human retina are
sensitive to color
▫ In the center of eye

▫ 3 different types for different
EM frequency sensitivity
 RGB mixing to build all colors

• Rods are monochromatic
▫ On outside of the eye and good

for low lighting and motion
sensing

5

Colorspaces
• Uniform method for defining colors

• Can transform from one to another
▫ Want to take advantage of

properties and color gamut

• XYZ
▫ International absolute color

standard

▫ No negative mixing

• RGB
▫ Additive color mixing for red,

green, and blue

▫ Widely used in computers

• CMYK
▫ Cyan, magenta, yellow, black

▫ Used for printers and based off of
reflectivity

• HSV
▫ Hue, saturation, and value = color,

amount, brightness

▫ Closer to human perception

6

Perceptual Colorspace Examples
• YUV – composite color video

standard (analog)
• Separate brightness from

chrominance (color)
▫ More perceptually meaningful

colorspace
 Humans perceive brightness

changes more than color

•
𝑌
𝑈
𝑉

=
0.299 0.587 0.114
−0.147 −0.289 0.436
0.615 −0.515 −0.100

𝑅
𝐺
𝐵

• YCbCr – digital color standard
• Separate brightness from

chrominance
▫ Used in JPEG

•
𝑌
𝑈
𝑉

=
0.299 0.587 0.114
−0.147 −0.289 0.436
0.615 −0.515 −0.100

𝑅
𝐺
𝐵

+
16
128
128

• Matlab – rgb2ycbcr.m
• Efficient representation using

subsampling color space
▫ Can reduce chrominance bits

7

Example Color Spaces

8

RGB Image R Channel G Channel B Channel

Y Channel (Intensity) Cb Channel Cr Channel YCbYr Image

Color Balance
• Correct color bias caused by

lighting and other variations

▫ Also known as white balance

• Adjust image color to more
closely depict human visual
system

• White balance algorithm

▫ 𝑅𝑤 = 𝑅𝑔𝑅

▫ 𝐺𝑤 = 𝐺𝑔𝐺

▫ 𝐵𝑤 = 𝐵𝑔𝐵

 Apply gain to each color
channel

 Normalize to green color
channel

• Example 11.2

▫ Color balance an image

9

Color Correction
• RGB from digital camera may not match color

perceived by humans
• Color correction adjusts RGB values to correspond

better to human vision
▫ Also known as chromatic or saturation correction

• Apply correction to white-balanced RGB image

▫

𝑅𝑐

𝐺𝑐
𝐺𝑐

=

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

𝑅𝑤

𝐺𝑤
𝐵𝑤

• The coefficients are selected to minimize mean-
square error between a reference color chart

▫ min 𝑐𝑛𝑚𝑥𝑤 𝑚, 𝑛 − 𝑥𝑟𝑒𝑓 𝑚, 𝑛
23

𝑚=1
3
𝑛=1 , 𝑛 ≠ 𝑚

▫ 𝑐𝑛𝑚 = 1, 𝑛 = 𝑚

10

Gamma Correction
• Used to compensate for

nonlinearity in display device

▫ 𝑅𝑤 = 𝑔𝑅𝑐
1/𝛾

▫ 𝐺𝑤 = 𝑔𝐺𝑐
1/𝛾

▫ 𝐵𝑤 = 𝑔𝐵𝑐
1/𝛾

 𝛾 – gamma value represents
non-linearity of display

 𝑔 – is a correction factor

• Example 11.3

11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Input Values

O
u

tp
u

t
V

a
lu

e
s

linear

display

correction

0 50 100 150 200 250 300
0

50

100

150

200

250

300
8-bit gamma curve

Histogram Processing

• Digital image histogram is the count of pixels in
an image having a particular value in range
[0, 𝐿 − 1]
▫ ℎ 𝑟𝑘 = 𝑛𝑘

 𝑟𝑘 - the kth gray level value
 Set of 𝑟𝑘are known as the bins of the histogram

 𝑛𝑘- the numbers of pixels with kth gray level

• Empirical probability of gray level occurrence is
obtained by normalizing the histogram

▫ 𝑝 𝑟𝑘 = 𝑛𝑘/𝑛
 𝑛 – total number of pixels

▫ Histogram is viewed as the probability that a pixel
will take a given intensity value in an image

12

Histogram Example
• x-axis – intensity value

▫ Bins [0, 255]

• y-axis – count of pixels

• Dark image

▫ Concentration in lower values

• Bright image

▫ Concentration in higher
values

• Low-contrast image

▫ Narrow band of values

• High-contrast image

▫ Intensity values in wide band

13

Histogram Equalization
• Assume continuous functions

(rather than discrete images)

• Define a transformation of the
intensity values to “equalize”
each pixel in the image

▫ 𝑠 = 𝑇 𝑟 0 ≤ 𝑟 ≤ 1

▫ Notice: intensity values are
normalized between 0 and 1

• The inverse transformation is
given as

▫ 𝑟 = 𝑇−1 𝑠 0 ≤ 𝑠 ≤ 1

• Viewing the gray level of an
image as a random variable

▫ 𝑝𝑠(𝑠)=𝑝𝑟(𝑟)
𝑑𝑟

𝑑𝑠

• Let 𝑠 by the cumulative
distribution function (CDF)

▫ 𝑠 = 𝑇 𝑟 = 𝑝𝑟 𝑤 𝑑𝑤
𝑟

0

• Then

▫
𝑑𝑠

𝑑𝑟
= 𝑝𝑟(𝑟)

• Which results in a uniform
PDF for the output intensity

▫ 𝑝𝑠 𝑠 = 1

• Hence, using the CDF of a
histogram will “equalize” an
image
▫ Make the resulting histogram

flat across all intensity levels

14

Discrete Histogram Equalization

• The probability density is approximated by the
normalized histogram

▫ 𝑝𝑟 𝑟𝑘 =
𝑛𝑘

𝑛
 𝑘 = 0,… , 𝐿 − 1

• The discrete CDF transformation is

▫ 𝑠𝑘 = 𝑇 𝑟𝑘 = 𝑝𝑟(𝑟𝑗)
𝑘
𝑗=0

▫ 𝑠𝑘 =
𝑛𝑘

𝑛
𝑘
𝑗=0

• This transformation does not guarantee a
uniform histogram in the discrete case
▫ It has the tendency to spread the intensity values

to span a larger range

15

Histogram Equalization Example

16

• Equalized histograms
have wider spread of
intensity levels

• Notice the equalized
images all have similar
visual appearance

▫ Even though histograms
are different

▫ Contrast enhancement

Original histogram original image histogram equalized equalized image

Example 11.4
• Histogram equalization of a

dark image

17

0

5

10

x 10
4 Histograms of original image

0 50 100 150 200 250

0

5

10

x 10
4 Histograms equalized image

0 50 100 150 200 250

0

5

10

x 10
4 Histograms of original image

0 50 100 150 200 250

0

5

10

x 10
4 Histograms equalized image

0 50 100 150 200 250

Local Histogram Enhancement
• Global methods (like

histogram equalization as
presented) may not always
make sense

▫ What happens when
properties of image regions
are different?

• Compute histogram over
smaller windows

▫ Break image into “blocks”

▫ Process each block separately

• Original image

• Block histogram equalization

• Notice the blocking effects that
cause noticeable boundary
effects

18

Local Enhancement
• Compute histogram over a block (neighborhood) for every pixel in a moving window

• Adaptive histogram equalization (AHE) is a computationally efficient method to
combine block based computations through interpolation (adapthisteq.m)

19

Figure 3.8 Locally adaptive histogram equalization: (a) original image; (b) block histogram
equalization; (c) full locally adaptive equalization.

Image Processing Motivation
• Image processing is useful for

the reduction of noise

• Common types of noise

▫ Salt and pepper – random
occurrences of black and
white pixels

▫ Impulse – random
occurrences of white pixels

▫ Gaussian – variations in
intensity drawn from normal
distribution

20

Adapted from S. Seitz

Ideal Noise Reduction

• How can we reduce noise given a single camera
and a still scene?

▫ Take lots of images and average them

• What about if you only have a single image?

21

Adapted from S. Seitz

Image Filtering

• Filtering is a neighborhood operation

▫ Use the pixels values in the vicinity of a given pixel
to determine its final output value

• Motivation: noise reduction

▫ Replace a pixel by the average value in a
neighborhood

▫ Assumptions:

 Expect pixels to be similar to their neighbors (local
consistency)

 Expect noise processes to be independent from pixel
to pixel (i.i.d.)

22

Linear Filtering

• Most common type of neighborhood operator

• Output pixel is determined as a weighted sum of
input pixel values

▫ 𝑔 𝑥, 𝑦 = 𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)𝑘,𝑙

 𝑤 – is known as the kernel, mask, filter, template, or
window

 𝑤(𝑘, 𝑙) – entry is known as a kernel weight or filter
coefficient

• This is also known as the correlation operator

▫ 𝑔 = 𝑓⨂𝑤

23

Filtering Operation

24

• 𝑔 𝑥, 𝑦 =
 𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)𝑘,𝑙

• The filter mask is moved from
point to point in an image
• The response is computed

based on the sum of products of
the mask coefficients and
image

• Notice the mask is centered at
𝑤 0,0
• Usually we use odd sized masks

so that the computation is
symmetrically defined

• Matlab commands
▫ imfilter.m, filter2.m,

conv2.m

Filtering Raster Scan

• Zig-zag scan through of image

▫ Process image row-wise

25

Connection to Signal Processing
• General system notation

• LTI system

▫ Convolution relationship

• Discrete 1D LTI system

• Discrete 2D LTI system

▫ Linear filtering is the same as
convolution without flipping

26

𝑓 𝑥 𝑦

𝑤 𝑓(𝑥, 𝑦) 𝑔(𝑥, 𝑦) ℎ 𝑥[𝑛] 𝑦[𝑛]

𝑦 𝑛 = 𝑥 𝑘 ℎ[𝑛 − 𝑘]

∞

𝑘=−∞

 𝑔(𝑥, 𝑦) = 𝑓 𝑠, 𝑡 𝑤(𝑥 − 𝑠, 𝑦 − 𝑡)

∞

𝑡=−∞

∞

𝑠=−∞

Image Filters
• Can be used for noise reduction, edge enhancement,

sharpening, blurring, etc.
▫ Generally like to use linear filtering (simple)

 Advanced photoshopping uses more complex non-linear filters

• Lowpass filters - remove high frequency (noise)
components
▫ Smoothing filter

 Blurs edges

• Highpass filters - remove low frequency components
▫ Edge enhancement filter

• Generally, kernels are symmetric in both horizontal and
vertical directions

• Filtering is computationally expensive
▫ Use small 3 × 3 or 5 × 5 kernels for real-time application

27

Smoothing Filters

• Smoothing filters are used for blurring and noise
reduction

▫ Blurring is useful for small detail removal (object
detection), bridging small gaps in lines, etc.

• These filters are known as lowpass filters

▫ Higher frequencies are attenuated

▫ What happens to edges?

28

Linear Smoothing Filter

• The simplest smoothing filter is the moving
average or box filter

▫ Computes the average over a constant
neighborhood

• This is a separable filter

▫ Horizontal 1D filter

▫ Remember your square wave from DSP

 ℎ[𝑛] =
1 0 ≤ 𝑛 ≤ 𝑀
0 else

 Fourier transform is a sinc function

29

More Linear Smoothing Filters

• More interesting filters can be readily obtained

• Weighted average kernel (bilinear) - places more
emphasis on closer pixels

▫ More local consistency

• Gaussian kernel - an approximation of a
Gaussian function

▫ Has variance parameter to control the kernel
“width”

▫ fspecial.m

30

Adapted from S. Seitz

Lowpass Examples

31

Origianl JPEG Image

50 100 150 200 250 300

50

100

150

200

Lowpass Filtered Image

50 100 150 200 250 300

50

100

150

200

Blur Filtered Image

50 100 150 200 250 300

50

100

150

200

Median Filtering
• Sometimes linear filtering is not sufficient

▫ Non-linear neighborhood operations are required
• Median filter – replaces the center pixel in a mask

by the median of its neighbors
▫ Non-linear operation, computationally more expensive
▫ Provides excellent noise-reduction with less blurring

than smoothing filters of similar size (edge preserving)
 For impulse and salt-and-pepper noise

32

Sharpening Filters

• Sharpening filters are used to highlight fine
detail or enhance blurred detail

• Smoothing we saw was averaging

▫ This is analogous to integration

• Since sharpening is the dual operation to
smoothing, it can be accomplished through
differentiation

33

Digital Derivatives

• Derivatives of digital functions are defined in
terms of differences

▫ Various computational approaches

• Discrete approximation of a derivative

▫
𝜕𝑓

𝜕𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥)

▫
𝜕𝑓

𝜕𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥 − 1)

 Center symmetric

• Second-order derivative

▫
𝜕2𝑓

𝜕𝑥2
= 𝑓 𝑥 + 1 + 𝑓 𝑥 − 1 − 2𝑓(𝑥)

34

Difference Properties

35

• 1st derivative

▫ Zero in constant segments

▫ Non-zero at intensity transition

▫ Non-zero along ramps

• 2nd derivative

▫ Zero in constant areas

▫ Non-zero at intensity transition

▫ Zero along ramps

• 2nd order filter is more
aggressive at enhancing sharp
edges

▫ Outputs different at ramps

 1st order produces thick edges

 2nd order produces thin edges

▫ Notice: the step gets both a
negative and positive response
in a double line

The Laplacian
• 2nd derivatives are generally better for image

enhancement because of sensitivity to fine detail
• The Laplacian is simplest isotropic derivative operator

▫ 𝛻2𝑓 =
𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2

▫ Isotropic – rotation invariant

• Discrete implementation using the 2nd derivative
previously defined

𝜕2𝑓

𝜕𝑥2
= 𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 − 2𝑓(𝑥, 𝑦)

𝜕2𝑓

𝜕𝑦2 = 𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 − 2𝑓 𝑥, 𝑦

▫ 𝛻2𝑓 =
𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 + 𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 −
4𝑓(𝑥, 𝑦)

36

Discrete Laplacian

37

• Zeros in corners give isotropic

results for rotations of 90°

• Non-zeros corners give
isotropic results for rotations

of 45°

▫ Include diagonal derivatives
in Laplacian definition

• Center pixel sign indicates
light-to-dark or dark-to-light
transitions

▫ Make sure you know which

Sharpening Images

38

• Sharpened image created by
addition of Laplacian

▫ 𝑔 𝑥, 𝑦 =

𝑓 𝑥, 𝑦 − 𝛻2𝑓(𝑥, 𝑦) 𝑤 0,0 < 0

𝑓 𝑥, 𝑦 + 𝛻2𝑓(𝑥, 𝑦) 𝑤 0,0 > 0

• Notice: the use of diagonal
entries creates much sharper
output image

• How can we compute 𝑔(𝑥, 𝑦)
in one filter pass without the
image addition?

▫ Think of a linear system

Unsharp Masking
• Edges can be obtained by subtracting

a blurred version of an image

▫ 𝑓𝑢𝑠 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 − 𝑓 𝑥, 𝑦

▫ Blurred image

 𝑓 𝑥, 𝑦 = ℎblur ∗ 𝑓(𝑥, 𝑦)

• Sharpened image

▫ 𝑓𝑠 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + 𝛾𝑓𝑢𝑠 𝑥, 𝑦

39

The Gradient
• 1st derivatives can be useful for

enhancement of edges

▫ Useful preprocessing before
edge extraction and interest
point detection

• The gradient is a vector
indicating edge direction

▫ 𝛻f =
𝐺𝑥
𝐺𝑦

=

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦

• The gradient magnitude can be
approximated as

▫ 𝛻𝑓 ≈ 𝐺𝑥 + 𝐺𝑦

▫ This give isotropic results for

rotations of 90°

• Sobel operators

▫ Have directional sensitivity

▫ Coefficients sum to zero

 Zero response in constant
intensity region

40

𝐺𝑥 𝐺𝑦

Highpass Examples

41

Origianl JPEG Image

50 100 150 200 250 300

50

100

150

200

Highpass Filtered Image

50 100 150 200 250 300

50

100

150

200

Sobel H-Filtered Image

50 100 150 200 250 300

50

100

150

200

Prewitt V-Filtered Image

50 100 150 200 250 300

50

100

150

200

Laplacian Filtered Image

50 100 150 200 250 300

50

100

150

200

Edge Filtered Image

50 100 150 200 250 300

50

100

150

200

Border Effects

• The filtering process suffers from boundary
effects

▫ What should happen at the edge of an image?

▫ No values exist outside of image

• Padding extends image values outside of the
image to “fill” the kernel at the borders

▫ Zero – set pixels to 0 value

 Will cause a darkening of the edges of the image

▫ Constant – set border pixels to fixed value

▫ Clamp – repeat edge pixel value

▫ Mirror – reflect pixels across image edge

42

Computational Requirements
• Convolution requires 𝐾2

operations per pixel for a
𝐾 × 𝐾 size filter

• Total operations on an image
is M×𝑁 × 𝐾2

• This can be computationally
expensive for large 𝐾

• Cost can be greatly improved if
the kernel is separable

▫ First do 1D horizontal
convolution

▫ Follow with 2D vertical
convolution

• Separable kernel

▫ 𝑤 = 𝑣ℎ𝑇

 𝑣 – vertical kernel

 ℎ - horizontal kernel

▫ Defined by outer product

• Can approximate a separable
kernel using singular value
decomposition (SVD)

▫ Truly separable kernels will
only have one non-zero
singular value

43

Fast Convolution

• Computationally efficient linear filtering by using
the 2D FFT for large kernels
▫ Avoid large nested loops – instead only have

multiplication in frequency domain
 𝑂(log2𝑁𝐽) instead of 𝑂(𝑁𝐽) term

▫ Use fft2.m and ifft2.m

• Steps:
▫ Pad both image and kernel with zeros to same size

 Image + kernel size

▫ Compute 2D FFT of both image and kernel
▫ Multiply element-wise
▫ Inverse FFT for result

 Crop to get usable image

44

Fast Convolution Examples

45

Origianl JPEG Image

50 100 150 200 250 300

50

100

150

200

edge Filtered Image

50 100 150 200 250 300

50

100

150

200

Motion Filtered Image

50 100 150 200 250 300

50

100

150

200

Gaussian Filtered Image

50 100 150 200 250 300

50

100

150

200

Discrete Cosine Transform for Coding

• DCT is widely used in image
compression

▫ Part of JPEG standard

▫ Process image in 8 × 8 blocks

• JPEG2000 improves
compression and removes
block artifacts using wavelet
transform

▫ Never really caught on

• DCT definitions

• DCT is separable

▫ Horizontal (column-wise)
and vertical (row-wise)

▫ Significant computation
reduction (1D operations)

46

JPEG Coding Example
• DCT coefficients are ordered

in zig-zag fashion

▫ DC component first (only
code difference between
blocks)

▫ AC coefficients have lower
weight in higher-order

 Compaction property (only
code non-zero coefficients)

47

