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Digital Image Processing 

• Extension of 1D signal processing to 2D signal 

▫ E.g. vector valued signal domain or 2D range 

▫ Many common principles and ideas 

• Many specific concepts arise from images 

▫ Large signals (e.g. 10 M pixel image)  video 

▫ Need for very efficient and optimized processing 

▫ Use of hardware accelerators (e.g. graphic 
processing units) 
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Digital Images 
• Set of data samples mapped 

onto a 2D grid of points 
▫ 𝑥 𝑚, 𝑛 = 𝑣 ; 𝑀 × 𝑁 image 

 𝑚 = 0,… ,𝑀 − 1 ; column 
(width) index 

 𝑛 = 0, … ,𝑁 − 1 ; row 
(height) index 

 Be aware: this is not the 
same notation as Matlab 

 Row, column indexing 
beginning with 1 index 

▫ Each sample is known as a 
pixel 

• Image resolution 
▫ Ability to distinguish spatial 

details (dots/pixels per inch) 

▫ Analogous to sampling 
frequency 

• Image value 
▫ Grayscale – 𝑣 = [0,255] (8-bit 

byte) 
 0 – black, 255 – white  

▫ Color - 𝑣 = [𝑅, 𝐺, 𝐵] (24-bit 
value)  
 Mixing of primary Red, 

Green, and Blue colors 

 Typically thought of as color 
“channels” 
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Color 
• Color comes from underlying 

physical properties 

 

 

 

 

 

 

 

 

 

 

 

• However, humans do not 
perceive color in the same 
physical process 
▫ There is some subjectivity (e.g. 

color similarity) 

 

• Cones in human retina are 
sensitive to color 
▫ In the center of eye 

▫ 3 different types for different 
EM frequency sensitivity  
 RGB mixing to build all colors 

• Rods are monochromatic 
▫ On outside of the eye and good 

for low lighting and motion 
sensing 
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Colorspaces 
• Uniform method for defining colors 

• Can transform from one to another 
▫ Want to take advantage of 

properties and color gamut 

• XYZ  
▫ International absolute color 

standard 

▫ No negative mixing 

• RGB  
▫ Additive color mixing for red, 

green, and blue 

▫ Widely used in computers 

• CMYK  
▫ Cyan, magenta, yellow, black 

▫ Used for printers and based off of 
reflectivity  

• HSV 
▫ Hue, saturation, and value = color, 

amount, brightness 

▫ Closer to human perception  
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Perceptual Colorspace Examples 
• YUV – composite color video 

standard (analog) 
• Separate brightness from 

chrominance (color) 
▫ More perceptually meaningful 

colorspace 
 Humans perceive brightness 

changes more than color 

•
𝑌
𝑈
𝑉

=
0.299 0.587 0.114
−0.147 −0.289 0.436
0.615 −0.515 −0.100

𝑅
𝐺
𝐵

 

 

• YCbCr – digital color standard 
• Separate brightness from 

chrominance  
▫ Used in JPEG 

•
𝑌
𝑈
𝑉

=
0.299 0.587 0.114
−0.147 −0.289 0.436
0.615 −0.515 −0.100

𝑅
𝐺
𝐵

+
16
128
128

 

• Matlab – rgb2ycbcr.m 
• Efficient representation using 

subsampling color space 
▫ Can reduce chrominance bits 
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Example Color Spaces 
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RGB Image R Channel G Channel B Channel

Y Channel (Intensity) Cb Channel Cr Channel YCbYr Image



Color Balance 
• Correct color bias caused by 

lighting and other variations 

▫ Also known as white balance 

• Adjust image color to more 
closely depict human visual 
system 

• White balance algorithm 

▫ 𝑅𝑤 = 𝑅𝑔𝑅 

▫ 𝐺𝑤 = 𝐺𝑔𝐺  

▫ 𝐵𝑤 = 𝐵𝑔𝐵 

 Apply gain to each color 
channel 

 Normalize to green color 
channel 

• Example 11.2 

▫ Color balance an image 
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Color Correction 
• RGB from digital camera may not match color 

perceived by humans 
• Color correction adjusts RGB values to correspond 

better to human vision 
▫ Also known as chromatic or saturation correction 

• Apply correction to white-balanced RGB image 

▫

𝑅𝑐

𝐺𝑐
𝐺𝑐

=

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

𝑅𝑤

𝐺𝑤
𝐵𝑤

 

• The coefficients are selected to minimize mean-
square error between a reference color chart 

▫ min   𝑐𝑛𝑚𝑥𝑤 𝑚, 𝑛 − 𝑥𝑟𝑒𝑓 𝑚, 𝑛
23

𝑚=1
3
𝑛=1 , 𝑛 ≠ 𝑚 

▫ 𝑐𝑛𝑚 = 1, 𝑛 = 𝑚 
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Gamma Correction 
• Used to compensate for 

nonlinearity in display device 

▫ 𝑅𝑤 = 𝑔𝑅𝑐
1/𝛾

 

▫ 𝐺𝑤 = 𝑔𝐺𝑐
1/𝛾

 

▫ 𝐵𝑤 = 𝑔𝐵𝑐
1/𝛾

 

 𝛾 – gamma value represents 
non-linearity of display 

 𝑔 – is a correction factor 

 

• Example  11.3 
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Histogram Processing 

• Digital image histogram is the count of pixels in 
an image having a particular value in range 
[0, 𝐿 − 1] 
▫ ℎ 𝑟𝑘 = 𝑛𝑘 

 𝑟𝑘 - the kth gray level value 
 Set of 𝑟𝑘are known as the bins of the histogram 

 𝑛𝑘- the numbers of pixels with kth gray level 

• Empirical probability of gray level occurrence is 
obtained by normalizing the histogram 

▫ 𝑝 𝑟𝑘 = 𝑛𝑘/𝑛 
 𝑛 – total number of pixels 

▫ Histogram is viewed as the probability that a pixel 
will take a given intensity value in an image 
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Histogram Example 
• x-axis – intensity value 

▫ Bins [0, 255] 

• y-axis – count of pixels 

 

• Dark image 

▫ Concentration in lower values 

• Bright image 

▫ Concentration in higher 
values 

• Low-contrast image 

▫ Narrow band of values 

• High-contrast image 

▫ Intensity values in wide band 
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Histogram Equalization 
• Assume continuous functions 

(rather than discrete images) 

• Define a transformation of the 
intensity values to “equalize” 
each pixel in the image 

▫ 𝑠 = 𝑇 𝑟      0 ≤ 𝑟 ≤ 1 

▫ Notice: intensity values are 
normalized between 0 and 1 

• The inverse transformation is 
given as 

▫ 𝑟 = 𝑇−1 𝑠     0 ≤ 𝑠 ≤ 1 

• Viewing the gray level of an 
image as a random variable 

▫ 𝑝𝑠(𝑠)=𝑝𝑟(𝑟)
𝑑𝑟

𝑑𝑠
 

• Let 𝑠 by the cumulative 
distribution function (CDF) 

▫ 𝑠 = 𝑇 𝑟 =  𝑝𝑟 𝑤 𝑑𝑤
𝑟

0
 

• Then 

▫
𝑑𝑠

𝑑𝑟
= 𝑝𝑟(𝑟) 

• Which results in a uniform 
PDF for the output intensity 

▫ 𝑝𝑠 𝑠 = 1 

• Hence, using the  CDF of a 
histogram will “equalize” an 
image 
▫ Make the resulting histogram 

flat across all intensity levels 
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Discrete Histogram Equalization 

• The probability density is approximated by the 
normalized histogram 

▫ 𝑝𝑟 𝑟𝑘 =
𝑛𝑘

𝑛
     𝑘 = 0,… , 𝐿 − 1 

• The discrete CDF transformation is  

▫ 𝑠𝑘 = 𝑇 𝑟𝑘 =  𝑝𝑟(𝑟𝑗)
𝑘
𝑗=0  

▫ 𝑠𝑘 =  
𝑛𝑘

𝑛
𝑘
𝑗=0  

 

• This transformation does not guarantee a 
uniform histogram in the discrete case 
▫ It has the tendency to spread the intensity values 

to span a larger range 
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Histogram Equalization Example 
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• Equalized histograms 
have wider spread of 
intensity levels 

 

• Notice the equalized 
images all have similar 
visual appearance 

▫ Even though histograms 
are different 

▫ Contrast enhancement 

 

Original histogram original image histogram equalized equalized image 



Example 11.4 
• Histogram equalization of a 

dark image 

 

 

17 

0

5

10

x 10
4 Histograms of original image

0 50 100 150 200 250

0

5

10

x 10
4 Histograms equalized image

0 50 100 150 200 250

0

5

10

x 10
4 Histograms of original image

0 50 100 150 200 250

0

5

10

x 10
4 Histograms equalized image

0 50 100 150 200 250



Local Histogram Enhancement 
• Global methods (like 

histogram equalization as 
presented) may not always 
make sense 

▫ What happens when 
properties of image regions 
are different? 

 

• Compute histogram over 
smaller windows 

▫ Break image into “blocks” 

▫ Process each block separately 

• Original image 

 

 

 

 

 

• Block histogram equalization 

 

 

 

 

 

• Notice the blocking effects that 
cause noticeable boundary 
effects 
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Local Enhancement 
• Compute histogram over a block (neighborhood) for every pixel in a moving window 

 

 

 

 

 

 

 

 

 

• Adaptive histogram equalization (AHE) is a computationally efficient method to 
combine block based computations through interpolation (adapthisteq.m) 
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Figure 3.8 Locally adaptive histogram equalization: (a) original image; (b) block histogram 
equalization; (c) full locally adaptive equalization. 



Image Processing Motivation 
• Image processing is useful for 

the reduction of noise 

 

• Common types of noise 

▫ Salt and pepper – random 
occurrences of black and 
white pixels 

▫ Impulse – random 
occurrences of white pixels 

▫ Gaussian – variations in 
intensity drawn from normal 
distribution 

20 

Adapted from S. Seitz 



Ideal Noise Reduction 

• How can we reduce noise given a single camera 
and a still scene? 

▫ Take lots of images and average them 

 

 

 

 

 

 

 

• What about if you only have a single image? 
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Adapted from S. Seitz 



Image Filtering 

• Filtering is a neighborhood operation 

▫ Use the pixels values in the vicinity of a given pixel 
to determine its final output value 

 

• Motivation: noise reduction 

▫ Replace a pixel by the average value in a 
neighborhood 

▫ Assumptions: 

 Expect pixels to be similar to their neighbors (local 
consistency) 

 Expect noise processes to be independent from pixel 
to pixel (i.i.d.) 
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Linear Filtering 

• Most common type of neighborhood operator 

• Output pixel is determined as a weighted sum of 
input pixel values 

▫ 𝑔 𝑥, 𝑦 =  𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)𝑘,𝑙  

 𝑤 – is known as the kernel, mask, filter, template, or 
window 

 𝑤(𝑘, 𝑙) – entry is known as a kernel weight or filter 
coefficient 

• This is also known as the correlation operator 

▫ 𝑔 = 𝑓⨂𝑤 
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Filtering Operation 
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• 𝑔 𝑥, 𝑦 =
 𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)𝑘,𝑙  

 

• The filter mask is moved from 
point to point in an image 
• The response is computed 

based on the sum of products of 
the mask coefficients and 
image 

 

• Notice the mask is centered at 
𝑤 0,0  
• Usually we use odd sized masks 

so that the computation is 
symmetrically defined 

 

• Matlab commands 
▫ imfilter.m, filter2.m, 

conv2.m 

 



Filtering Raster Scan 

• Zig-zag scan through of image 

▫ Process image row-wise 
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Connection to Signal Processing 
• General system notation 

 

 

 

• LTI system 

▫ Convolution relationship 

• Discrete 1D LTI system 

 

 

 

 

 

 

 

 

 

• Discrete 2D LTI system 

 

 

 

 

 

 

▫ Linear filtering is the same as 
convolution without flipping 
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𝑓 𝑥 𝑦 

𝑤 𝑓(𝑥, 𝑦) 𝑔(𝑥, 𝑦) ℎ 𝑥[𝑛] 𝑦[𝑛] 

𝑦 𝑛 =  𝑥 𝑘 ℎ[𝑛 − 𝑘]

∞

𝑘=−∞

 𝑔(𝑥, 𝑦) =   𝑓 𝑠, 𝑡 𝑤(𝑥 − 𝑠, 𝑦 − 𝑡) 

∞

𝑡=−∞

∞

𝑠=−∞

 



Image Filters 
• Can be used for noise reduction, edge enhancement, 

sharpening, blurring, etc. 
▫ Generally like to use linear filtering (simple) 

 Advanced photoshopping uses more complex non-linear filters 

• Lowpass filters - remove high frequency (noise) 
components  
▫ Smoothing filter 

 Blurs edges 

• Highpass filters - remove low frequency components 
▫ Edge enhancement filter 

• Generally, kernels are symmetric in both horizontal and 
vertical directions 

• Filtering is computationally expensive 
▫ Use small 3 × 3 or 5 × 5 kernels for real-time application 
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Smoothing Filters 

• Smoothing filters are used for blurring and noise 
reduction 

▫ Blurring is useful for small detail removal (object 
detection), bridging small gaps in lines, etc. 

• These filters are known as lowpass filters 

▫ Higher frequencies are attenuated 

▫ What happens to edges? 
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Linear Smoothing Filter 

• The simplest smoothing filter is the moving 
average or box filter 

▫ Computes the average over a constant 
neighborhood 

 

• This is a separable filter 

▫ Horizontal 1D filter  

▫ Remember your square wave from DSP 

 ℎ[𝑛] =  
1 0 ≤ 𝑛 ≤ 𝑀
0 else

 

 Fourier transform is a sinc function 
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More Linear Smoothing Filters 

• More interesting filters can be readily obtained 

 

• Weighted average kernel (bilinear) - places more 
emphasis on closer pixels 

▫ More local consistency 

 

• Gaussian kernel - an approximation of a 
Gaussian function  

▫ Has variance parameter to control the kernel 
“width” 

▫ fspecial.m 
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Adapted from S. Seitz 



Lowpass Examples 
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Median Filtering 
• Sometimes linear filtering is not sufficient  

▫ Non-linear neighborhood operations are required 
• Median filter – replaces the center pixel in a mask 

by the median of its neighbors 
▫ Non-linear operation, computationally more expensive 
▫ Provides excellent noise-reduction with less blurring 

than smoothing filters of similar size (edge preserving) 
 For impulse and salt-and-pepper noise 
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Sharpening Filters 

• Sharpening filters are used to highlight fine 
detail or enhance blurred detail 

 

• Smoothing we saw was averaging 

▫ This is analogous to integration 

• Since sharpening is the dual operation to 
smoothing, it can be accomplished through 
differentiation 
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Digital Derivatives 

• Derivatives of digital functions are defined in 
terms of differences 

▫ Various computational approaches 

• Discrete approximation of a derivative 

▫
𝜕𝑓

𝜕𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥) 

▫
𝜕𝑓

𝜕𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥 − 1) 

 Center symmetric 

• Second-order derivative 

▫
𝜕2𝑓

𝜕𝑥2
= 𝑓 𝑥 + 1 + 𝑓 𝑥 − 1 − 2𝑓(𝑥) 
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Difference Properties 
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• 1st derivative 

▫ Zero in constant segments 

▫ Non-zero at intensity transition 

▫ Non-zero along ramps 

• 2nd derivative 

▫ Zero in constant areas 

▫ Non-zero at intensity transition 

▫ Zero along ramps 

• 2nd order filter is more 
aggressive at enhancing sharp 
edges 

▫ Outputs different at ramps 

 1st order produces thick edges 

 2nd order produces thin edges 

▫ Notice: the step gets both a 
negative and positive response 
in a double line 

 



The Laplacian 
• 2nd derivatives are generally better for image 

enhancement because of sensitivity to fine detail 
• The Laplacian is simplest isotropic derivative operator 

▫ 𝛻2𝑓 =
𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2 

▫ Isotropic – rotation invariant 

• Discrete implementation using the 2nd derivative 
previously defined 


𝜕2𝑓

𝜕𝑥2
= 𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 − 2𝑓(𝑥, 𝑦) 


𝜕2𝑓

𝜕𝑦2 = 𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 − 2𝑓 𝑥, 𝑦  

▫ 𝛻2𝑓 =
𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 + 𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 −
4𝑓(𝑥, 𝑦) 
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Discrete Laplacian 
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• Zeros in corners give isotropic 

results for rotations of 90° 

 

• Non-zeros corners give 
isotropic results for rotations 

of 45° 

▫ Include diagonal derivatives 
in Laplacian definition 

 

• Center pixel sign indicates 
light-to-dark or dark-to-light 
transitions 

▫ Make sure you know which 

 



Sharpening Images 
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• Sharpened image created by 
addition of Laplacian 

▫ 𝑔 𝑥, 𝑦 =

 
𝑓 𝑥, 𝑦 − 𝛻2𝑓(𝑥, 𝑦) 𝑤 0,0 < 0

𝑓 𝑥, 𝑦 + 𝛻2𝑓(𝑥, 𝑦) 𝑤 0,0 > 0
 

 

• Notice: the use of diagonal 
entries creates much sharper 
output image 

 

• How can we compute 𝑔(𝑥, 𝑦) 
in one filter pass without the 
image addition? 

▫ Think of a linear system 

 



Unsharp Masking 
• Edges can be obtained by subtracting 

a blurred version of an image 

▫ 𝑓𝑢𝑠 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 − 𝑓 𝑥, 𝑦  

▫ Blurred image 

 𝑓 𝑥, 𝑦 = ℎblur ∗ 𝑓(𝑥, 𝑦) 

• Sharpened image 

▫ 𝑓𝑠 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + 𝛾𝑓𝑢𝑠 𝑥, 𝑦  
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The Gradient 
• 1st derivatives can be useful for 

enhancement of edges 

▫ Useful preprocessing before 
edge extraction and interest 
point detection 

• The gradient is a vector 
indicating edge direction 

▫ 𝛻f =
𝐺𝑥
𝐺𝑦

=

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦

 

• The gradient magnitude can be 
approximated as 

▫ 𝛻𝑓 ≈ 𝐺𝑥 + 𝐺𝑦  

▫ This give isotropic results for 

rotations of 90° 

• Sobel operators 

▫ Have directional sensitivity  

▫ Coefficients sum to zero 

 Zero response in constant 
intensity region 
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𝐺𝑥 𝐺𝑦 



Highpass Examples 
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Border Effects 

• The filtering process suffers from boundary 
effects 

▫ What should happen at the edge of an image? 

▫ No values exist outside of image 

• Padding extends image values outside of the 
image to “fill” the kernel at the borders 

▫ Zero – set pixels to 0 value 

 Will cause a darkening of the edges of the image 

▫ Constant – set border pixels to fixed value 

▫ Clamp – repeat edge pixel value  

▫ Mirror – reflect pixels across image edge 
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Computational Requirements 
• Convolution requires 𝐾2 

operations per pixel for a 
𝐾 × 𝐾 size filter 

• Total operations on an image 
is M×𝑁 × 𝐾2 

 

• This can be computationally 
expensive for large 𝐾 

• Cost can be greatly improved if 
the kernel is separable 

▫ First do 1D horizontal 
convolution 

▫ Follow with 2D vertical 
convolution 

• Separable kernel 

▫ 𝑤 = 𝑣ℎ𝑇 

 𝑣 – vertical kernel 

 ℎ - horizontal kernel 

▫ Defined by outer product 

 

• Can approximate a separable 
kernel using singular value 
decomposition (SVD) 

▫ Truly separable kernels will 
only have one non-zero 
singular value 
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Fast Convolution 

• Computationally efficient linear filtering by using 
the 2D FFT for large kernels 
▫ Avoid large nested loops – instead only have 

multiplication in frequency domain 
 𝑂(log2𝑁𝐽) instead of 𝑂(𝑁𝐽) term 

▫ Use fft2.m and ifft2.m 

• Steps: 
▫ Pad both image and kernel with zeros to same size 

 Image + kernel size 

▫ Compute 2D FFT of both image and kernel 
▫ Multiply element-wise  
▫ Inverse FFT for result 

 Crop to get usable image 

44 



Fast Convolution Examples 
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Discrete Cosine Transform for Coding 

• DCT is widely used in image 
compression 

▫ Part of JPEG standard 

 

 

 

 

 

▫ Process image in 8 × 8 blocks 

• JPEG2000 improves 
compression and removes 
block artifacts using wavelet 
transform 

▫ Never really caught on 

 

• DCT definitions 

 

 

 

 

 

• DCT is separable  

▫ Horizontal (column-wise) 
and vertical (row-wise)  

 

 

 

 

▫ Significant computation 
reduction (1D operations) 
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JPEG Coding Example 
• DCT coefficients are ordered 

in zig-zag fashion 

▫ DC component first (only 
code difference between 
blocks) 

▫ AC coefficients have lower 
weight in higher-order 

 Compaction property (only 
code non-zero coefficients) 
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