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Digital Image Processing

- Extension of 1D signal processing to 2D signal
= E.g. vector valued signal domain or 2D range
» Many common principles and ideas
- Many specific concepts arise from images
» Large signals (e.g. 10 M pixel image) = video
= Need for very efficient and optimized processing

= Use of hardware accelerators (e.g. graphic
processing units)



Digital Images

- Set of data samples mapped
onto a 2D grid of points
o x(m,n) = v ;M X N image
*m=0,..,M—1; column
(width) index
n=40,....N—1;row
(height) index
- Be aware: this is not the
same notation as Matlab
- Row, column indexing
beginning with 1 index
= Each sample is known as a
pixel
- Image resolution
> Ability to distinguish spatial
details (dots/pixels per inch)
= Analogous to sampling
frequency

- Image value

= Grayscale — v = [0,255] (8-bit
byte)
- 0 — black, 255 — white

s Color - v = [R, G, B] (24-bit
value)
- Mixing of primary Red,

Green, and Blue colors

- Typically thought of as color
“channels”




- Color comes from underlying
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Figure 2.23: Division of the electromagnetic spectrum (ELF is Extremely Low Frequencies).
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Figure 2.24: Wavelength ) of the spectrum visible to humans. @ Cengage Learning 2015.

- However, humans do not
perceive color in the same
physical process

> There is some subjectivity (e.g.
color similarity)

Cones in human retina are
sensitive to color

> In the center of eye

- g different types for different
EM frequency sensitivity

- RGB mixing to build all colors
Rods are monochromatic

> On outside of the eye and good
for low lighting and motion

sensing
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Figure 2.26: Relative sensitivity of S,
M, L cones of the human eye to wave-
length. @ Cengage Learning 2015.



520 CIE Chromaticity Diagram 1931

Colorspaces

+  Uniform method for defining colors
« Can transform from one to another

: Want t(). take advantage Of Plate 1: © Cengage Learning 2015. Page 85,
properties and color gamut e o o es ve s iz,

« XYZ

o Intern ation al ab Solute CO]OI‘ 2 cu-: Chromaticity Diagram 1931 0 CIE Chromaticity Diagram 1931
- - CRT monitor gamut p Color printer gamut
standard

= No negative mixing
- RGB

= Additive color mixing for red,
green, and blue

520 CIE Chromaticity Diagram 1931
Color film gamut

o 00 - 00 -~
017702 03 04 05 06 07 X 012 03 04 05 06 07 X 0172 03 04 05 06 07 X

= Widely used in computers (¢) ORT monitor (8) printer (© fim

- CMYK

= Cyan, magenta, yellow, black — O o
= Used for printers and based off of

reflectivity - {i\
. HSV s A :
= Hue, saturation, and value = color, > , = 0.‘
amount, brightness BEEr AR
= Closer to human perception saticton, BB sawration
(chroma) B (homa




|

Perceptual Colorspace Examples

YCbCr — digital color standard

» YUV — composite color video

standard (analog) - Separate brightness from
- Separate brightness from chrominance
chrominance (color) » Used in JPEG
= More perceptually meaningful Y] [0299 0587 0.1141[R] [16
CO]OI'Space Ul=1-0.147 -0.289 0436 ||G|+]128
) . 14 0615 —0.515 —o0.100llBl l128
- Humans perceive brightness - Matlab — rgb2ycbcr.m
changes more than color . . . .
v 0 29% 0587 0114 11R - Efficient representation using
' ' ' subsampling color space
« |U|=1-0.147 -0.289 0436 ||G - C d h . bit
v 0615 —0515 —o.100llp an reduce chrominance bits
oo |ao|oa|ae| |ea| ¥ |aal "
i Y i Y ¥ X L Y—1
GC | GG | GG | GG GG GG
ot | o6 | oo faa| |ao| " |aa| "
4:4:4 4:2:2
Table 111 Number of bits used for four YC,C, sub-sampling schemes co | jeal " v g B v
T20 = 480 pixels Bits for Y Bits for C, ___ Bistor €, lotal bats (B 0. R, O c:c, G| el
YO, Cpdid:d 720 % 480 x B 720 = 480 % § 720 ¢ 480 8 8204 400 vy | v | v H v Iy [ v | ¥
YC, Cpd:2:2 720 = 480 x § 360 < 480 = 8 360 < 480 x & 5529600 GG GG GG
Y, Cpdi2:0 T20 = 480 « B 360 2 240« & 360 = 240w B 4147200 ¥ ¥ ¥ Y c:(q Y Y ¥
YC,Cpd:1:1 720 x 480 x 8 180 5 480 % 8 180 3 480 x 8 4147200 £ 3l
4:2:0 4:1:1

Figure 11.2 Four YC,C, sampling patierns



Example Color Spaces

R Channel G Channel B Channel

Y Channel (Intensity) Cb Channel CrChannel YCbYr Image




Color Balance

- Correct color bias caused by - Example 11.2
lighting and other variations

> Also known as white balance
- Adjust image color to more

closely depict human visual

system
- White balance algorithm

° Ry = Rgp

= Gy =Ggg

= By, =Bgp

- Apply gain to each color
channel

- Normalize to green color
channel
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Color Correction

- RGB from di%ital camera may not match color
perceived by humans

» Color correction adjusts RGB values to correspond
better to human vision
= Also known as chromatic or saturation correction

- Apply correction to white-balanced RGB image

R, €11 C12 C13][Ry
o |G| = [C21 Caz  Ca3| |Gy
G | C31 C32 C33|LB,

» The coefficients are selected to minimize mean-

square error between a reference color chart

. 2
= min {Z%=1Z%=1[Cnmxw (m,n) — xper(m,n)| },n +m

° Chm = 1L,nm=m



. ul

Gamma Correction

- Used to compensate for - Example 11.3
nonlinearity in display device
1
= Ry =g Rc/y

1
° Gy = ch/y

© By = gB.""
* y — gamma value represents
non-linearity of display -
- g —is a correction factor

100

8-bit gamma curve
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Histogram Processing

- Digital image histogram is the count of pixels in
an image having a particular value in range
[0,L — 1]
° h(ry) = ny
- 17, - the kth gray level value
- Set of r,are known as the bins of the histogram
* ng, - the numbers of pixels with kth gray level
- Empirical probability of gray level occurrence is
obtained by normalizing the histogram
° p(e) = ng/n
- n — total number of pixels

» Histogram is viewed as the probability that a pixel
will take a given intensity value in an image



Histogram Example

Histogram of dark image i ° X—aXiS _— intenSity Value
. = Bins [0, 255]
- y-axis — count of pixels

LI ! !
T T T T

I Mot iings | - Dark image
: 1‘:— 1 = Concentration in lower values
- Bright image
MR 0 > Concentration in higher

Hisogramof o contst e values

- . - Low-contrast image

I | | = Narrow band of values
||| - High-contrast image

[ TR = Intensity values in wide band

AN
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Histogram Equalization

- Assume continuous functions - Viewing the gray level of an
(rather than discrete images) image as a random variable
° ] . d
Define a transformation of the o ps(8)=p, (1) d_:

intensity values to “equalize”
each pixel in the image

= s=T(r) 0<r<1

- Let s by the cumulative
distribution function (CDF)

r
= Notice: intensity values are = s =T() = [, prw)dw
normalized between 0 and 1 - Then
» The inverse transformation is o 95 _ p.. ()
. dr r
given as

« Which results in a uniform
PDF for the output intensity

= ps(s) =1
- Hence, using the CDF of a
histogram will “equalize” an
image
= Make the resulting histogram
flat across all intensity levels

= r=T71(s) 0<s<1
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Discrete Histogram Equalization

- The probability density is approximated by the

normalized histogram
ng

s p-(p) =— k=0,..,L—1

n
» The discrete CDF transformation is

o s, =T (1) = Yoo pr (1)

o g, =Yk Ik
Sk = Lj=07,

- This transformation does not guarantee a
uniform histogram in the discrete case

> It has the tendency to spread the intensity values
to span a larger range
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Histogram Equallzatlon Example

T T T T
Histogram of dark image

- Equalized histograms
have wider spread of

‘ intensity levels
|

Notice the equalized
images all have similar

‘ visual appearance
| > Even though histograms

are different

> Contrast enhancement
255
FIGURE 3.21
| ‘ mmmmmmu‘mm Transformation
functions for

192 histogram
equalization.
Transformations
(1) through (4)
were obtained from
the histograms of
the images (from
top to bottom) in
the left column of
Fig.3.20 using
Eq.(3.3-8).

‘ | ‘ | | |
I I I I
Histogram of light image

| | | |
T I I I
Histogram of low-contrast image

[ b,

1 T I I
‘ Histogram of high-contrast image

128

| 1 | |

Original histogram original image histogram equalized equalized image
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Example 11.4

- Histogram equalization of a
dark image

x 10 Histograms of original image 10" Histograms equalized image
10" 1ol f
5F 4 5L |
0 : S ; I

0 50 100 150 200 250 0 0

50 100 150 200 250



Local Histogram Enhancement

- Global methods (like - Original image
histogram equalization as
presented) may not always
make sense
> 'What happens when

properties of image regions
are different?

- Compute histogram over
smaller windows
> Break image into “blocks”
= Process each block separately

- Notice the blocking effects that
cause noticeable boundary
effects



Local Enhancement

- Compute histogram over a block (neighborhood) for every pixel in a moving window

- Adaptive histogram equalization (AHE) is a computationally efficient method to
combine block based computations through interpolation (adapthisteq.m)

B3

Figure 3.8 Locally adaptive histogram equalization: (a) original image; (b) block histogram
equalization; (c) full locally adaptive equalization.
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Image Processing Motivation

- Image processing is useful for
the reduction of noise

- Common types of noise

> Salt and pepper — random
occurrences of black and
white pixels

> Impulse — random
occurrences of white pixels

= (Gaussian — variations in
intensity drawn from normal
distribution

Impulse noise Gaussian noise
Adapted from S. Seitz
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ldeal Noise Reduction

- How can we reduce noise given a single camera
and a still scene?
= Take lots of images and average them

ey o)

o What-about 1f you only have a single image?

Adapted from S. Seitz
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Image Filtering

- Filtering is a neighborhood operation

= Use the pixels values in the vicinity of a given pixel
to determine its final output value

« Motivation: noise reduction

= Replace a pixel by the average value in a
neighborhood
= Assumptions:

- Expect pixels to be similar to their neighbors (local
consistency)

- Expect noise processes to be independent from pixel
to pixel (i.i.d.)
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Linear Filtering

- Most common type of neighborhood operator

» Output pixel is determined as a weighted sum of
input pixel values

> g, y) =2 f(x +ky + Dw(k, )
- w — is known as the kernel, mask, filter, template, or
window
- w(k,l) — entry is known as a kernel weight or filter
coefficient

- This is also known as the correlation operator
*g=1ew



Filtering Operation

« glx,y) =
Y fx+ky+DwkD) —

» The filter mask is moved from /

point to point in an image

- The response is computed e
based on the sum of products of

the mask coefficients and

image

e
H

bl

w(—1,—1) | w(=1,0) | w(-1.1)

w(0,-1) | w(©.0) | w(0.1)

w(l,—1) w(1,0) w(l,1)

- Notice the mask is centered at
w(0,0)
- Usually we use odd sized masks
so that the computation is
symmetrically defined

fa—1y+1) Filter coefficients

fx=1y-=1)

flx+1Ly+1)

« Matlab commands

o imfilter.m, filter2.m,
convz2.m
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Filtering Raster Scan

- Zig-zag scan through of image
> Process image row-wise




Connection to Signal Processing

- General system notation

« LTI system
= Convolution relationship

- Discrete 1D LTI system - Discrete 2D LTI system
x[n] — h —> y[n] fo,y) — w —> g(x, )
yln] = Z x[klh[n — k] glx,y) = Z Z f(s,t)w(x —s,y — t)
k=—o0 S=—00 t=—00

= Linear filtering is the same as
convolution without flipping
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Image Filters

- Can be used for noise reduction, edge enhancement,
sharpening, blurring, etc.

= Generally like to use linear filtering (simple)
- Advanced photoshopping uses more complex non-linear filters

Lowpass filters - remove high frequency (noise)
components

= Smoothing filter
- Blurs edges

Highpass filters - remove low frequency components

= Edge enhancement filter

Generally, kernels are symmetric in both horizontal and
vertical directions

Filtering is computationally expensive

= Use small 3 X 3 or 5 x 5 kernels for real-time application
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Smoothing Filters

- Smoothing filters are used for blurring and noise
reduction
= Blurring is useful for small detail removal (object
detection), bridging small gaps in lines, etc.
- These filters are known as lowpass filters
= Higher frequencies are attenuated
> What happens to edges?
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Linear Smoothing Filter

» The simplest smoothing filter is the moving
average or box filter I[1] |1

= Computes the average over a constant _, 1 SRR
neighborhood

- This is a separable filter
» Horizontal 1D filter L1 |1

» Remember your square wave from DSP
(1 0<sn<M
hln] = {O else

- Fourier transform is a sinc function
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More Linear Smoothing Filters

- More interesting filters can be readily obtained

- Weighted average kernel (bilinear) - places more
emphasis on closer pixels ——

1
= More local consistency 12
1]2]1

- Gaussian kernel - an approximation of a
Gaussian function

- Has variance parameter to control the kernel
“Width” o 0.0 '
° fspecial.m h(u,v) = P N

Ad&zlf)?:ed from S. Seitz
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Lowpass Examples
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Median Filtering

- Sometimes linear filtering is not sufficient
> Non-linear neighborhood operations are required

- Median filter — replaces the center pixel in a mask
by the median of its neighbors
= Non-linear operation, computationally more expensive

= Provides excellent noise-reduction with less blurring
than smoothing filters of similar size (edge preserving)
- For impulse and salt-and-pepper noise

abec

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with
a 3 X 3 averaging mask. (c) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr.
Joseph E. Pascente, Lixi, Inc.)
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Sharpening Filters

- Sharpening filters are used to highlight fine
detail or enhance blurred detail

- Smoothing we saw was averaging
= This is analogous to integration

- Since sharpening is the dual operation to
smoothing, it can be accomplished through
differentiation
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Digital Derivatives

- Derivatives of digital functions are defined in
terms of differences
= Various computational approaches

- Discrete approximation of a derivative
?
L= fx+ D - f@

0
L=+ D - fx- 1)
- Center symmetric

» Second-order derivative
0%f

s S =fl+ D+ flx—1) —2f(x)



Difference Properties

+ 15t derivative
= Zero in constant segments
= Non-zero at intensity transition IC——

oW B —=—
= Non-zero along ramps 5|\ constant /
intensity ~ “\ - !
- 2nd derivative §il "~ S S b
s Zero 1n constant areas =2 SN /
= Non-zero at intensity transition 0 :
» 7Zero along ramps poan [6JefeTe[s[4[a[2]1[t1]1]1]1e 666 6]~*
g p Ist derivative 0 0-1-1-1-1-1 0 O O O O 5 O 0 O O
> : 2nd derivative 0 0-1 0 0 O 0 1 O O O O 5-5 0 O O
- o2nd grder filter is more e .
. . e i
aggressive at enhancing sharp ‘T / \
edges 21 //’
. g I A, !
= QOutputs different at ramps L ey i e
. 8 -1} ‘@f-e--e--0--o.-o Ze10CrOSSing ' ;
- 18t order produces thick edges L
° d 1 =3 o Fist derivative vl
2nd order produces thin edges L e |
-s5L a)

> Notice: the step gets both a
negative and positive response
in a double line
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The Laplacian

- 2nd derivatives are generally better for image
enhancement because of sensitivity to fine detail

- The Laplacian is simplest isotropic derivative operator
2 i
o V f — _I_ —
= Isotropic — rotation invariant

x2 0y?2
- Discrete implementation using the 274 derivative
previously defined

L= fa+ Ly) + fx - 1,y) — 2 (x,9)
: "’Zf = floy+ D)+ floy — 1) — 2f(x,9)

g \72f —
[f(x+ 11)’) +f(x_1;y) +f(x1y+1) +f(x1y_ 1)] —
4f (x,y)



Discrete Laplacian

- Zeros in corners give isotropic
results for rotations of 90

- Non-zeros corners give A A
* * . FIGURE 3.37
isotropic results for rotations (0 i mask e
o O Implemen
Of 45 1 —4 1 1 -8 1 F{gﬁi—}?{llsed to
. R . implement an
> Include diagonal derivatives extension of i
in Laplacian definition A I LT ] oo
5)212: ingpl)en?lvec;ta-
. . o . 0 -1 0 -1 -1 -1 Egglsa(c):ifzfll]l ‘;ound
- Center pixel sign indicates practice.”
light-to-dark or dark-to-light PR I AP | R O
transitions
= Make sure you know which O] o Sl I
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Sharpening Images

a

- Sharpened image created by e
addition of Laplacian FIGURE 3.38
(a) Blurred image
u] g (x y) —_ of the North Pole
) - of the moon.

(b) Laplacian
without scaling.
(c) Laplacian with
scaling. (d) Image
sharpened using
the mask in Fig.
3.37(a). (e) Result
of using the mask
in Fig. 3.37(b).
(Original image
courtesy of
NASA))

{f(x, y) —V2f(x,y) w(0,0) <0
fl,y) +V2f(x,y) w(0,0)>0

- Notice: the use of diagonal
entries creates much sharper
output image

- How can we compute g(x,y)
in one filter pass without the
image addition?
> Think of a linear system
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Unsharp Masking

- Edges can be obtained by subtracting
a blurred version of an image

_f(x'y)

° fus(x,y) = f(x,y)

> Blurred image

* fOoy) = hpgre * f(x,Y)

- Sharpened image

o f(x,y) = f(x,y) + Vfus(x, ¥)

H

Original signal

=
P’

Blurred signal

Unsharp mask

AN
N
Sharpened signal

a
b

B

FIGURE 3.39 1-D
illustration of the
mechanics of
unsharp masking,
(a) Original
signal. (b) Blurred
signal with
original shown
dashed for refere-
nce. (c) Unsharp
mask. (d) Sharp-
ened signal,
obtained by
adding (c) to (a).

I 1

DIRX

Coms

-X

oo o

(S

FIGURE 3.40

(a) Original
image.

(b) Result of
blurring with a
Gaussian filter.
(¢) Unsharp
mask. (d) Result
of using unsharp
masking.

(e) Result of
using highboost
filtering.
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The Gradient

- 15t derivatives can be useful for - Sobel operators

enhancement of edges - Have directional sensitivity

= Useful preprocessing before = Coefficients sum to zero
edge extraction and interest - Zero response in constant
point detection intensity region

- The gradient is a vector
indicating edge direction

f

f

c of
- Vf = [ x] _ 0x
Gy li 0 0 0 -2 0 2
dy
- The gradient magnitude can be
approximated as
© Vf = |Gyl + |G,
> This give isotropic results for
rotations of 90




Highpass Examples

Origianl JPEG Image Highpass Filtered Image

B T =

AIRT 4

TR o

250 300
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Border Effects

- The filtering process suffers from boundary
effects
» What should happen at the edge of an image?
= No values exist outside of image

- Padding extends image values outside of the
image to “fill” the kernel at the borders

= Zero — set pixels to o0 value
- Will cause a darkening of the edges of the image

= Constant — set border pixels to fixed value
» Clamp — repeat edge pixel value
» Mirror — reflect pixels across image edge
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Computational Requirements

- Convolution requires K2 - Separable kernel
operations per pixel for a o w = vhT
K X K size filter - v — vertical kernel

- Total operations on an image - h - horizontal kernel
isM X N x K? - Defined by outer product

« This can be computationally - Can approximate a separable
expensive for large K kernel using singular value

- Cost can be greatly improved if decomposition (SVD)
the kernel is separable = Truly separable kernels will
o First do 1D horizontal only have one non-zero

convolution singular value

= Follow with 2D vertical
convolution
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Fast Convolution

- Computationally efficient linear filtering by using
the 2D FFT for large kernels

= Avoid large nested loops — instead only have
multiplication in frequency domain
- O(log, NJ) instead of O(NJ)) term

o Use fft2.mand if£ft2.m

 Steps:

= Pad both image and kernel with zeros to same size
- Image + kernel size

= Compute 2D FFT of both image and kernel

= Multiply element-wise

o Inverse FFT for result
- Crop to get usable image
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Fast Convolution Examples

Origianl JPEG Image

100

150

50 100 150 200
edge Filtered Image

o)
5o PR ]
100

150

200 7.

Gaussian Filtered Image
' -r 9 ||

50

ll
{

£

100

50 100 150 200 250 300

50

100

150

200




Discrete Cosine Transform for Coding

- DCT is widely used in image
compression
> Part of JPEG standard

Image input JPEG file

output
—

Entropy

Forward
encode

DCT

Quantizer

—p]

Entropy
table

Quantization
table

Figure 11.10 Block diagram of baseline JPEG encoder

= Process image in 8 x 8 blocks
- JPEG2000 improves

compression and removes

block artifacts using wavelet

transform

= Never really caught on

« DCT definitions
N=1N—]
X(k, 1) = -—C{k}f’(!}zzx{m n}ws{ -

=l p=0) EN

1)im }ms [fzm n l}krﬂ

N—1N-1]

; 33 C(RK)CDX(k, bco

k=0 [=i

x(m, n) 1:2?‘!4- l}f

ms[{?m L ]jk:rr
2N

_I

L

C{k)=cm={ﬂz, ifk=1=0

otherwise.

- DCT is separable
= Horizontal (column-wise)

and vertical (row-wise)

X(k) = C(k ZT:x m}cos{(zm TﬁI]kKJ’

m={]

(m) = 23" xR0 2+ 1 }’”’-},
k=0

'S

= Significant computation
reduction (1D operations)



JPEG Coding Example

« DCT coefficients are ordered
in zig-zag fashion
= DC component first (only
code difference between

blocks)

= AC coefficients have lower
weight in higher-order
- Compaction property (only

code non-zero coefficients)
DC AC,

Figure 11.11 Ordering of DCT coefficients in zigzag fashion

Make 8 x 8 blocks 8 x 8 image data

24 225 j
223 224 225 226 ...
224 224 226 226 ...
~225 226 226 228 ...
2 | 225926227227 ...

: , 226 206 228227 ...

W 227 226 228 297/

0

1-D DCT horizontal

Original image

35636639640
-5-5-4-2-8 426
0 0 0 00O0CBODO
Zigzag ordered 0 0 0-1 0000
coefficients 0-1 0 00000
0 01 000O00O0
1812 00000000
(—9-10 = 000 1000
-2 -2-2
-1 1-2-1
00000 ﬂ
000010 1-D DCT vertical
8333?331 1812-9-2-1 0 0 0 O
41 010000 -0-21 00000
00000 1 -2 -2 0000060
00000 & -1 00000O00O0
0000 0 1010000
000 0 0010000
0 00O0O0OO0O0O
k80 7 11100000

Figure 11.12 DCT block transform and reorder in JPEG image coding process



