#### Homework #7Due Fr. 5/08

You must turn in your code as well as output files. Please generate a report that contains the code and output in a single readable format.

Visit the book website to download companion software, including all the example problems.

http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118414322.html

## 1. (KLT 9.10)

#### Solution

The energy estimation is plotted in Fig. 1. Notice these values have been normalized for visualization. The frame length is 256 and the window lengths are  $\alpha_s = 1/16$  and  $\alpha_l = 1/128$ . Please see the end for code.

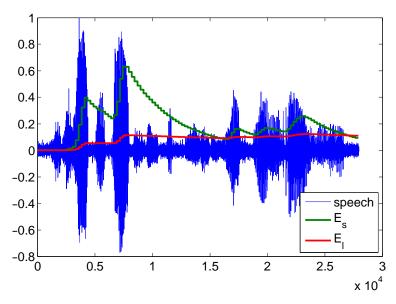


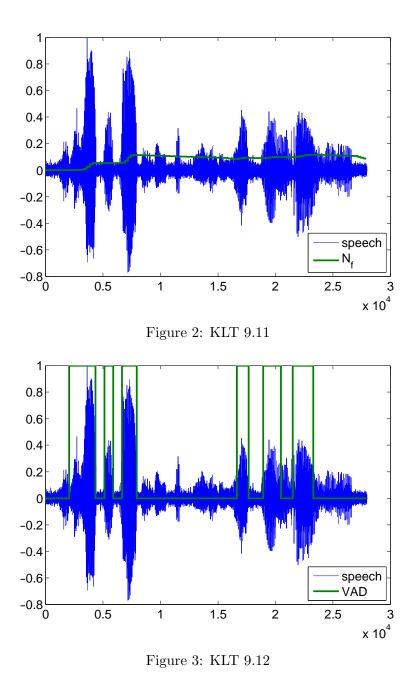

Figure 1: KLT 9.10

## 2. (KLT 9.11)

## Solution

The noise floor estimation is plotted in Fig. 2.

3. (KLT 9.12)


## Solution

The voiced areas is ploted in Fig. 3.

4. (KLT 9.13)

## Solution

(a) The different window sizes are required by the VAD algorithm to respond quickly to the start of speech  $(E_s)$  while providing loudness consistency during a word utterance  $(E_l)$ .



- (b) During the onset of speech, the output of  $E_s$  is larger.
- (c) During the offset of speech, the output of  $E_l$  is larger and takes longer to decay.

# Speech Code

```
s = load('TIMIT.ASC');
1
2
  x = s/max(s) + 0.02*randn(size(s));
3
4 | scale = 8;
5 fs = 8000;
6 | win = 2^scale;
7 alphas = 1/2^{(scale-4)};
8
  alphal = 1/2^{(scale-1)};
9 betal = 5;
10
11 %fft params
12 |N = round(length(x)/win);
13 delf = fs/win;
14 K1 = find(delf*(0:N-1)>=300,1);
15 K2 = find(delf*(0:N-1)>1000,1)-1;
16
17 | VAD = zeros(1, N+1); Es = zeros(1, N+1); El = zeros(1, N+1);
18 Nf = zeros(1, N+1); En = zeros(1, N+1);
  for f=1:N
19
20
21
       %get frame
22
       it = f*win;
       ib = (f-1) * win + 1;
23
24
       xc = x(ib:it);
25
26
       %compute frame energy
27
       Xc = fft(xc);
28
       En(f+1) = sum(abs(Xc(K1:K2)).^2);
29
30
       %signal energy
       Es(f+1) = (1-alphas) * Es(f) + alphas * En(f+1);
31
32
       El(f+1) = (1-alphal)*El(f) + alphal*En(f+1);
33
34
       %noise floor
35
       if(Nf(f) < Es(f+1))
36
            Nf(f+1) = (1-alphal)*Nf(f)+alphal*En(f+1);
37
       else
38
            Nf(f+1) = (1-alphas) * Nf(f) + alphas * En(f+1);
39
       end
40
41
       %threshold
42
       Tr(f+1) = Nf(f+1)/(1-alphal) + betal;
43
44
       %VAD
45
       if(En(f+1) > Tr(f+1)), VAD(f+1) = 1; end
46
   end
```

The results of the VAD algorithm can be plotted together (with normalization for visualization) in Fig. 4.

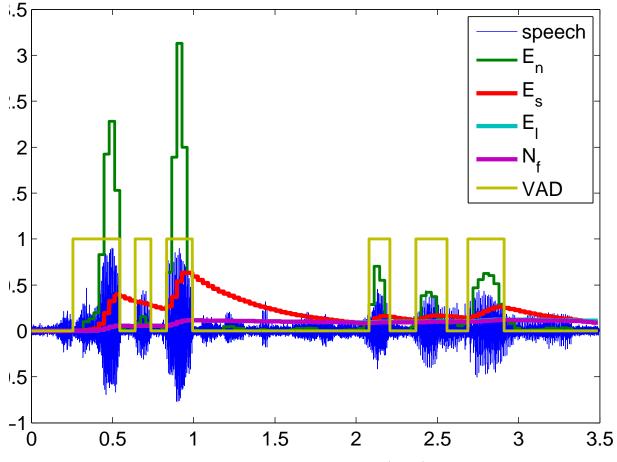



Figure 4: Voice Activity Detection (VAD) Overlay