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Outline

• Analog Filter Characteristics

• Frequency Transforms

• Design of IIR Filters

• Realizations of IIR Filters

▫ Direct, Cascade, Parallel 

• Implementation Considerations
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IIR Design

• Reuse well studied analog filter design 
techniques (books and tables for design)

• Need to map between analog design and a digital 
design

▫ Mapping between s-plane and z-plane
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Analog Basics
• Laplace transform

▫ 𝑋 𝑠 = ∞−
∞
𝑥 𝑡 𝑒−𝑠𝑡𝑑𝑡

• Complex s-plane

▫ 𝑠 = 𝜎 + 𝑗Ω
 Complex number with 𝜎 and Ω real

▫ 𝑗Ω – imaginary axis
• Fourier transform for 𝜎 = 0

▫ When region of convergence contains the 𝑗Ω axis
• Convolution relationship

▫ 𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ 𝑡 → 𝑌 𝑠 = 𝑋 𝑠 𝐻(𝑠)

▫ 𝐻 𝑠 =
𝑌 𝑠

𝑋 𝑠
= ∞−

∞
ℎ 𝑡 𝑒−𝑠𝑡 𝑑𝑡

• Stability constraint requires poles to be in the left 
half s-plane
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Mapping Properties
• z-transform from Laplace by change of variable

▫ 𝑧 = 𝑒𝑠𝑇 = 𝑒𝜎𝑇𝑒𝑗Ω𝑇 = 𝑧 𝑒𝑗𝜔

 𝑧 = 𝑒𝜎𝑇 , 𝜔 = Ω𝑇

• This mapping is not unique
▫ −𝜋/𝑇 < Ω < 𝜋/𝑇 → unit circle
▫ 2𝜋 multiples as well

▫ Left half s-plane mapped inside unit circle
▫ Right half s-plane mapped outside unit circle
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Filter Characteristics

• Designed to meet a given/desired magnitude 
response

• Trade-off between :

▫ Phase response 

▫ Roll-off rate – how steep is the transition between 
pass and stopband (transition width)
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Butterworth Filter
• All-pole approximation to idea filter

• 𝐻 Ω 2 =
1

1+ Ω/Ω𝑝
2𝐿

▫ 𝐻 0 = 1

▫ 𝐻 Ω𝑝 = 1/ 2
 -3 dB @ Ω𝑝

• Has flat magnitude response in pass and stopband (no ripple)
• Slow monotonic transition band

▫ Generally needs larger 𝐿
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Chebyshev Filter
• Steeper roll-off at cutoff 

frequency than Butterworth
▫ Allows certain number of 

ripples in either passband or 
stopband

• Type I – equiripple in 
passband, monotonic in 
stopband
▫ All-pole filter

• Type II – equiripple in 
stopband, monotinic in 
passband
▫ Poles and zeros

• Generally better magnitude 
response than Butterworth but 
at cost of poorer phase 
response
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Elliptic Filter

• Sharpest passband to stopband transition

• Equiripple in both pass and stopbands

• Phase response is highly unlinear in passband

▫ Should only be used in situations where phase is not 
important to design
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Frequency Transforms
• Design lowpass filter and 

transform from LP to another 
type (HP, BP, BS)

• Define mapping

• 𝐻 𝑧 = 𝐻𝑙𝑝 𝑍 ȁ𝑍−1=𝐺 𝑧−1

▫ Replace 𝑍−1 in LP filter with 
𝐺 𝑧−1

• 𝜃 – frequency in LP

• 𝜔 – frequency in new 
transformed filter
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IIR Filter Design

• IIR transfer function

• Need to find coefficients 𝑎𝑙 , 𝑏𝑙
▫ Impulse invariance – sample impulse response

 Have to deal with aliasing

▫ Bilinear transform 

 Match magnitude response

 “Warp” frequencies to prevent aliasing
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𝐻 𝑧 =
σ𝑙=0
𝐿−1 𝑏𝑙𝑧

−𝑙

1 + σ𝑙=0
𝑀 𝑎𝑙𝑧

−𝑙



Bilinear Transform Design

• Convert digital filter into an “equivalent” analog filter

▫ Use bilinear “warping”

• Design analog filter using IIR design techniques 

• Map analog filter into digital

▫ Use bilinear transform
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Bilinear Transformation
• Mapping from s-plane to z-plane

• 𝑠 =
2

𝑇

𝑧−1

𝑧+1
=

2

𝑇

1−𝑧−1

1+𝑧−1

• Frequency mapping

▫ Ω =
2

𝑇
tan

𝜔

2

▫ 𝜔 = 2arctan
Ω𝑇

2

• Entire 𝑗𝜔-axis is squished into [−𝜋/𝑇, 𝜋/𝑇] to prevent aliasing
▫ Unique mapping
▫ Highly non-linear which requires “pre-warp” in design 

13



Bilinear Design Steps
1. Convert digital filter into an 

“equivalent” analog filter

▫ Pre-warp using 

 Ω =
2

𝑇
tan

𝜔

2

2. Design analog filter using 
IIR design techniques 

▫ Butterworth, Chebyshev, 
Elliptical 

3. Map analog filter into digital

▫ 𝐻 𝑧 = 𝐻 𝑠 ȁ
𝑠=

2

𝑇

1−𝑧−1

1+𝑧−1
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Bilinear Design Example
• Example 4.2
• Design filter using bilinear transform 

▫ 𝐻 𝑠 = 1/(𝑠 + 1)
▫ Bandwith 10000 Hz
▫ 𝑓𝑠 = 8000 Hz

• Parameters
▫ 𝜔𝑐 = 2𝜋 1000/8000 = 0.25𝜋

1. Pre-warp

▫ Ω𝑐 =
2

𝑇
tan 0.125𝜋 =

0.8284

𝑇

2. Scale frequency (normalize scale)

▫ 𝐻 𝑠 = 𝐻
𝑠

Ω𝑐
=

0.8284

𝑠𝑇+0.8284

3. Bilinear transform

▫ 𝐻 𝑧 =
0.2929 1+𝑧−1

1−0.4141𝑧−1
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IIR Filter Realizations

• Different forms or structures can implement an 
IIR filter

▫ All are equivalent mathematically (infinite 
precision)

▫ Different practical behavior when considering 
numerical effects

• Want structures to minimize error
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Direct Form I
• Straight-forward 

implementation of diff. eq.

▫ 𝑏𝑙 - feed forward coefficients

 From 𝑥(𝑛) terms

▫ 𝑎𝑙 - feedback coefficients 

 From 𝑦 𝑛 terms

• Requires 𝐿 +𝑀 coefficients 
and delays
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Direct Form II
• Notice that we can decompose 

the transfer function

▫ 𝐻 𝑧 = 𝐻1 𝑧 𝐻2(𝑧)

 Section to implement zeros
section to implement poles

• Can switch order of operations

▫ 𝐻 𝑧 = 𝐻2 𝑧 𝐻1(𝑝)

▫ This allows sharing of delays 
and saving in memory
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Cascade (Factored) Form
• Factor transfer function and decompose into smaller sub-systems

▫ 𝐻 𝑧 = 𝐻1 𝑧 𝐻2 𝑧 …𝐻𝐾 𝑧

• Make each subsystem second order

▫ Complex conjugate roots have real coefficients

▫ Limit the order of subsystem (numerical effects)
 Effects limited to single subsystem stage

 Change in a single coefficient affects all poles in DF

• Preferred over DF because of numerical stability
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Parallel (Partial Fraction) Form
• Decompose transfer function 

using a partial fraction 
expansion

▫ 𝐻 𝑧 = 𝐻1 𝑧 + 𝐻2 𝑧 + …+
𝐻𝐾 𝑧

 𝐻𝑘 𝑧 =
𝑏0𝑘+𝑏1𝑘𝑧

−1

1+𝑎1𝑘𝑧
−1+𝑎2𝑘𝑧

−2

• Be sure to remember that PFE 
requires numerator order less 
than denominator

▫ Use polynomial long division
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Matlab Filter Design
• Realization tools:

• Finding polynomial roots

▫ roots.m

▫ tf2zp.m

• Cascade form

▫ 𝐻 𝑧 =

𝐺ς𝑘=1
𝐾 𝑏0𝑘+𝑏1𝑘𝑧

−1+𝑏2𝑘𝑧
−2

1+𝑎1𝑘𝑧
−1+𝑎2𝑘𝑧

−2

▫ zp2sos.m

• Parallel form

▫ Residuez.m

• Filter design tools:

• Order estimation tool

▫ butterord.m

• Coefficient tool

▫ butter.m

• Frequency transforms

▫ lp2hp.m, lp2bp.m, 

lp2bs.m

• Useful exploration tool

▫ fvtool.m

• Useful design tool

▫ fdatool.m

• Useful processing tool

▫ sptool.m
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Stability
• (Causal) IIR filters are stable if all poles are within the 

unit circle

▫ ȁ𝑝𝑚ȁ < 1
▫ We will not consider marginally stable (single pole on unit 

circle)
• Consider poles of  2nd order filter (used in cascade and 

parallel forms)

▫ 𝐴 𝑧 = 1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2

• Factor

▫ 𝐴 𝑧 = (1 − 𝑝1𝑧
−1)(1 − 𝑝2𝑧

−1)

▫ 𝐴 𝑧 = 1 − 𝑝1 + 𝑝2 𝑧−1 + 𝑝1𝑝2𝑧
−2

• Because poles must be inside 
the unit circle

▫ 𝑎2 = 𝑝1𝑝2 < 1

▫ 𝑎1 < 1 + 𝑎2
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Coefficient Quantization

• Using fixed word lengths results in a quantized 
approximation of a filter

▫ 𝐻′ 𝑧 =
σ𝑘=0
𝐿−1 𝑏𝑘

′ 𝑧−𝑘

1+σ𝑘=1
𝑀 𝑎𝑘

′ 𝑧−𝑘

• This can cause a mismatch from desired system 
𝐻 𝑧

• Poles that are close to the unit circle may move 
outside and cause instability

▫ This is exacerbated with higher order systems
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Rounding Effects

• Using 𝐵 bit architecture, products require 2𝐵 bits

▫ Must be rounded into smaller 𝐵 bit container

• This results in noise error terms

▫ Can be simply modeled as additive term

• The order of cascade sections influences power of 
noise at output

▫ How should sections be paired and ordered?

• Need to optimize SQNR

▫ Trade-off with probability of arithmetic overflow

▫ Need to use scaling factors to prevent overflow

▫ Optimality when signal level is maximized without 
overflow
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Cascade Ordering and Pairing
• Good results are obtained 

using simple rules

• Cascade ordering and pairing 
algorithm

1. Pair pole closest to unit 
circle with zero that is 
closest in z-plane

▫ Minimize the chance of 
overflow

2. Apply 1 repeatedly until all 
poles and zeros are paired

3. Resulting 2nd -order sections 
can be ordered in two 
alternative ways

▫ Increasing closeness to unit 
circle

▫ Decreasing closeness to unit 
circle
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Figure 6.67   Output noise power spectrum for 123 ordering (solid 

line) and 321 ordering (dashed line) of 2nd-order sections.
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Recursive Resonator
• Filter with frequency response 

dominated at a single peak

▫ Use complex-conjugate pole 
pair inside unit circle

• 𝐻 𝑧 =
𝐴

(1−𝑟𝑝𝑒
𝑗𝜔0𝑧−1)(1−𝑟𝑝𝑒

−𝑗𝜔0𝑧−1)

• 𝐻(𝑧) =
𝐴

1−2𝑟𝑝 cos 𝜔0 𝑧−1+𝑟𝑝
2𝑧−2

▫ 𝐴 – normalization constant 
for unity gain at 𝜔0

▫ 0 < 𝑟𝑝 < 1

• Close to unit circle

▫ Bandwidth ≅ 2(1 − 𝑟𝑝)

▫ Closer to 𝑟𝑝 = 1, more peaked
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Parametric Equalizer
• Add nearby zeros to the 

resonator
▫ At same angle as poles 𝜔0

▫ Similar radius 

• Pole and zero counter balance 
one another

• 𝑟𝑧 < 𝑟𝑝
▫ Pole dominates because it is 

closer to unit circle

▫ Generates peak at 𝜔 = 𝜔0

 Provides boost to freq

• 𝑟𝑧 > 𝑟𝑝
▫ Zero dominates pole

▫ Generates dip at 𝜔 = 𝜔0

 Cuts freq

• Bandwidth still determined by 
𝑟𝑝

• Ex 4.18
▫ Create equalizer by changing 

gain at given frequency
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