Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

EE482: Digital Signal Processing Applications

Frequency Analysis

Outline

- Fourier Series
- Fourier Transform
- Discrete Time Fourier Transform
- Discrete Fourier Transform
- Fast Fourier Transform

Fourier Series

- Periodic signals
 - $x(t) = x(t + T_0)$
- Periodic signal can be represented as a sum of an infinite number of harmonically-related sinusoids
 - $x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\Omega_0 t}$
 - c_k Fourier series coefficients
 - Contribution of particular frequency sinusoid
 - $\Omega_0 = 2\pi/T_0$ fundamental frequency
 - -k harmonic frequency index
- Coefficients can be obtained from signal
 - $c_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-jk\Omega_0 t}$
 - Notice c_0 is the average over a period, the DC component

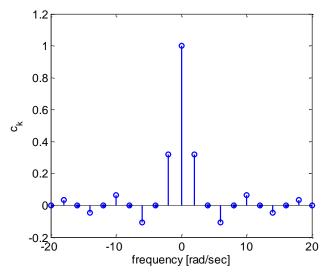
Fourier Series Example

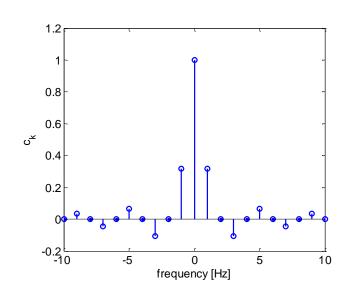
- Example 5.1
- Rectangular pulse train

•
$$x(t) = \begin{cases} A & -\tau < t < \tau \\ 0 & else \end{cases}$$

•
$$c_k = \frac{A\tau}{T_0} \frac{\sin(k\Omega_0\tau/2)}{k\Omega_0\tau/2}$$

- T = 1;
- $\Omega_0 = 2\pi * \frac{1}{T} = 2\pi$
- Magnitude spectrum is known as a line spectrum
 - Only few specific frequencies represented





Fourier Transform

- Generalization of Fourier series to handle non-periodic signals
- Let $T_0 \to \infty$
 - Spacing between lines in FS go to zero
 - $\Omega_0 = 2\pi/T_0$
- Results in a continuous frequency spectrum
 - Continuous function
- The number of FS coefficients to create "periodic" function goes to infinity

- Fourier representation of signal
 - $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$
 - Inverse Fourier transform
- Fourier transform

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t} dt$$

- Notice that a periodic function has both a FS and FT
 - $c_k = \frac{1}{T_0} X(k\Omega_0)$
 - Notice a normalization constant to account for the period

Discrete Time Fourier Transform

- Useful theoretical tool for discrete sequences/signals
- DTFT

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(nT)e^{-j\omega nT}$$

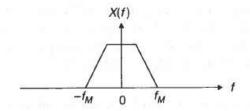
- Periodic function with period 2π
 - Only need to consider a 2π interval $[0,2\pi]$ or $[-\pi,\pi]$
- Inverse FT

$$x(nT) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega nT} d\omega$$

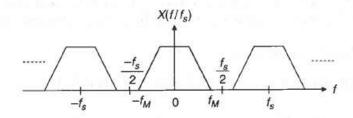
- Notice this is an integral relationship
 - $X(\omega)$ is a continuous function
 - Sequence x(n) is infinite length

Sampling Theorem

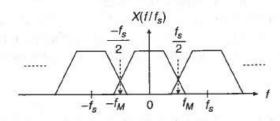
- Aliasing signal distortion caused by sampling
 - Loss of distinction between different signal frequencies
- A bandlimited signal can be recovered from its samples when there is no aliasing
 - $f_s \ge 2f_m, \quad \Omega_s \ge 2\Omega_m$
 - f_s , Ω_s signal bandwidth
- Copies of analog spectrum are copied at f_s intervals
 - Smaller sampling frequency compresses spectrum into overlap



(a) Spectrum of bandlimited analog signal.



(b) Spectrum of discrete-time signal when the sampling theorem $f_M \le f_s/2$ is satisfied.



(c) Spectrum of discrete-time signal that shows aliasing when the sampling theorem is violated.

Figure 5.1 Spectrum replication of discrete-time signal caused by sampling

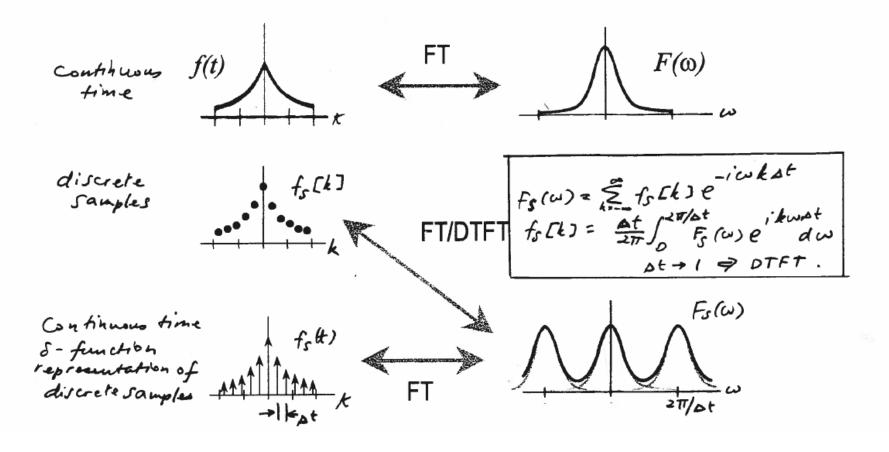
Discrete Fourier Transform

- Numerically computable transform used for practical applications
 - Sampled version of DTFT
- DFT definition
 - $X(k) = \sum_{n=0}^{N-1} x(n)e^{-j(2\pi/N)kn}$
 - k = 0, 1, ..., N 1: frequency index
 - Assumes x(n) = 0 outside bounds [0, N 1]
- Equivalent to taking *N* samples of DTFT $X(\omega)$ over the range $[0, 2\pi]$
 - N equally spaced samples at frequencies $\omega_k = 2\pi k/N$
 - Resolution of DFT is $2\pi/N$
- Inverse DFT

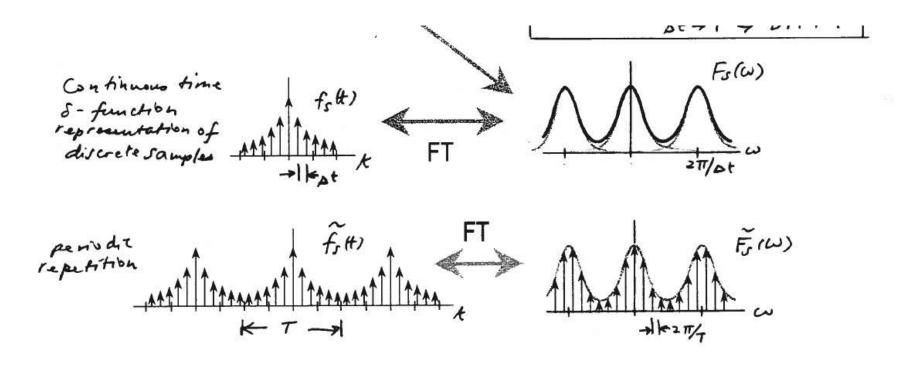
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j(2\pi/N)kn}$$

Relationships Between Transforms

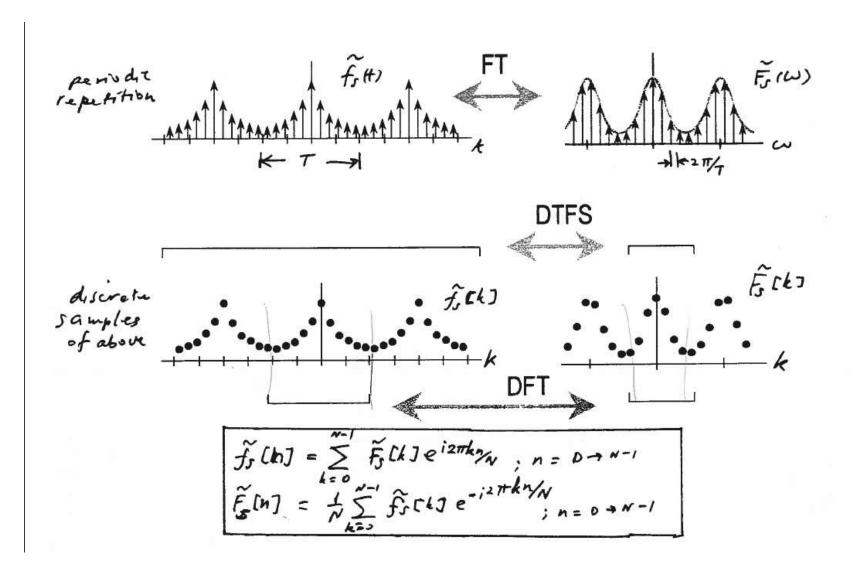
A bird's eye view of the relationship between FT, DTFT, DTFS and DFT



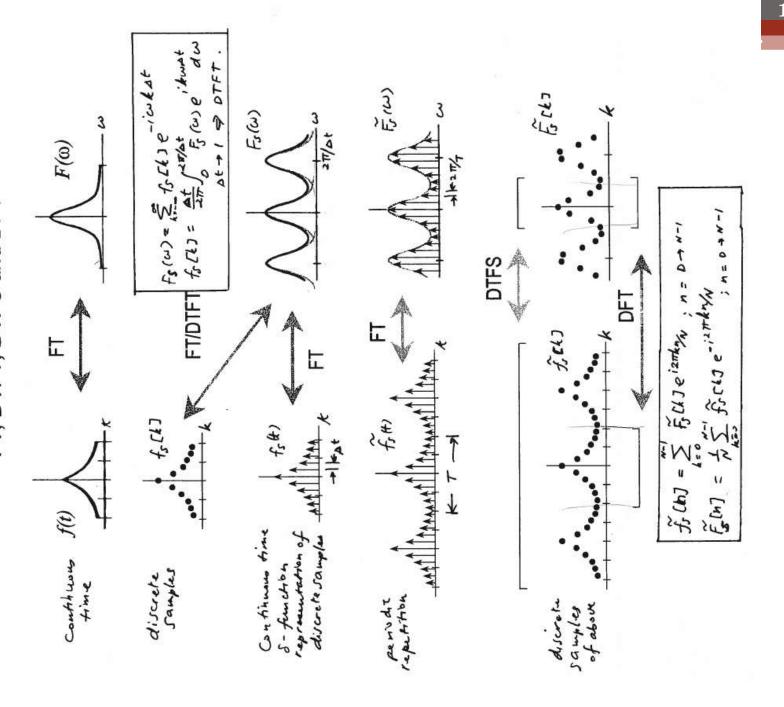
Relationships Between Transforms



Relationships Between Transforms



A bird's eye view of the relationship between FT, DTFT, DTFS and DFT



DFT Twidle Factors

- Rewrite DFT equation using Euler's
- $X(k) = \sum_{n=0}^{N-1} x(n)e^{-j(2\pi/N)kn}$
- $X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}$
 - k = 0,1,...,N-1
 - $W_N^{kn} = e^{-j(2\pi/N)kn} = \cos\left(\frac{2\pi kn}{N}\right) j\sin\left(\frac{2\pi kn}{N}\right)$
- IDFT
- $x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j(2\pi/N)kn}$
- $x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}$, • k = 0, 1, ..., N-1

- Properties of twidle factors
 - W_N^k N roots of unity in clockwise direction on unit circle
 - Symmetry
 - $W_N^{k+N/2} = -W_N^k$, $0 \le k \le \frac{N}{2} 1$
 - Periodicity
 - $W_N^{k+N} = W_N^k$
- Frequency resolution
 - Coefficients equally spaced on unit circle
 - $\Delta = f_S/N$

DFT Properties

- Linearity
 - DFT[ax(n) + by(n)] = aX(k) + bY(k)
- Complex conjugate
 - $X(-k) = X^*(k)$
 - $1 \le k \le N-1$
 - For x(n) real valued

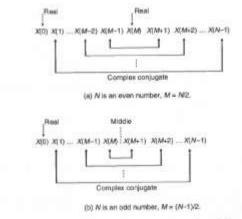


Figure 5.2 Complex-conjugate property for N is (a) an even number and (b) an odd number

- Only first M + 1 coefficients are unique
- Notice the magnitude spectrum is even and phase spectrum is odd

- Z-transform connection
 - $X(k) = X(z)|_{z=e^{j(2\pi/N)k}}$
 - Obtain DFT coefficients by evaluating z-transform on the unit circle at N equally spaced frequencies $\omega_k = 2\pi k/N$
- Circular convolution
 - Y(k) = H(k)X(k)
 - $y(n) = h(n) \otimes x(n)$
 - $y(n) = \sum_{m=0}^{N-1} h(m)x((n-m)_{mod\ N})$
 - Note: both sequences must be padded to same length

Fast Fourier Transform

- DFT is computationally expensive
 - Requires many complex multiplications and additions
 - Complexity $\sim 4N^2$
- Can reduce this time considerably by using the twidle factors
 - Complex periodicity limits the number of distinct values
 - Some factors have no real or no imaginary parts
- FFT algorithms operate in *N* log₂ *N* time
 - Utilize radix-2 algorithm so $N = 2^m$ is a power of 2

FFT Decimation in Time

- Compute smaller DFTs on subsequences of x(n)
- $X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}$
- $X(k) = \sum_{m=0}^{N/2-1} x_1(m) W_N^{k2m} + \sum_{m=0}^{N/2-1} x_2(m) W_N^{k(2m+1)}$
 - $x_1(m) = g(n) = x(2m)$ even samples
 - $x_2(m) = h(n) = x(2m + 1) \text{odd samples}$
- Since $W_N^{2mk} = W_{N/2}^{mk}$
 - $X(k) = \sum_{m=0}^{N/2-1} x_1(m) W_{N/2}^{km} + W_N^k \sum_{m=0}^{N/2-1} x_2(m) W_{N/2}^{km}$
 - N/2-point DFT of even and out parts of x(n)
 - $^{\bullet} X(k) = G(k) + W_N^k H(k)$
 - Full *N* sequence is obtained by periodicity of each *N*/2 DFT

FFT Butterfly Structure

• Full butterfly (8-point)

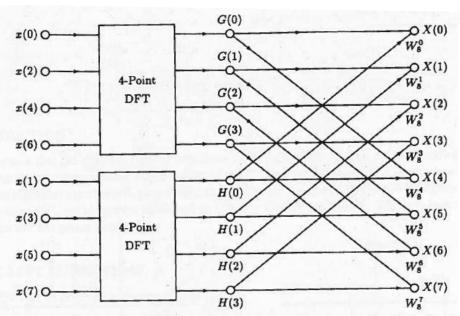


Fig. 7-2. An eight-point decimation-in-time FFT algorithm after the first decimation.

Simplified structure

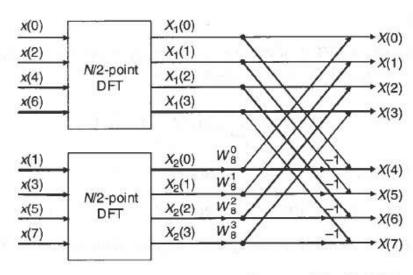


Figure 5.4 Decomposition of N-point DFT into two N/2-point DFTs, N=8

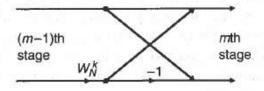


Figure 5.5 Flow graph for butterfly computation

FFT Decimation

- Repeated application of even/odd signal split
 - Stop at simple 2-point DFT

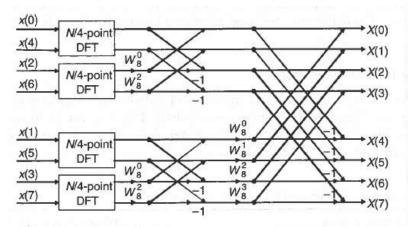


Figure 5.6 Flow graph illustrating second step of N-point DFT, N=8

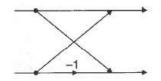
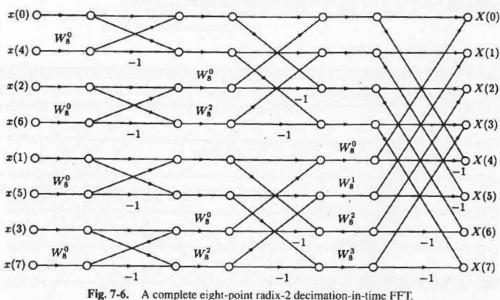


Figure 5.7 Flow graph of two-point DFT

Complete 8-point DFT structure



FFT Decimation in Time Implementation

- Notice arrangement of samples is not in sequence requires shuffling
 - Use bit reversal to figure out pairing of samples in 2-bit DFT

Input sample index		Bit-reversed sample index	
Decimal	Binary	Binary	Decimal
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

- Input values to DFT block are not needed after calculation
 - Enables in-place operation
 - Save FFT output in same register as input
 - Reduce memory requirements

FFT Decimation in Frequency

- Similar divide and conquer strategy
 - Decimate in frequency domain
- $X(2k) = \sum_{n=0}^{N-1} x(n) W_N^{2nk}$
- $X(2k) = \sum_{n=0}^{N/2-1} x(n) W_{N/2}^{nk} + \sum_{n=N/2}^{N-1} x(n) W_{N/2}^{nk}$
 - Divide into first half and second half of sequence

•
$$X(2k) = \sum_{n=0}^{N/2-1} x(n) W_{N/2}^{nk} + \sum_{n=0}^{N/2-1} x(n + 1) x(n)$$

FFT Decimation in Frequency Structure

Stage structure

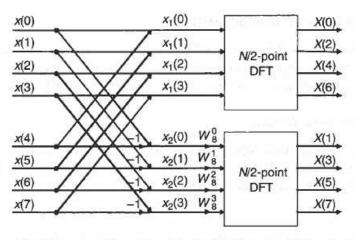
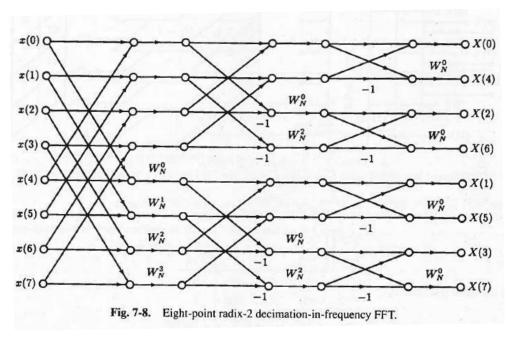


Figure 5.8 Decomposition of an N-point DFT into two N/2-point DFTs

Full structure



Bit reversal happens at output instead of input

Inverse FFT

- $x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}$
- Notice this is the DFT with a scale factor and change in twidle sign
- Can compute using the FFT with minor modifications
 - $x^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X^*(k) W_N^{kn}$
 - Conjugate coefficients, compute FFT with scale factor, conjugate result
 - For real signals, no final conjugate needed
 - Can complex conjugate twidle factors and use in butterfly structure

FFT Example

- Example 5.10
- Sine wave with f = 50 Hz

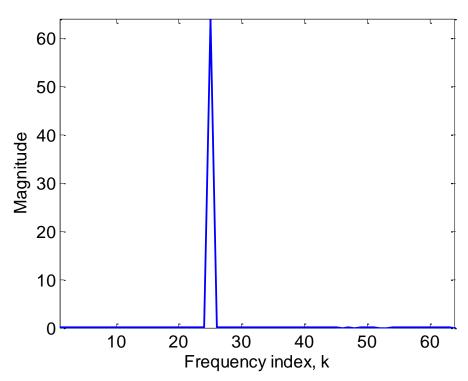
$$x(n) = \sin\left(\frac{2\pi f n}{f_S}\right)$$

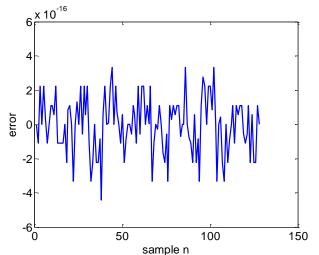
- n = 0, 1, ..., 128
- $f_s = 256 \,\mathrm{Hz}$
- Frequency resolution of DFT?

$$\Delta = f_s/N = \frac{256}{128} = 2 \text{ Hz}$$

Location of peak

•
$$50 = k\Delta \rightarrow k = \frac{50}{2} = 25$$





Spectral Leakage and Resolution

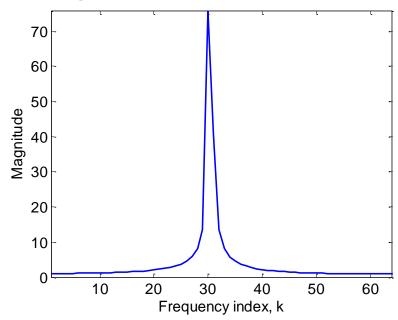
- Notice that a DFT is like windowing a signal to finite length
 - Longer window lengths (more samples) the closer DFT X(k) approximates DTFT $X(\omega)$
- Convolution relationship

$$x_N(n) = w(n)x(n)$$

$$X_N(k) = W(k) * X(k)$$

- Corruption of spectrum due to window properties (mainlobe/sidelobe)
 - Sidelobes result in spurious peaks in computed spectrum known as spectral leakage
 - Obviously, want to use smoother windows to minimize these effects
 - Spectral smearing is the loss in sharpness due to convolution which depends on mainlobe width

- Example 5.15
 - Two close sinusoids smeared together



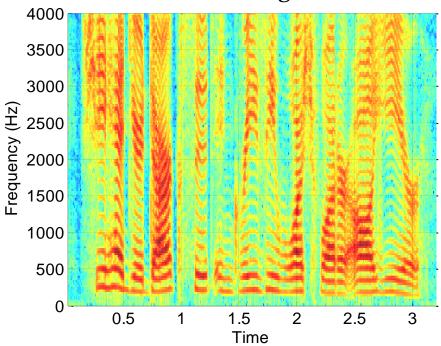
- To avoid smearing:
 - Frequency separation should be greater than freq resolution

$$N > \frac{2\pi}{\Delta\omega}, \quad N > f_S/\Delta f$$

Power Spectral Density

- Parseval's theorem
- $E = \sum_{n=0}^{N-1} |x(n)|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X(k)|^2$
 - $|X(k)|^2$ power spectrum or periodogram
- Power spectral density (PSD, or power density spectrum or power spectrum) is used to measure average power over frequencies
- Computed for time-varying signal by using a sliding window technique
 - Short-time Fourier transform
 - Grab *N* samples and computeFFT
 - Must have overlap and use windows

- Spectrogram
 - Each short FFT is arranged as a column in a matrix to give the time-varying properties of the signal
 - Viewed as an image



"She had your dark suit in greasy wash water all year"

Fast FFT Convolution

- Linear convolution is multiplication in frequency domain
 - Must take FFT of signal and filter, multiply, and iFFT
 - Operations in frequency domain can be much faster for large filters
 - Requires zero-padding because of circular convolution
- Typically, will do block processing
 - Segment a signal and process each segment individually before recombining