
http://www.ee.unlv.edu/~b1morris/ee482/

Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

EE482: Digital Signal Processing

Applications

Adaptive Filtering

Outline

• Random Processes

• Adaptive Filters

• LMS Algorithm

2

Adaptive Filtering

• FIR and IIR filters are designed for linear time-
invariant signals

• How can we handle signals when the
characteristics are unknown or changing?

• Need ways to update filter coefficients
automatically and continually

▫ Track time-varying signals and systems

3

Random Processes

• Real-world signals are time varying and have
randomness in nature

▫ E.g. speech, music, noise

• Need to characterize a signal even if full
deterministic mathematical definition does not
exist

• Random process – sequence of random
variables

4

Autocorrelation

• Specifies statistical relationship of signal at
different time lags (𝑛 − 𝑘)
▫ 𝑟𝑥𝑥 𝑛, 𝑘 = 𝐸 𝑥 𝑛 𝑥 𝑘

▫ Similarity of observations as a function of the time
lag between them

• Mathematical tool for detecting signals

▫ Repeating patterns (noise in sinusoid)

▫ Measuring time-delay between signals

 Radar, sonar, lidar

▫ Estimation of impulse response

▫ Etc.

5

Wide Sense Stationary (WSS) Process

• Random process statistics do not change with time
• Mean independent of time

▫ 𝐸 𝑥 𝑛 = 𝑚𝑥

• Autocorrelation only depends only on time lag

▫ 𝑟𝑥𝑥 𝑘 = 𝐸 𝑥 𝑛 + 𝑘 𝑥 𝑛

• WSS autocorrelation properties
▫ Even function

 𝑟𝑥𝑥 −𝑘 = 𝑟𝑥𝑥 𝑘

▫ Bounded by 0 time lag

 𝑟𝑥𝑥 𝑘 ≤ 𝑟𝑥𝑥 0 = 𝐸[𝑥2 𝑛]
 Zero mean process: 𝐸 𝑥2 𝑛 = 𝜎𝑥

2

• Cross-correlation

▫ 𝑟𝑥𝑦 𝑘 = 𝐸[𝑥 𝑛 + 𝑘 𝑦 𝑛]

6

Expected Value

• Value of random variable “expected” if random
variable process repeated infinite number of
times

▫ Weighted average of all possible values

• Expectation operator

▫ 𝐸 . = −∞

∞
. 𝑓 𝑥 𝑑𝑥

▫ 𝑓(𝑥) – probability density function of random
variable 𝑋

7

White Noise

• 𝑣(𝑛) with zero mean and variance 𝜎𝑣
2

• Very popular random signal

▫ Typical noise model

• Autocorrelation

▫ 𝑟𝑣𝑣 𝑘 = 𝜎𝑣
2𝛿 𝑘

▫ Statistically uncorrelated except at zero time lag

• Power spectrum

▫ 𝑃𝑣𝑣 𝜔 = 𝜎𝑣
2, 𝜔 ≤ 𝜋

▫ Uniformly distributed over entire frequency range

8

Example 6.2
• Second-order FIR filter with white noise input (𝑁(0, 𝜎2))

▫ 𝑦 𝑛 = 𝑥 𝑛 + 𝑎𝑥 𝑛 − 1 + 𝑏𝑥 𝑛 − 2
• Mean

▫ 𝐸 𝑦 𝑛 = 𝐸[𝑥 𝑛 + 𝑎𝑥 𝑛 − 1 + 𝑏𝑥 𝑛 − 2]
▫ 𝐸 𝑦 𝑛 = 𝐸[𝑥 𝑛] + 𝑎𝐸[𝑥 𝑛 − 1] + 𝑏𝐸[𝑥 𝑛 − 2]

▫ 𝐸 𝑦 𝑛 = 0 + 𝑎 ⋅ 0 + 𝑏 ⋅ 0 = 0
• Autocorrelation

▫ 𝑟𝑦𝑦 𝑘 = 𝐸 𝑦 𝑛 + 𝑘 𝑦 𝑛

▫ 𝑟𝑦𝑦 𝑘 = 𝐸
𝑥 𝑛 + 𝑘 + 𝑎𝑥 𝑛 + 𝑘 − 1 + 𝑏𝑥 𝑛 + 𝑘 − 2 ⋅

(𝑥 𝑛 + 𝑎𝑥 𝑛 − 1 + 𝑏𝑥 𝑛 − 2)

▫ 𝑟𝑦𝑦 𝑘 = 𝐸 𝑥 𝑛 + 𝑘 𝑥 𝑛 + 𝐸 𝑎𝑥 𝑛 + 𝑘 𝑥 𝑛 − 1 + …

▫ 𝑟𝑦𝑦 𝑘 = 𝑟𝑥𝑥 𝑘 + 𝑎𝑟𝑥𝑥 𝑘 − 1 + ⋯

▫ 𝑟𝑦𝑦 𝑘 =

1 + 𝑎2 + 𝑏2 𝜎𝑥
2

𝑎 + 𝑎𝑏 𝜎𝑥
2

𝑏𝜎𝑥
2

0

𝑘 = 0
𝑘 = ±1
𝑘 = ±2

𝑒𝑙𝑠𝑒

9

Practical Estimation

• Practical applications have finite length
sequences

• Sample mean

▫ 𝑚𝑥 =
1

𝑁
 𝑛=0

𝑁−1 𝑥(𝑛)

• Sample autocorrelation

▫ 𝑟𝑥𝑥 𝑘 =
1

𝑁−𝑘
 𝑛−0

𝑁−𝑘−1 𝑥 𝑛 + 𝑘 𝑥(𝑛)

▫ Only produces a good estimate of lags < 10% of 𝑁

• Use Matlab (mean.m, xcorr.m, etc.) to

calculate

10

Adaptive Filters

• Signal characteristics in practical applications are
time varying and/or unknown

• Must modify filter coefficients adaptively in an
automated fashion to meet objectives

• Example: Channel equalization
▫ High-speed data communication via media channel

(e.g. wireless network)
▫ Channel equalization compensates for channel

distortion (e.g. path from wifi router and phone)
▫ Channel must be continually tracked and

characterized to compensate for distortion (e.g.
moving around a room)

11

General Adaptive Filter
• Two components

▫ Digital filter – defined by coefficients
▫ Adaptive algorithm – automatically update filter

coefficients (weights)

• Adaption occurs by comparing filtered signal 𝑦(𝑛)
with a desired (reference) signal 𝑑(𝑛)
▫ Minimize error 𝑒(𝑛) using a cost function (e.g. mean-

square error)
▫ Continually lower error and get 𝑦 𝑛 closer to 𝑑(𝑛)

12

FIR Adaptive Filter

• 𝑦 𝑛 = 𝑙=0
𝐿−1 𝑤𝑙 𝑛 𝑥(𝑛 − 𝑙)

▫ Notice time-varying weights

• In vector form

▫ 𝑦 𝑛 = 𝒘𝑇 𝑛 𝒙 𝑛 = 𝒙𝑇 𝑛 𝒘 𝑛

▫ 𝒙 𝑛 = 𝑥 𝑛 , 𝑥 𝑛 − 1 , … , 𝑥 𝑛 − 𝐿 + 1 𝑇

▫ 𝒘 𝑛 = 𝑤0 𝑛 , 𝑤1 𝑛 , … , 𝑤𝐿−1 𝑛 𝑇

• Error signal

▫ 𝑒 𝑛 = 𝑑 𝑛 − 𝑦 𝑛 = 𝑑 𝑛 − 𝒘𝑇 𝑛 𝒙 𝑛

13

Performance Function

• Use mean-square error (MSE) cost function

• 𝜉 𝑛 = 𝐸 𝑒2 𝑛

• 𝜉 𝑛 = 𝐸 𝑑2 𝑛 − 2𝒑𝑇𝒘 𝑛 + 𝒘𝑇 𝑛 𝑹𝒘 𝑛
▫ 𝒑 = 𝐸 𝑑 𝑛 𝒙 𝑛 = 𝑟𝑑𝑥 0 , 𝑟𝑑𝑥 1 , … , 𝑟𝑑𝑥 𝐿 − 1 𝑇

▫ 𝑹 – autocorrelation matrix

 𝑹 = 𝐸[𝒙 𝑛 𝒙𝑇 𝑛]

 Toeplitz matrix – symmetric across main diagonal

14

Steepest Descent Optimization
• Error function is a quadratic

surface

▫ 𝜉 𝑛 = 𝐸 𝑑2 𝑛 − 2𝒑𝑇𝒘 𝑛 +
𝒘𝑇 𝑛 𝑹𝒘 𝑛

• Therefore gradient descent
search techniques can be used

▫ Gradient points in direction
of greatest change

• Iterative optimization to “step”
toward the bottom of error
surface

▫ 𝑤 𝑛 + 1 = 𝑤 𝑛 −
𝜇

2
𝛻𝜉 𝑛

15

LMS Algorithm
• Practical applications do not

have knowledge of 𝑑 𝑛 , 𝑥 𝑛

▫ Cannot directly compute
MSE and gradient

▫ Stochastic gradient algorithm

• Use instantaneous squared
error to estimate MSE

▫ 𝜉 𝑛 = 𝑒2 𝑛

• Gradient estimate

▫ 𝛻 𝜉 𝑛 = 2 𝛻𝑒 𝑛 𝑒 𝑛

 𝑒 𝑛 = 𝑑 𝑛 − 𝑤𝑇 𝑛 𝑥(𝑛)

▫ 𝛻 𝜉 𝑛 = −2𝑥(𝑛)𝑒 𝑛

• Steepest descent algorithm

▫ 𝑤 𝑛 + 1 = 𝑤 𝑛 + 𝜇𝑥 𝑛 𝑒 𝑛

• LMS Steps

1. Set 𝐿, 𝜇, and 𝒘(0)

▫ 𝐿 – filter length

▫ 𝜇 – step size (small e.g. 0.01)

▫ 𝒘(0) – initial filter weights

2. Compute filter output

▫ 𝑦 𝑛 = 𝒘𝑇 𝑛 𝒙 𝑛

3. Compute error signal

▫ 𝑒 𝑛 = 𝑑 𝑛 − 𝑦 𝑛

4. Update weight vector
▫ 𝑤𝑙 𝑛 + 1 = 𝑤𝑙 𝑛 + 𝜇𝑥 𝑛 − 𝑙 𝑒 𝑛 ,

𝑙 = 0,1, … 𝐿 − 1

• Notice this requires a reference
signal

16

LMS Stability

• Convergence of LMS algorithm

▫ 0 < 𝜇 < 2/𝜆𝑚𝑎𝑥

 𝜆𝑚𝑎𝑥 - largest eigenvalue of autocorrelation matrix 𝑹
 Not easy to compute eigenvalues

• Eigenvalue approximation

▫ 0 < 𝜇 < 2/𝐿𝑃𝑥

 𝐿 – length of data window, filter length

 𝑃𝑥 = 𝑟𝑥𝑥 0 = 𝐸[𝑥2 𝑛]

• Step size is inversely proportional to filter length
▫ Smaller 𝜇 for higher order filters

• Step size inversely proportional to input signal
power
▫ Larger 𝜇 for lower power signal

17

Convergence Speed
• Convergence of filter weights

is defined by the time 𝜏𝑀𝑆𝐸 to
go from initial MSE to min

▫ Plot of MSE vs. time is known
as the learning curve

• Convergence time related to
the minimum eigenvalue of 𝑹

▫ 𝜏𝑀𝑆𝐸 ≅
1

𝜇𝜆𝑚𝑖𝑛

 Smaller step size results in
longer convergence time

• In practice, weights will not
converge to a fixed optimum
value but will vary around it

18

Example 6.7
• sd = 12357; rng(sd); % Set

seed value

• x = randn(1,128); %

Reference signal x(n)

• b = [0.1,0.2,0.4,0.2,0.1]; % An FIR

filter to be identified

• d = filter(b,1,x); %

Desired signal d(n)

• mu = 0.05; % Step

size mu

• h = adaptfilt.lms(5,mu); % LMS

algorithm

• [y,e] = filter(h,x,d); %

Adaptive filtering

• n = 1:128;

• h1=figure;

• hold all;

• plot(n,d,'-','linewidth', 3);

• plot(n,y,'-.', 'linewidth', 3);

• plot(n,e,'--', 'linewidth', 2);

• axis([1 128 -inf inf]);

• xlabel('Time index, n');

• ylabel('Amplitude');

• legend('d[n]', 'y[n]', 'e[n]');

•

• [b; h.coefficients]

• Coefficients
• 𝑏 = [0.1000 0.2000 0.4000 0.2000 0.1000]

• 𝑤 =
[0.1005 0.1999 0.3996 0.1995 0.0996]

19

20 40 60 80 100 120

-1

-0.5

0

0.5

1

Time index, n

A
m

p
lit

u
d

e

d[n]

y[n]

e[n]

Practical Applications

• Four classes of adaptive filtering applications

▫ System identification

▫ Prediction

▫ Noise cancellation

▫ Inverse modeling

• Differences based on configuration of control
signals 𝑥 𝑛 , 𝑑 𝑛 , 𝑦 𝑛 , 𝑒(𝑛)

20

System Identification
• Given an unknown system, try

to determine (identify)
coefficients

• Excite unknown system and
adaptive system with same
input

▫ Input signal: white noise

▫ Reference signal: output of
unknown system

▫ Error is difference between
adaptive filter and the output
of unknown system

21

Prediction
• Linear predictor estimates

signal values at future times
• Reference signal: signal of

interest

• Input signal: delayed reference
signal

• Error is difference between
current sample and predicted
sample (using past samples)

▫ Leverage correlation between
samples

• Broadband output: noise
component

• Narrowband output: signal of
interest (high correlation)

22

Example 6.9
• Fs = 1000;

• f0 = 150;

• L =64;

• N=256;

• A=sqrt(2);

• w0=2*pi*f0/Fs;

• n = [0:N-1];

• sn = A*sin(w0*n);

• vn = 0.1*(rand(1,N)-0.5)*sqrt(12)

• x = sn+vn

• d = [0, x(2:256)];

• mu = 0.001;

• h = adaptfilt.lms(L,mu);

• [y,e] = filter(h,x,d)

• h1=figure;

• hold all;

• plot(n,x,'-','linewidth', 2);

• plot(n,y,'-.', 'linewidth', 2);

• plot(n,e,'--', 'linewidth', 2);

• axis([1 N -inf inf]);

• xlabel('Time index, n');

• ylabel('Amplitude');

• legend('x[n]', 'y[n]', 'e[n]');

23

50 100 150 200 250
-1.5

-1

-0.5

0

0.5

1

1.5

Time index, n

A
m

p
lit

u
d

e

x[n]

y[n]

e[n]

Noise Cancellation
• Remove (cancel) noise

components embedded in a
primary signal

▫ E.g. background noise in
speech signal

• Flip idea of reference and
input signals

▫ Reference signal: primary
signal + noise

 Close to primary source

▫ Input signal: noise signal

 Far from primary source to
measure noise

▫ Adaptive filter tracks
correlated noise

 Error signal is the desired
cleaned primary signal

24

Example 6.10
• Fs = 1000;

• f0 = 110;

• L = 3;

• N = 128;

• w0 = 2*pi*f0/Fs;

• pz = [0.1, 0.3, 0.2]; % Define noise path

• n = [0:N-1]; % Time index

• sd = 12357; rng(sd); % Set seed value

•

• sn = 0.5*sin(w0*n); % Sine sequence

• xn = 2.5*(rand(1,N)-0.5); % Zero-mean white
noise

• xpn = filter(pz, 1, xn); % Generate x'(n)

• dn = sn+xpn; % Sinewave embedded
in white noise

•

• mu = 0.025; % Step size mu

• h = adaptfilt.lms(L,mu); % LMS algorithm

• [y,e] = filter(h,xn,dn); % Adaptive
filtering

•

•

• h1=figure;

• hold all;

• plot(n,dn,'-','linewidth', 2);

• plot(n,sn,'-.', 'linewidth', 2);

• plot(n,e,'--', 'linewidth', 2);

• axis([1 N -inf inf]);

• xlabel('Time index, n');

• ylabel('Amplitude');

• legend('d[n] - noisy signal', 's[n] primary',
'e[n] - output');

25

20 40 60 80 100 120
-1

-0.5

0

0.5

1

Time index, n

A
m

p
lit

u
d

e

d[n] - noisy signal

s[n] primary

e[n] - output

Inverse Modeling
• Method to estimate the inverse

of an unknown system

▫ E.g. a communication
channel is unknown but its
distortion needs to be
corrected

• Reference signal: a known
training signal

• Input signal: training signal
after going through unknown
system

26

