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DIGITAL SIGNALS AND SYSTEMS

CHAPTER 2.1




ELEMENTARY DIGITAL SIGNALS

= Digital signal

= x(n) ne€eZ
= Deterministic — expressed mathematically (e.g. sinusoid)
= Random — cannot be described exactly by equations (e.g. noise, speech)

= Unit impulse (Kronecker delta)

1, n=0
" o) = {o n# 0
= Basic building block of all digital signals
® Unit step

1, n=0
m u(n):{o n<0= LL:_OOCS(I{)
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SINUSOIDAL SIGNALS

= Continuous
= x(t) = Asin(Qt + ¢) = A sin(2nft + @)
= Sampled
" x(n) = Asin(QnT + ¢) = A sin(2nfnT + ¢)

" () =2nf
= x(n) = Asin(wn + ¢) = A sin(Fnn + ¢)
" =0T



RELATIONSHIPS BETWEEN FREQ VARIABLES

Table 2.1
rads/sec = 2nf —00 < () < 00
f cycles/sec (Hz) f= & — D5 —0 < f <o
21 21
2 —T<w<
w rads/sample w=QT = f T=0=T1n
fs
F cycles/sample F = fo_o —-1<F<1
fs/2 2 -

®* Normalized frequency measures

®* Note: max frequency for m or definition over a 2m interval

= Consider e/ (@+2mk)



EXAMPLE 2.1

= A=2; £=1000; fs — 8000;

= n=0:31;
= w = 2*pi*f/fs;

= x = A*sin(w*n);

= h=figure;

= %plot sampled sine

= subplot(2,1,1)

= plot(n,x,"-0",'linewidth',2);

= xlabel('time index [n]'); ylabel('value'); legend('sampled sine')

= %plot analog sine

= subplot(2,1,2)

= t=0:1e-5:4e-3;

= plot(n*(1/fs),x,"-0",'linewidth',2);

=  hold all;

= plot(t, A*sin(2*pi*f*t), 'linewidth',2);

= xlabel('time [t=n(1/f s)|'); ylabel('value');

'analog sine')

value
(an]

value
(e ]

=—O— sampled sine
0 5 10 15 20 25 30 35
time index [n]
I I & I
=8 sampled sine
= analog sine | |
0 0.5 1 1.5 2 2.5 3 3.5 4
time [t=n(1/f )] %1073

legend('sampled sine',
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BLOCK DIAGRAM REPRESENTATION

" Processing accomplished with 3

basic operations
x1(n)

= Addition |
= y(n) =x,(n) +x,(n) x,(n)

= Multiplication

= y(n) = ax(n) >
= Time shift (delay)
7L
= y(n) =x(n-1L) S
= Multiple delays can be implemented S |
with a shift register (first-in, first-out Multiplication in z domain

buffer)(tapped delay line)



SYSTEM CONCEPTS

CHAPTER 2.2




SYSTEMS

® (Generic system * Time invariance

= Shift in input causes

*(n) _>| ! |_> y(n) corresponding shift in output
" y(n—mny) =T{x(n —ny)}
= To test, check if y;(n) = y,(n)

" Linearity

» Additive and homogeneity
(scaling) properties

= Tlax;(n) + bx(n)} = ay:(n) + by, (n)

= y1(n) =y —nyp)
= Replace n by n,

= y,(n) =T{x(n —ny)} = T{g(n)}

= Response of system to shifted input
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LTI SYSTEMS

" Impulse response

x(n) = 6(n) —>| LTI I—) y(n) = h(n)

= Qutput of LTI system y(n) = h(n) to input x(n) = §(n)
= Convolution

® Input-output relationship of LTI system

oo

y(n) = x(n) * h(n) = z x(K)h(n — k) = Z h(k)x(n — k)

k=—o0 k=—o0



GENERAL DIFFERENCE EQUATION SYSTEMS

M L—1 L—1 M
Z ary(n — k) = Z brr(n — k) y(n) = Z brr(n — k) — Z ary(n — k)
k=0 k=0 k=0 k=1

= Infinite impulse response (IIR) = Causality

= h(n) non-zero as n — = Qutput only depends on previous
input

= h(n) =0, n<o
= Stability (BIBO)

® This system only has zeroes and = Xlh(n)| < oo
poles at z =10 = Absolutely summable

= Finite impulse response (FIR)

= h(n) defined over finite set of n

= Special case of above with a; =0
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Z-TRANSFORM

" Very useful computational tool for studying digital
systems

® Definition X(z)= Z x(n)z" o — ped?

n——oo T Complex variable

= Has associated region of convergence (ROC)

® Values of z where summation converges

® Useful summation formulas
N N+1

S e = n 1
Dot = 1— o o T ] —aq— lal<1

n=0 n=0
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Z-TRANSFORM PROPERTIES

® Linearity
» Z{ax;(n) + bx,(n)} = aX,(z) + bX,(2)
" Time shift
2 Z{ix(n—k)} =z7%X(2)

= Convolution

" x(n) =x1(n) *xx,(n) - X(2) = X,(2)X,(2)
= ROC = R,; NR,,
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TRANSFER FUNCTIONS

® (GGeneral polynomial form from

x(n) —>| h(n) |—> y() =x(m)«h()  difference equation

= Take Z-transtform of both sides of

= Note: convolution in time is :
general diff eq

multiplication in Z-domain
= Y(z) = X(2)H(2)

e
¥(2) Z
[ | H(Z) —
@ H(z) = =




POLES AND ZEROS

= Poles
= Zeros = Roots of the denominator polynomial
= Roots of the numerator = Locations in z-plane that make output
polynomial infinity (unstable)

= System is considered unstable if the ROC
] Locations in Z_plane that make doesn’t contain the unit circle (HO DTFT

exists)
output zero = (Causal system = poles should be inside unit

circle



EXAMPLE 2.10

. H(z) = 1 [1—z—L]

Ll1-z72 = Matlab
= Notice this is a polynomial in z~1 ool (1 0000000 11 111
= Convert to polynomial in z to get all
poles and zeros
Im[z]
1[ zk-1 1[ zk-1
@ = 7] =1
(2) LlzL—zL-1 L LzL=1(z-1)

= (z-1)=0-2z=1

= zZI71 =0 > L-1polesat z=0

m /eros

(2_”)1 Figure 2.12 Pole—zero diagram of the moving-averaging filter, L =8
L J : g-averaging
ozt —=1=0->z =¢e"\L

® L zeros even spaced around unit circle
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FREQUENCY RESPONSE

= Discrete-time Fourier transform (DTFT)

H(L’J) — H(z)|z:ejw — Z h__(.n)e—jwﬂ.

n=—aoo

= Evaluate transfer function along the unit circle |z| = |e/®]

H{(w) = [H(w)]e

|H(w)| = \/H(L:J)H* (w) £H(w) = arctan (Eﬁggii)

" Frequency response is periodic in 2w interval and symmetric

= Only [0, ] interval is required for evaluation



GRAPHICAL DTFT INTERPRETATION

= Poles

= |H(w)| gets larger closer to 6
" /eros

» |H(w)| gets smaller closer to 6

= What does a highpass filter look
like?

= What does a lowpass filter look
like?
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DISCRETE FOURIER TRANSFORM

= Notice the DTFT is a continuous function of w

= Requires an infinite number of samples to compute (infinite sum)
» DFT is a sampled version of the DTFT

= Samples are taken at N equally spaced frequencies along unit circle
2Ttk

" W= k=01,.., N—1
~— 2k
X(k) = X))oz = 3 a(n)e %
n=~0

" n — time index

" k — frequency index
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DFT IMPLEMENTATION

X (k) = X ()] o2z = Z s

n=>0

= ](DFT fan be computed very efficiently with the fast Fourier transform
FET

= Frequency resolution of DFT

| A(I) =27T[, Af fS

= Analog frequency mapping
" fie=kap =L k=01, ,N-1

= Nyquist frequency 5 corresponds to k =2



EXAMPLE 2.16

= N =100; A = 1; £=1000; fs = 10000;
= n=0:N-1;
= w = 2*pi*f/fs;

B} 100 . .
= x = sin(w*n); 3

= X = fft(x); é

= K = length(X); §

. S

=  h=figure; 0 10 20 30 40 50 60 70 80 90 100
= subplot(2,1,1) freq index [K]

= plot(0:K-1, 20¥log10(abs(X)), 'linewidth', 2); T T

= xlabel('freq index [k|'); ylabel('magnitude [dB]'); S 0f i

= subplot(2,1,2) é -100 1

= %convert index to freq % 200 - |

= f= (0:K-1) * fs/N; S TS | N e~

= plot(f, 20¥logl0(abs(X)), 'linewidth', 2); 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

f H
= xlabel('freq [Hz|'"); ylabel('magnitude [dB|'"); req [Hz]



EXAMPLE 2.16 — SHIFTED FREQUENCIES

= ind = -K/2:K/2-1;

= Xs = fftshift(X)

= h=figure;

= subplot(2,1,1)

= plot(ind, 20*log10(abs(Xs)), 'linewidth', 2);
= xlabel('freq index [k]|');

= ylabel('magnitude [dB]');

= subplot(2,1,2)

= %convert index to freq

= f=ind * fs/N;

= plot(f, 20*logl0(abs(Xs)), 'linewidth', 2);
= xlabel('freq [Hz|');

= ylabel('magnitude [dB]');
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INTRO TO RANDOM VARIABLES

CHAPTER 2.3

23
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RANDOM VARIABLES

= Function that maps from a = Probability density function
sample space to a real value (PDF)
= x:S-o R o f(X)—dF(X)
= x — random variable (does not have a = [P f(X)dx =1
value)

" P(X; <x<X3) —F(Xz) F(X;)
= S — sample space

= Cumulative distribution

function (CDF) = Probability mass functlon (PMF)

" FX) = P(x = X) = For discrete x, takes values X;, i =
= E.g. probability {x < X} 1,2,3, ...

= p=Plx=X;)

P(X; <x<X,)= f F(X)dX



UNIFORM RANDOM VARIABLE

= Variable takes on value in a
range with equal probability

(1

= f(X) = (%X
\ 0 else

= Be sure you can calculate mean
and variance

X1 <x<X,

= Be aware that the book is a little
sloppy in notation

"= RV xvs X

> X
0 X X,

Figure 2.17 The uniform density function



STATISTICS OF RANDOM VARIABLES

= Expected value (mean)
= m, = E[x]expectation operator
= m, = ffooo Xf(X)dXx continuous

= m, = ); X;p; discrete

= Can be can computed with mean.m
and var.m

= Read help for info on finite sample
versions

= Variance (spread around mean)

o7 = E[(x —my)?] = E[x?] — mg
Continuous

= g2 = [0 (X - my)2f(X)dX
Discrete

= 07 =X pi(X; — my)?

For m, = 0,

= g2 =E[x?] =P,

= Second moment, power



FIXED-POINT REPRESENTATION AND
QUANTIZATION EFFECTS

CHAPTER 2.4

‘\‘
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FIXED-POINT NUMERICAL EFFECTS

" Fractional numbers are represented in 2’s complement with B =
M + 1 bits

X = bO'ble "'bM—le

- \\\ .

sign bit  binary point msb

. b = 0 x=0 positive
0711 x <0 negative
" Value= —by + XM _, b, 27™
n—1<x<(1-27M

= Unbalanced range with more negative than positive numbers



GENERAL FRACTIONAL FORMAT Qn.m

= x = bybyb, ... b,,.byb, ... by, = Example 2.25
/ o "\' T = x = 0100 1000 0001 1000b
sign bit binary point = 0x4818
= Q0.15
" Q format w o x=2"14+27%4+271 4+ 2712 =0.56323
* Qn.m = Q+#integer.#{raction = Q2.13
= Larger n increases dynamic range s x=2l492-242-94 2-10 — 9 25993
but at cost of reduced precision
= (05.10

(smallest fractional resolution)

: s x=2%4+21+27%4+277 =18.02344
" b, is not counted as part of

integer just as a sign-bit
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FINITE WORD LENGTH EFFECTS

1. Quantization errors

= Signal quantization
= (Coefficient quantization
2. Arithmetic errors

= Roundoff (truncation)

= Overflow



SIGNAL QUANTIZATION

= ADC conversion of sampled signals to fixed levels
= Using Q15 and B bits
=  Dynamic range -1 <x <1

Quantization level
=  Quantization step

A
[ ] A=i=2_3+1=2_M
2B
=  Quantization error x(t)
= e(n)=xn) - xB(n) 011 (—_
= () = Qlx(w)] 1’/"’ farzt,
= le(n)] < % =278 (rounding) 010 ’A* Y
= Error dependent on word length B / e(n)
=  More bits for better resolution, less error (noise) 001
= Signal to quantization noise (SQNR) /
000 »Time, t
= SQNR =% = 322052 0 T 2T

— 2 . . . .
* SQONR=477+602B +10logyo0x dB Figure 2.21 Quantization process related to a 3-bit ADC



COEFFICIENT QUANTIZATION

® Same error issues as for signals

= Results in movement of the locations of poles/zeros
» Changes system function polynomials

» Can lead to instability if poles go outside the unit circle

= Generally, more a problem with IIR filters

= Can limit coetficient quantization effects by using
lower-order filters

» Use of cascade and parallel filter structures
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ROUNDOFF NOISE

® A product must be represented in B bits by
rounding (truncation)

=y(n) = ax(n)

(N AN

2B bits B bits B bits

= Error model
"y(n) = Qlax(n)] = ax(n) + e(n)

= ¢(n) is uniformly distributed zero mean noise (rounding)




OVERFLOW AND SOLUTIONS

CHAPTER 2.5

N\
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OVERFLOW

= y(n) =x(n) +x,(n)
m —1<x;,(n)<1
= —1<y(n)<1

= Overflow occurs when the sum cannot fit in
the word container x(n) (1=1)

= Signals need to be scaled to prevent overflow i 0.9 0.8

Figure 2.24 Block diagram of simple FIR filter with scaling factor

= Notice: this reduces the SQNR

2.2
= SONR = 10log,,(2%)

o¢

= SQNR = 4.77 + 6.02B + 10log, 02 +

20 10g10 ﬁ dB ‘—'_'

Negative since f < 1



