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DIGITAL SIGNALS AND SYSTEMS
CHAPTER 2.1 
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 Digital signal 

 𝑥 𝑛 𝑛 ∈ ℤ

 Deterministic – expressed mathematically (e.g. sinusoid)

 Random – cannot be described exactly by equations (e.g. noise, speech)

 Unit impulse (Kronecker delta)

 𝛿 𝑛 = ቊ
1, 𝑛 = 0
0, 𝑛 ≠ 0

 Basic building block of all digital signals

 Unit step

 𝑢 𝑛 = ቊ
1, 𝑛 ≥ 0
0, 𝑛 < 0

= σ𝑘=−∞
𝑛 𝛿(𝑘)
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ELEMENTARY DIGITAL SIGNALS



Continuous

 𝑥 𝑡 = 𝐴 sin Ω𝑡 + 𝜙 = 𝐴 sin 2𝜋𝑓𝑡 + 𝜙

Sampled

 𝑥 𝑛 = 𝐴 sin Ω𝑛𝑇 + 𝜙 = 𝐴 sin 2𝜋𝑓𝑛𝑇 + 𝜙

 Ω = 2𝜋𝑓

 𝑥 𝑛 = 𝐴 sin 𝜔𝑛 + 𝜙 = 𝐴 sin F𝜋𝑛 + 𝜙

 𝜔 = Ω𝑇
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SINUSOIDAL SIGNALS



 Normalized frequency measures

 Note: max frequency for 𝜋 or definition over a 2𝜋 interval

 Consider 𝑒𝑗(𝜔+2𝜋𝑘)
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RELATIONSHIPS BETWEEN FREQ VARIABLES

Variable Units Relationships Ranges

Ω rads/sec Ω = 2𝜋𝑓 −∞ < Ω < ∞

𝑓 cycles/sec (Hz) 𝑓 =
Ω

2𝜋
=
𝜔𝑓𝑠
2𝜋

−∞ < 𝑓 < ∞

𝜔 rads/sample 𝜔 = Ω𝑇 =
2𝜋𝑓

𝑓𝑠

−𝜋 ≤ 𝜔 ≤ 𝜋

𝐹 cycles/sample 𝐹 =
𝑓

𝑓𝑠/2
=
𝜔

2
−1 ≤ 𝐹 ≤ 1

Table 2.1



 A=2; f=1000; fs = 8000;

 n=0:31;

 w = 2*pi*f/fs;

 x = A*sin(w*n);

 h=figure;

 %plot sampled sine

 subplot(2,1,1)

 plot(n,x,'-o','linewidth',2);

 xlabel('time index [n]'); ylabel('value'); legend('sampled sine')

 %plot analog sine

 subplot(2,1,2)

 t=0:1e-5:4e-3;

 plot(n*(1/fs),x,'-o','linewidth',2);

 hold all;

 plot(t, A*sin(2*pi*f*t), 'linewidth',2);

 xlabel('time [t=n(1/f_s)]'); ylabel('value'); legend('sampled sine', 
'analog sine')
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EXAMPLE 2.1



 Processing accomplished with 3 
basic operations

 Addition

 𝑦 𝑛 = 𝑥1 𝑛 + 𝑥2 𝑛

 Multiplication

 𝑦 𝑛 = 𝑎𝑥 𝑛

 Time shift (delay)

 𝑦 𝑛 = 𝑥 𝑛 − 𝐿

 Multiple delays can be implemented 
with a shift register (first-in, first-out 
buffer)(tapped delay line)
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BLOCK DIAGRAM REPRESENTATION

𝑧−𝐿

𝑎

𝑥1(𝑛)

𝑥2(𝑛)

Multiplication in z domain



SYSTEM CONCEPTS
CHAPTER 2.2
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 Generic system

 Linearity

 Additive and homogeneity 
(scaling) properties

 𝑇 𝑎𝑥1 𝑛 + 𝑏𝑥2 𝑛 = 𝑎𝑦1 𝑛 + 𝑏𝑦2 𝑛

 Time invariance

 Shift in input causes 
corresponding shift in output

 𝑦 𝑛 − 𝑛0 = 𝑇 𝑥 𝑛 − 𝑛0

 To test, check if 𝑦1 𝑛 = 𝑦2(𝑛)

 𝑦1 𝑛 = 𝑦 𝑛 − 𝑛0

 Replace 𝑛 by 𝑛0

 𝑦2 𝑛 = 𝑇 𝑥 𝑛 − 𝑛0 = 𝑇{𝑔 𝑛 }

 Response of system to shifted input
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SYSTEMS

𝑇𝑥(𝑛) 𝑦(𝑛)



 Impulse response

 Output of LTI system 𝑦 𝑛 = ℎ 𝑛 to input 𝑥 𝑛 = 𝛿(𝑛)

Convolution

 Input-output relationship of LTI system
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LTI SYSTEMS

𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ 𝑛 − 𝑘 = ෍

𝑘=−∞

∞

ℎ 𝑘 𝑥(𝑛 − 𝑘)

𝐿𝑇𝐼𝑥 𝑛 = 𝛿(𝑛) 𝑦 𝑛 = ℎ(𝑛)



 Infinite impulse response (IIR)

 ℎ(𝑛) non-zero as 𝑛 → ∞

 Finite impulse response (FIR)

 ℎ(𝑛) defined over finite set of 𝑛

 Special case of above with 𝑎𝑘 = 0

 This system only has zeroes and 
poles at 𝑧 = 0

 Causality

 Output only depends on previous 
input

 ℎ 𝑛 = 0, 𝑛 < 0

 Stability (BIBO)

 σ ℎ 𝑛 < ∞

 Absolutely summable
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GENERAL DIFFERENCE EQUATION SYSTEMS



Very useful computational tool for studying digital 
systems

Definition

 Has associated region of convergence (ROC)

 Values of 𝑧 where summation converges

Useful summation formulas
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Z-TRANSFORM

Complex variable

𝛼 < 1



Linearity

 𝒵 𝑎𝑥1 𝑛 + 𝑏𝑥2 𝑛 = 𝑎𝑋1 𝑧 + 𝑏𝑋2(𝑧)

Time shift

 𝒵 𝑥 𝑛 − 𝑘 = 𝑧−𝑘𝑋 𝑧

Convolution

 𝑥 𝑛 = 𝑥1 𝑛 ∗ 𝑥2 𝑛 → 𝑋 𝑧 = 𝑋1 𝑧 𝑋2 𝑧

 ROC = 𝑅𝑥1 ∩ 𝑅𝑥2
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Z-TRANSFORM PROPERTIES



 Note: convolution in time is 
multiplication in Z-domain

 𝑌 𝑧 = 𝑋 𝑧 𝐻(𝑧)

 𝐻 𝑧 =
𝑌(𝑧)

𝑋(𝑧)

 General polynomial form from 
difference equation

 Take Z-transform of both sides of 
general diff eq
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TRANSFER FUNCTIONS

ℎ(𝑛)𝑥(𝑛) 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ(𝑛)



 Zeros

 Roots of the numerator 
polynomial

 Locations in z-plane that make 
output zero

 Poles

 Roots of the denominator polynomial

 Locations in z-plane that make output 
infinity (unstable)

 System is considered unstable if the ROC 
doesn’t contain the unit circle (no DTFT 
exists)

 Causal system  poles should be inside unit 
circle
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POLES AND ZEROS



 𝐻 𝑧 =
1

𝐿

1−𝑧−𝐿

1−𝑧−1

 Notice this is a polynomial in 𝑧−1

 Convert to polynomial in 𝑧 to get all 
poles and zeros

 𝐻 𝑧 =
1

𝐿

𝑧𝐿−1

𝑧𝐿−𝑧𝐿−1
=

1

𝐿

𝑧𝐿−1

𝑧𝐿−1(𝑧−1)

 Poles

 𝑧 − 1 = 0 → z = 1

 𝑧𝐿−1 = 0 → L-1 poles at 𝑧 = 0

 Zeros

 𝑧𝐿 − 1 = 0 → 𝑧𝑙 = 𝑒
𝑗

2𝜋

𝐿
𝑙

 L zeros even spaced around unit circle

 Matlab
 fvtool([1 0 0 0 0 0 0 0 -1], [1 -1]);
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EXAMPLE 2.10



 Discrete-time Fourier transform (DTFT)

 Evaluate transfer function along the unit circle 𝑧 = |𝑒𝑗𝜔|

 Frequency response is periodic in 2𝜋 interval and symmetric 

 Only 0, 𝜋 interval is required for evaluation
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FREQUENCY RESPONSE



 Poles

 𝐻 𝜔 gets larger closer to 𝜃

 Zeros

 𝐻 𝜔 gets smaller closer to 𝜃

 What does a highpass filter look 
like?

 What does a lowpass filter look 
like?
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GRAPHICAL DTFT INTERPRETATION



 Notice the DTFT is a continuous function of 𝜔

 Requires an infinite number of samples to compute (infinite sum)

 DFT is a sampled version of the DTFT

 Samples are taken at 𝑁 equally spaced frequencies along unit circle

 𝜔𝑘 =
2𝜋𝑘

𝑁
, 𝑘 = 0,1,… ,𝑁 − 1

 𝑛 – time index

 𝑘 – frequency index 
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DISCRETE FOURIER TRANSFORM



 DFT can be computed very efficiently with the fast Fourier transform 
(FFT)

 Frequency resolution of DFT

 Δ𝜔 =
2𝜋

𝑁
, Δ𝑓 =

𝑓𝑠

𝑁

 Analog frequency mapping

 𝑓𝑘 = 𝑘Δ𝑓 =
𝑘𝑓𝑠

𝑁
, 𝑘 = 0,1, … , 𝑁 − 1

 Nyquist frequency 
𝑓𝑠

2
corresponds to 𝑘 =

𝑁

2

20

DFT IMPLEMENTATION



 N = 100; A = 1; f=1000; fs = 10000;

 n=0:N-1;

 w = 2*pi*f/fs;



 x = sin(w*n);

 X = fft(x);

 K = length(X);



 h=figure;

 subplot(2,1,1)

 plot(0:K-1, 20*log10(abs(X)), 'linewidth', 2);

 xlabel('freq index [k]'); ylabel('magnitude [dB]');

 subplot(2,1,2)

 %convert index to freq

 f = (0:K-1) * fs/N;

 plot(f, 20*log10(abs(X)), 'linewidth', 2);

 xlabel('freq [Hz]'); ylabel('magnitude [dB]');
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EXAMPLE 2.16



 ind = -K/2:K/2-1;

 Xs = fftshift(X)

 h=figure;

 subplot(2,1,1)

 plot(ind, 20*log10(abs(Xs)), 'linewidth', 2);

 xlabel('freq index [k]');

 ylabel('magnitude [dB]');

 subplot(2,1,2)

 %convert index to freq

 f = ind * fs/N;

 plot(f, 20*log10(abs(Xs)), 'linewidth', 2);

 xlabel('freq [Hz]');

 ylabel('magnitude [dB]');


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EXAMPLE 2.16 – SHIFTED FREQUENCIES



INTRO TO RANDOM VARIABLES
CHAPTER 2.3
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 Function that maps from a 
sample space to a real value

 𝑥: 𝑆 → ℝ

 𝑥 – random variable (does not have a 
value)

 𝑆 – sample space

 Cumulative distribution 
function (CDF)

 𝐹 𝑋 = 𝑃(𝑥 ≤ 𝑋)

 E.g. probability {𝑥 ≤ 𝑋}

 Probability density function 
(PDF)

 𝑓 𝑋 =
𝑑𝐹 𝑋

𝑑𝑋

 ∞−׬
∞
𝑓 𝑋 𝑑𝑋 = 1

 𝑃 𝑋1 < 𝑥 ≤ 𝑋2 = 𝐹 𝑋2 − 𝐹 𝑋1

𝑃 𝑋1 < 𝑥 ≤ 𝑋2 = න

𝑋1

𝑋2

𝑓 𝑋 𝑑𝑋

 Probability mass function (PMF)

 For discrete 𝑥, takes values 𝑋𝑖 , 𝑖 =
1, 2, 3, …

 𝑝𝑖 = 𝑃 𝑥 = 𝑋𝑖
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RANDOM VARIABLES



 Variable takes on value in a 
range with equal probability

 𝑓 𝑋 = ቐ
1

𝑋2−𝑋1
𝑋1 ≤ 𝑥 ≤ 𝑋2

0 𝑒𝑙𝑠𝑒

 Be sure you can calculate mean 
and variance

 Be aware that the book is a little 
sloppy in notation

 RV 𝑥 vs 𝑋
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UNIFORM RANDOM VARIABLE



 Expected value (mean)

 𝑚𝑥 = 𝐸 𝑥 expectation operator

 𝑚𝑥 = ∞−׬
∞
𝑋𝑓 𝑋 𝑑𝑋 continuous

 𝑚𝑥 = σ𝑖 𝑋𝑖𝑝𝑖 discrete

 Can be can computed with mean.m
and var.m

 Read help for info on finite sample 
versions

 Variance (spread around mean)

 𝜎𝑥
2 = 𝐸 𝑥 −𝑚𝑥

2 = 𝐸 𝑥2 −𝑚𝑥
2

 Continuous 

 𝜎𝑥
2 = ∞−׬

∞
𝑋 −𝑚𝑥

2𝑓 𝑋 𝑑𝑋

 Discrete

 𝜎𝑥
2 = σ𝑖 𝑝𝑖 𝑋𝑖 −𝑚𝑥

2

 For 𝑚𝑥 = 0,

 𝜎𝑥
2 = 𝐸 𝑥2 = 𝑃𝑥

 Second moment, power
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STATISTICS OF RANDOM VARIABLES



FIXED-POINT REPRESENTATION AND 
QUANTIZATION EFFECTS
CHAPTER 2.4
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 Fractional numbers are represented in 2’s complement with 𝐵 =
𝑀 + 1 bits

 𝑥 = 𝑏0. 𝑏1𝑏2…𝑏𝑀−1𝑏𝑀

 𝑏0 = ቊ
0 𝑥 ≥ 0 positive
1 𝑥 < 0 negative

 Value= −𝑏0 + σ𝑚=1
𝑀 𝑏𝑚2

−𝑚

 −1 ≤ 𝑥 ≤ (1 − 2−𝑀)

 Unbalanced range with more negative than positive numbers
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FIXED-POINT NUMERICAL EFFECTS

sign bit binary point msb lsb



 𝑥 = 𝑏0𝑏1𝑏2…𝑏𝑛. 𝑏1𝑏2…𝑏𝑀

 Q format

 Qn.m = Q#integer.#fraction

 Larger n increases dynamic range 
but at cost of reduced precision 
(smallest fractional resolution)

 𝑏0 is not counted as part of 
integer just as a sign-bit

 Example 2.25

 𝑥 = 0100 1000 0001 1000𝑏

= 0𝑥4818

 Q0.15

 𝑥 = 2−1 + 2−4 + 2−11 + 2−12 = 0.56323

 Q2.13

 𝑥 = 21 + 2−2 + 2−9 + 2−10 = 2.25293

 Q5.10

 𝑥 = 24 + 21 + 2−6 + 2−7 = 18.02344
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GENERAL FRACTIONAL FORMAT Qn.m

integer fractional

sign bit binary point



FINITE WORD LENGTH EFFECTS

1. Quantization errors

 Signal quantization

 Coefficient quantization

2. Arithmetic errors

 Roundoff (truncation)

 Overflow
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 ADC conversion of sampled signals to fixed levels 

 Using Q15 and 𝐵 bits

 Dynamic range −1 ≤ 𝑥 < 1

 Quantization step

 Δ =
2

2𝐵
= 2−𝐵+1 = 2−𝑀

 Quantization error

 𝑒 𝑛 = 𝑥 𝑛 − 𝑥𝐵 𝑛

 𝑥𝐵 𝑛 = 𝑄 𝑥 𝑛

 𝑒 𝑛 ≤
Δ

2
= 2−𝐵 (rounding)

 Error dependent on word length 𝐵

 More bits for better resolution, less error (noise)

 Signal to quantization noise (SQNR)

 𝑆𝑄𝑁𝑅 =
𝜎𝑥
2

𝜎𝑒
2 = 3.22𝐵𝜎𝑥

2

 𝑆𝑄𝑁𝑅 = 4.77 + 6.02𝐵 + 10 log10 𝜎𝑥
2 𝑑𝐵
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SIGNAL QUANTIZATION



COEFFICIENT QUANTIZATION

Same error issues as for signals

Results in movement of the locations of poles/zeros

 Changes system function polynomials

 Can lead to instability if poles go outside the unit circle

 Generally, more a problem with IIR filters

Can limit coefficient quantization effects by using 
lower-order filters

 Use of cascade and parallel filter structures
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ROUNDOFF NOISE

A product must be represented in 𝐵 bits by 
rounding (truncation)

 𝑦 𝑛 = 𝛼𝑥 𝑛

Error model

 𝑦 𝑛 = 𝑄 𝛼𝑥 𝑛 = 𝛼𝑥 𝑛 + 𝑒 𝑛

 𝑒(𝑛) is uniformly distributed zero mean noise (rounding)
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2𝐵 bits 𝐵 bits 𝐵 bits



OVERFLOW AND SOLUTIONS
CHAPTER 2.5
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 𝑦 𝑛 = 𝑥1 𝑛 + 𝑥2(𝑛)

 −1 ≤ 𝑥𝑖 𝑛 < 1

 −1 ≤ 𝑦 𝑛 < 1

 Overflow occurs when the sum cannot fit in 
the word container

 Signals need to be scaled to prevent overflow

 Notice: this reduces the SQNR

 𝑆𝑄𝑁𝑅 = 10 log10(
𝛽2𝜎𝑥

2

𝜎𝑒
2 )

 𝑆𝑄𝑁𝑅 = 4.77 + 6.02𝐵 + 10 log10 𝜎𝑥
2 +

20 log10 𝛽 𝑑𝐵
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OVERFLOW

Negative since 𝛽 < 1


