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OUTLINE



 Classical vision
 Hand-crafted features and 

algorithm based on expert 
knowledge

 Classical machine learning
 Hand-crafted features (pre-

processing) but ML for 
classification

 Deep learning
 Both features and classification 

are learned

 End-to-end training (from pixels 
to output)
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EVOLUTION OF COMPUTER VISION
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DEEP CNN DOMINANCE IN CV

Zou et al., “Object Detection in 20 Years: A survey, 2019Li, Johnson, and Yeung, 2019



 Modern CV is inspired by human 
vision (sensory modules)

 Hubel and Wiesel showed that 
neurons in the visual cortex had a 
small local receptive field
 Only reacted to stimuli in a limited 

region of visual field (blue dashed circles)

 Lower-level neurons with simple 
pattern response (e.g. lines of 
specific orientation)

 Higher-level neurons with larger 
receptive field and combination of 
lower-level patterns

 Neurons at higher-levels only connected to 
few at lower-level 
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ARCHITECTURE OF THE VISUAL CORTEX



 Stacked neuron architecture enables detection of complex 
patterns in any area of the visual field  convolutional 
neural networks (CNNs)

 Led to LeNet-5 architecture by Yann LeCunn for 
handwritten number recognition (MNIST)
 Fully connected layers and sigmoid activations

 Convolutional layers and pooling layers

 Why not fully connected layers for images?
 Even small images have large number of pixels resulting in huge 

networks

 CNNs solve this with partial connected layers and weight sharing
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CONVOLUTIONAL NEURAL NETWORK



 Neurons in the first layer are 
not connected to every single 
pixel in input image
 Connected to receptive field

 Stacked receptive field approach

 Hierarchical structure
 First layer – small low-level 

features

 Higher-levels – assemble lower-
level features into higher-level 
features

 Structure is common in real-world 
images
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CONVOLUTIONAL LAYERS



 Note: the actual operation 
performed is cross-correlation 
(no-flipping)

 Neuron (row, column) 𝑖, 𝑗 is 
connected to neurons in previous 
layer within receptive field
 Row 𝑖, 𝑖 + 𝑓ℎ − 1

 𝑓ℎ - height of receptive field

 Column 𝑗, 𝑗 + 𝑓𝑤 − 1
 𝑓𝑤 - width of receptive field

 Note: this is a causal filter though 
shown as symmetric

 Zero padding used to keep 
output/input layers of same size
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CONVOLUTIONAL LAYER CONNECTIONS



 Stride can be used to connect a 
large input layer to smaller 
output layer

 Change the spacing the of the 
receptive field

 Dramatically reduce model 
computational complexity 
(squared)

 Height and width stride can be 
different
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CONVOLUTIONAL LAYERS STRIDE



 Filters = convolutional kernels

 Size of the kernel is the receptive 
field for the neuron

 Feature map – output of the 
“convolution” operation

 Highlights areas in an image that 
activate the filter most

 For CNNs, the filters are not 
defined manually!

 Learn most useful filters for a task

 Higher layers will learn to combine 
into more complex patterns
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FILTERS
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VISUALIZING WEIGHTS AND FEATURES

See Szeliski 2e, Ch 5.4.5



 Each convolution layer has 
multiple filters
 Stacked 3D output (1 feature map 

for each filter)

 Each neuron in a feature map 
shares the same parameters 
(weights and bias)

 Neurons in different feature maps 
use different parameters

 Neuron’s receptive field applies to 
all feature maps of previous layer

 Note input images often have 
multiple sublayers (channels)
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STACKING MULTIPLE FEATURE MAPS I



 Output of a neuron in a 
convolutional layer

 𝑧𝑖,𝑗,𝑘 - output of neuron in row 𝑖, 
column, 𝑗, in feature map 𝑘 of the 
convolutional layer 𝑙

 𝑏𝑘 - bias term for feature map 𝑘 (in 
layer 𝑙)
 Tweaks overall brightness of feature map 

𝑘

13

STACKING MULTIPLE FEATURE MAPS II

 𝑠ℎ, 𝑠𝑤 - vertical and horizontal 
strides

 𝑓ℎ, 𝑓𝑤 - height and width of receptive 
field (kernel)

 𝑓𝑛′ - number of feature maps in 
previous (lower layer)

 𝑥𝑖′,𝑗′,𝑘′ - output of neuron located in 
layer 𝑙 − 1, row 𝑖′, column 𝑗′, feature 
map 𝑘

 𝑤𝑢,𝑣,𝑘′,𝑘 - connection weight between 
any neuron in feature map 𝑘 of the 
layer 𝑙 and its input located at row 
𝑢, column 𝑣 (relative to the 
neuron’s receptive field), and feature 
map 𝑘′



 Though much smaller the fully connected networks, CNNs 
still use significant amount of RAM

 During training, the reverse pass of backpropagation 
requires all the intermediate values computed during the 
forward pass
 Need to have enough for all layers in the network
 Forward pass can release memory after each layer is computed 

(only two consecutive layers required)

 Out-of-memory error
 Reduce mini-batch size, increase stride, remove layers, change 

precision (16-bit vs 32-bit floats or use int), or distribute the CNN 
across devices

14

MEMORY REQUIREMENTS



 Subsample input in order to 
reduce computational load, 
memory usage, and number of 
parameters (reduce risk of 
overfitting)

 Aggregate over the receptive field 
 Aggregate functions such as max 

(most popular) or mean
 Max tends to work better by 

preserving only the strongest feature 
 cleaner signal, more invariance, 
less compute

 Stride gives downsampling
 Pooling kernel size can be even
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POOLING LAYERS

Max pooling layers (2x2 kernel, stride=2, no padding)



 Introduces some level of invariance 
to small translations
 Small image shifts result in same 

response

 Additionally small invariance to rotation 
and scale with max pool

 Max pool every few CNN layers for 
invariance at larger scale
 Useful when task should be invariant 

(e.g. image classification)

 Drawbacks
 Destructive – 2x2, stride 2 drops 75% of 

input values

 Invariance not always desirable (e.g. 
semantic segmentation should have 
equivariance)
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POOLING LAYERS INVARIANCE



 Typical CNN architecture
 Stack a few convolutional layers 

(each followed by ReLU layer for 
non-linearity)

 Pooling layer

 Repeat Conv + ReLU + Pool

 Top layers are regular 
feedforward neural network which 
is usually fully connected layers 
(+ReLUs)

 Final layer outputs the prediction 
(e.g. softmax for class 
probabilities)

 Input kernel can be larger since generally 
only 3 sublayers (RGB channels)

 Conv layers use stacked small 3x3 kernels 
since it is more computationally efficient 
and perform better than larger

 Number of filters increases at higher layers
 Few low-level patterns, but more ways to 

combine

 Double #filters after pooling (stride 2)

 Flatten conv output before fully connected 
dense layer
 Add dropout to avoid overfitting
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CNN ARCHITECTURES



 Variants of basic CNN 
architecture have been 
developed

 Benchmark with ImageNet 
Challenge
 Large scale with 1M images and 

1000 classes

 Much more complicated than any 
benchmark at the time (~2010)

 Dramatic drop in top-five error 
from 26% to 2.3% in 6 years
 Bigger is better
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ILSVRC IMAGENET CHALLENGE



 Network of Yann LeCun (1998) 
[NYU] designed for handwritten 
digit recognition (MNIST)

 Images normalized at input

 No padding  smaller size each 
layer

 Average pool has learnable 
coefficient and bias term

 Limited C3-S2 map connections

 Output square Euclidean distance

 Similar cross-entropy
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LENET-5

http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html


 2013 ImageNet winner
 17% top-5 error rate (26% for 2nd place)

 Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton [U Toronto]

 Similar to LeNet-5 but larger and 
deeper

 First to stack convolutional layers 
directly on top of one another (no 
pooling in between)

 To reduce overfitting
 50% dropout of layers F9 and F10

 Data augmentation

 Local response normalization used to 
inhibit neighboring feature maps
 Encourage different feature maps to 

specialize, push neighbors apart, and 
improve generalization
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ALEXNET

ZF Net is an AlexNet variant with tweaked hyperparameters



 Popular technique from Hinton 2012 
and Srivastava et al. 2014
 1-2% accuracy boost (even SOTA)

 At each training step, a neuron has a 
probability of being ignored (dropped 
out)
 Neuron can be active during next training step

 Dropout rate generally between 10-50%
 20-30% for recurrent neural networks

 40-50% for CNNs

 Forces networks to diversify
 Neurons cannot co-adapt with neighbors

 Cannot rely only an a few input neurons

 Less sensitive to slights changes in input

 ~Average of many networks
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DROPOUT



 Artificially increase training 
dataset size by generating 
realistic variants of training 
instances
 Ideally, shouldn’t be able to 

distinguish real from augmented 
example

 Reduces overfitting 
(regularization technique)

 Common augmentations
 Small shifts, rotation, resize (scaling)
 Horizontal flip – orientation 

invariance
 Vary contrast – lighting condition 

invariance
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DATA AUGMENTATION



 2014 ILSVRC Winner
 <7% top-5 error rate

 Christian Szegedy et al. [Google]

 Current versions Inception-v3 and Inception-v4 
(GoogLeNet + ResNet)

 Much deeper architecture than previous 
CNN (large stack)
 Much fewer parameters (6M vs. 60M AlexNet)

 Inception layers for parameter efficiency

 Use of 1x1 convolutions as a bottleneck 
layers

 Local response normalization to learn a 
wide variety of features

 Classification task with multiple (max) pool 
to reduce size (avg. final 7x7 map)
 No need for multiple fully connected (FC) layers 

to save parameters
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GOOGLENET (INCEPTION)



 Parallel convolutions
 3x3+1(S) = 3x3 kernel, stride 1, “same” padding

 All use ReLU activation

 2nd convolution layer
 Different kernel size for patterns at different 

scale

 Stacked conv for more complex patterns than 
single linear convolution

 Depth concat
 All layers have the same outputs size

 Stack 2nd layer outputs depthwise

 1x1 bottleneck layers
 Fewer output than input dimension

 Fewer parameters, faster training, improved 
generalization 

 Not spatial but depth patterns
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INCEPTION MODULE



 2014 ILSVRC runner-up

 Simonyan and Zisserman [Oxford]

 Classical architecture

 Stacked 2-3 conv + pool layers

 Variants of 16 or 19 conv layers

 3 FC classification layers

 Used many 3x3 filters
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VGGNET



 2015 ILSVRC winner
 <3.6% top-5 error rate

 Kaiming He et. Al [Microsoft]

 Deeper with fewer parameters
 152 layer winner

 Variants of 34, 50, and 101 layers

 Skip (shortcut) connections
 Signal passed into up one layer and a further 

layers ahead

 Build network on residual units (RUs)

 Batch normalization (pg 338)
 Better gradient conditioning (vanishing 

gradient)

 Standardize inputs then rescales and offsets 

 Acts as a regularizer (e.g. no need for dropout)
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RESNET



 Signal feeding layer is also 
added to the output of a layer 
higher in the stack

 Instead of modeling function 
ℎ(𝑥), it models 𝑓 𝑥 = ℎ 𝑥 −
𝑥

 Faster weight update (0 
initialization)

 Regular networks output 0

 Skip connection copies input 
(identity function)
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RESIDUAL LEARNING I



 Skip connection bypass layer 
blocking
 Input signal can propagate to 

higher levels

 Can train layers even if lower 
layers have not started learning 
yet

 Feature map size and depth 
change
 Skip connection prevents direct 

addition after resize

 1x1 convolution, stride 2, and 
output matched kernel size
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RESIDUAL LEARNING II



 GoogLeNet variant
 Combines GoogLeNet + ResNet

 Inception modules replaced with 
depthwise separable convolution 
layer

 Chollet 2016 (Keras author)

 Separable convolution layer
 Separate spatial and depth 

 1 spatial filter per input channel

 Use on layers with many feature 
channels (not on input/early layers)

 Fewer parameters, less memory, 
fewer computations, and generally 
perform better
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XCEPTION



 2018 ILSVRC winner
 Squeeze-and-Excitation Network

 2.25% top-5 error rate

 Built on Inception (SE-Inception) and 
ResNets (SE-ResNet)

 SE block
 Global average pool: mean of each 

feature map

 “Squeeze” (bottleneck)
 Dramatically reduce number of maps for low 

dimensional embedding of feature 
distribution

 Force SE block to learn general 
representations of feature combinations

 Output: recalibration vector (boost 
normally co-occurring features)
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SENET



 Analyze output of attached 
unit to learn features that are 
usually most active together 
(depth search)

 Recognizes features that 
respond together (mouth, nose, 
eyes) and boosts features that 
are missing/low response (e.g. 
eyes)

 Recalibration steps solves 
ambiguity when feature is 
confused with something else 
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SE BLOCK



 Don’t implement models from 
scratch by hand, use existing 
implementations

 Known as backbone network

 Models pretrained on ImageNet

 Good general features

 Models expect specific size and 
pre-processing (e.g. normalization)

 Only requires a few lines of 
code

 Transfer learning

 Utilize strong backbone and 
adjust last layers for a specific 
task

 Useful when not working with 
ImageNet classes (all the time) 
and with limited training data

 Initialize network with 
ImageNet weights and only 
train higher layers (e.g. 
classification or minimal conv)
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PRETRAINED MODELS AND TRANSFER LEARNING



Recognition/Classification

Object Detection

Semantic Segmentation
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REMINDER: RECOGNITION TASKS



 Classification – identify the image 
class

 Localization – provide a bounding 
box for the image class
 Expressed as a regression task [x, y, 

w, h]
 Assumption of a single object per 

image
 Much of the work is in labeling the 

data with bounding boxes
 Many tools exist (e.g. VGG Image 

Annotator, LabelImg, OpenLabeler, 
ImgLab, LabelBox, Suervisely)

 Evaluated with intersection over 
union (IoU) the overlap
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CLASSIFICATION AND LOCALIZATION



 Task of classifying and 
localizing multiple objects in 
an image

 Early attempts used a sliding 
window
 Run classification CNN over each 

window in the image

 Need search at scale (multiple 
passes)

 Get multiple responses to same 
object  NMS
 Objectness score to remove responses

 Merge responses with high IoU
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OBJECT DETECTION



 Introduced by Long CVPR 
2015 for semantic segmentation

 Replace dense classification 
with convolutional layers
 Same number of operations but 

with different output tensor shape

 Allows processing input of any 
size (unlike dense layer with fixed 
input size)

 For larger image, equivalent to 
sliding CNN across image in 
blocks
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FULLY CONVOLUTIONAL NETWORKS



 Fast(er) R-CNN
 Apply FCN approach with region proposals 
 Fast R-CNN uses Selective Search
 Faster R-CNN uses a small region proposal network to predict bounding boxes

 YOLO (you only look once) – major shift in approach with a single CNN 
pass
 Divide image into cells and predict 5 bounding boxes per cell
 Predicts bbox offset rather than absolute location (smaller range)
 Use of anchor boxes (bounding box priors) as prototypical object dimensions

 Trained with images of different scale  detect different scale

 SSD (single shot detector) 
 Better accuracy than YOLO
 Use of MultiBox with decreasing convolutional layers for detection scales
 More bounding box predictions than YOLO
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OBJECT DETECTION ARCHITECTURES



 Each pixel is classified according to 
the class of the object it belongs
 Different objects of same class are not 

distinguished (panoptic segmentation)

 Traditional CNNs lose spatial 
resolution due to layer stride
 Need to “upsample” coarse feature map

 Use transposed convolutional layer

 Add skip connections for better 
resolution

 Instance segmentation – each object 
is distinguished from each other
 Mask R-CNN, Kaiming He 2017 as 

extension of Faster R-CNN to produce 
pixel mask for each bounding box
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SEMANTIC SEGMENTATION



OBJECT DETECTION
OBJECT DETECTION WITH DEEP LEARNING: A REVIEW
ZHAO, ZHENG, XU, AND WU, T-NNLS 2019
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 Fundamental computer vision 
problem

 Categorize not just the whole image 
but delineate (with bounding boxes) 
where various objects are located 
(object localization)
 Localization is viewed as a bounding box 

regression task

 Provides a semantic understanding 
of images (video)

 Related tasks: image classification, 
human behavior analysis, face 
recognition, autonomous driving
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OBJECT DETECTION OVERVIEW
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DEEP CNN DOMINANCE IN DETECTION

Zou et al., “Object Detection in 20 Years: A survey, 2019



 Deep learning dominance:

 Large scale annotated training 
datasets

 Fast development of high 
performance parallel computing 
(GPUs)

 Advances in network structures

 Initialization: pre-training

 Overfitting: Dropout and data 
augmentation

 Efficiency: batch normalization

 Architectures: AlexNet, Inception, 
ResNet

 CNN advantages:

 Hierarchical feature 
representation 

 Deeper architecture for increased 
expressive capability

 Can jointly optimize several 
related tasks (multi-task learning)

 Classical CV can be recast as 
high-D data transform problems

42

DEEP LEARNING AND CNNS



Locate and classify all objects (of interest) in an 
image

 Label each object with a rectangular bounding box

 Have a measure of confidence in detection

Two major approaches:

 Two-stage: i) generate region proposals and ii) classify 
each proposal into different object categories

 One-stage: detection as a regression or classification to 
get both categories and locations directly at once
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GENERIC OBJECT DETECTION
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OBJECT DETECTION MILESTONES

Zou et al., “Object Detection in 20 Years: A survey, 2019



Viola Jones cascade detector

 Viola and Jones, 1999

Histogram of Oriented Gradients (HOG) detector

 Dalal and Triggs, 2005

Deformable Part-based Model (DPM)

 Felzenszwalb, 2008 
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TRADITIONAL DETECTOR REVIEW



 Real-time face detection with sliding window for position 
and scale

 Integral image: speeded up Haar-like feature 
computation (speeded up filtering)

 Feature selection: Adaboost to automatically select a 
small but useful set of features (application driven 
filters)

 Detection cascades: multi-stage detector to avoid heavy 
computation on background windows but on faces
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VIOLA JONES



 Designed for pedestrian detection

 Improvement over SIFT and shape contexts
 Balances feature invariance (translation, scale, illumination) 

and nonlinearity (different object categories)

 Descriptor computed on dense grid of uniformly spaced 
cells 

 Used overlapping local contrast normalization over 
blocks

 Resizes input image while keeping detection window 
fixed for scale 
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HOG



 Extension of HOG and was winner of VOC 07-09
 Divide and conquer detection – object built from smaller 

parts to detect (bike has wheels, body, etc.)
 Use of a star-model for connections – a root filter and part-

filters
 Important contributions:
 Extended with mixture models for more real-world variation 

(e.g. bike from front or side) 
 Hard negative mining – create negative examples on the 

margin
 Bounding box regression
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DPM



 Region proposal based frameworks
 “Coarse-to-fine” process somehow similar to human brain –

scan full scene and then focus on region of interest

 Approaches
 Overfeat – sliding window 

 Region CNN (R-CNN)

 Spatial Pyramid Pooling Networks (SPPNet)

 Fast R-CNN

 Faster R-CNN

 Feature pyramid network (FPN)
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TWO-STAGE DETECTOR MILESTONES



 Use selective search (Uijlings
2011) to generate a small set of 
potential object regions

 Bottom-up grouping and saliency 
for proposals of various size

 Rescale proposals to fixed size 
and evaluate ImageNet 
pretrained CNN for feature 
extraction

 Multi-class linear SVM for 
classification
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R-CNN (GIRSHICK 2013)

 Advantages: significant 
performance boost on VOC07

 Shortcomings: Redundant 
feature computations on 
overlapping regions make this 
slow 



 Spatial pyramid pooling (SPP) 
layer enables a CNN to 
generate a fixed-length 
representation regardless of 
image size/ROI without 
rescaling

 Feature maps computed once 
for entire image and fixed-
length representation can be 
made of arbitrary region

 Use conv5 layer for SPP layer

 Advantage: 20x faster than R-
CNN without accuracy loss

 Shortcomings: Training is still 
multi-stage and only FC layers 
are trained
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SPPNET (HE 2014)



 Simultaneously train detector and 
bounding box regressor

 No need for linear SVM layers

 Like SPPNet, image is only 
processed with convolutions once

 RoI pooling layer to generate fixed-
length feature vector

 FC layers branch to outputs:

 Softmax class probabilities 

 Refined bounding box positions

 Optimized jointly with multitask 
loss (classification + localization)

 Advantages: Increased VOC 
mAP from by 11.5% from R-
CNN

 Shortcomings: speed still 
limited by region proposals

52

FAST R-CNN (GIRSHICK 2015)



 Generate object proposals with a 
CNN model
 First end-to-end and near real-time 

deep learning detector

 Introduced region proposal 
network (RPN)
 Nearly cost-free region proposals as 

opposed to selective search
 Produces object boundaries and 

scores for all positions simultaneously
 Sliding window across conv layer

 Use of reference boxes (anchors) 
that match popular object 
dimensions
 Later regressed for final bbox

 Advantages: trained end-to-end (all 
layers) and high 5 fps on GPU with 
SOTA VOC results

 Shortcomings: long training time, 
poor performance on extreme 
scales/shapes, object regions rather 
than instances
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FASTER R-CNN (REN 2015)



 Handle wide scale variation 
through use of image pyramid
 Deeper CNN layers useful for 

category recognition but poor for 
localization

 Top-down architecture with 
lateral connections to share high 
level features with higher 
resolution of lower layers
 Avoid expensive explicit image 

pyramid computation

 General approach for efficient 
multi-scale representation
 Extensively used in semantic 

segmentation
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FPN (LIN 2017)



End-to-end regression/classification methods

 Single step to produce detections

Approaches

 MultiBox

 AttentionNet

 Grid-based object detector (G-CNN)

 You Only Look Once (YOLO)

 Single Shot Multi-box Detector (SSD)
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ONE-STAGE DETECTOR MILESTONES



 First one-stage detector
 Extremely fast by abandoning 

proposal detection + verification 
approach

 Divides an image into regions 
and predicts bounding boxes 
and probabilities for all regions 
simultaneously
 Each grid region predicts objects 

centered within that grid cell

 𝐵 bounding boxes are predicted 
with associated confidence score

 Advantages:
 Extremely fast (45-155 fps VOC)

 Shortcomings:
 Poorer localization than two-stage 

detectors

 Difficulty with small scale objects
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YOLO (REDMOND 2015)



 Customized CNN architecture 
from scratch
 Inception-like modules

 Divide image into 𝑆 × 𝑆 grid

 Each grid cell predicts an 
object centered with the cell
 Local search with relative 

coordinates (scale for image size)

 𝐵 bounding boxes predicted for 
each cell with confidence

 Conditional class probabilities 
predicted for each of the 𝐶

 Training loss
 Bounding box localization

 Box center relative to grid

 Normalized height/width relative to 
image size

 Confidence score 

 Classification error

 Only when object is in cell

 Upgrades (v2, v3, etc.)
 Batch normalization

 Anchor boxes

 Dimension cluster 

 Multi-scale training
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YOLO II



 Multi-reference and multi-
resolution detection technique
 Detects at different scales at 

different layers of network
 Better handles small objects

 Inspired by anchors of MultiBox, 
RPN, and multi-scale 
representation 

 Add feature layers at the end of 
standard backbone (VGG16)
 Predict offsets to default bounding 

boxes of different scales and aspect 
ratios and confidences

 Final detection after NMS on multi-
scale refined boxes

 Advantages:
 Fast (59 fps) while more accurate 

than YOLO

 Shortcomings:
 Still issues with small objects 

(better backbone e.g. ResNet101)
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SSD (LIU 2015)



 MultiBox (Szegedy 2014)
 Inception-like structure to reduce 

dimensionality but not spatial resolution 
(height x width)

 Confidence loss to measure objectiveness 
of bounding box (categorical cross-entry)

 Location loss to measure how far a 
predicted bounding box (L2 but SSD 
uses smooth L1)

 Used anchors to get good prediction 
starting point for regression
 11 priors/feature map = 1420 

anchors/image for images at multiple 
scales and sizes

 SSD extended idea to each cell in feature 
map to avoid explicit anchor pre-train 
(6/cell)

 Hard negative mining - 3:1 ratio 
of neg:pos train examples
 Need to keep low IoU predictions

 Data augmentation – random 
flipping and patches of original 
image at different IoU ratios

 Non-maximum suppression 
(NMS) – discard low confidence 
and IoU

 80% of time is spent on base 
VGG16
 Can improve speed/performance 

with better backbone
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SSD II



 Multi-task learning – learn better representation from 
multiple correlated tasks
 Train conv layers for e.g. region proposal, classification, and 

segmentation
 Multi-scale representation – combine activations from 

multiple layers with skip-layer connections
 Provide semantic information of different spatial resolutions

 Contextual modeling – exploit features from surround
 Provide features from different support regions/resolutions 

which help with occlusion and local similarities (e.g. tennis 
ball versus lemon when a racket is nearby)
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TECHNIQUES FOR BASE IMPROVEMENT



For more complete overview, see recent surveys

Object Detection with Deep Learning: A Review

Object Detection in 20 Years: A Survey
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IMAGE SEGMENTATION 
EVOLUTION OF IMAGE SEGMENTATION USING DEEP CONVOLUTIONAL NEURAL 
NETWORKS: A SURVEY, SULTANA, SUFIAN, AND DUTTA, KBS 2020
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 Segmentation – CV task of segregating 
an image into multiple regions 
according to different properties of 
pixels (e.g. color, intensity, texture)
 Typically a low-level task that relies on 

spatial information (neighborhood)

 Semantic segmentation – associate a 
class label for every pixel in an image

 Instance segmentation – mask 
(segment) each instance of an object in 
an image independently

 Panoptic segmentation – combination 
of semantic segmentation and instance 
segmentation
 Label both class and separate instances 

(detection)

63

SEGMENTATION TASKS



 Pixel level class labels

 Have relied heavily on CNNs 
since 2012

 Popular approaches:

 Fully convolutional network

 Dilated/atrous convolution

 Top-down/bottom-up approach

 Global context

 Receptive field enlargement and 
multi-scale context
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SEMANTIC SEGMENTATION



 Fully convolutional network 
(FCN) was proposed for semantic 
segmentation

 Use standard CNN backbone but 
remove dense FC layers
 Use of 1x1 convolution instead
 Produces a class presence heatmap in 

low-resolution

 Bilinear interpolation used to 
upsample coarse output to pixel 
resolution

 Skip connections (deep jet) to 
combine final prediction layer 
with higher res/feature-rich lower 
layers
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FCN [LONG 2017]



 Context is important for 
segmentation but Traditional 
convolution is expensive for larger 
field-of-view (kernel size)

 Atrous convolution introduces a 
dilation rate 
 Trade-off context vs localization

 Traditional CNN loses resolution 
while atrous can keep it
 Larger feature map is better for 

segmentation (less interpolation)

 However, isolates pixel from context

 Key architectures: DilatedNet and 
DeepLab (CRF for fine details)
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DILATED/ATROUS CONVOLUTION

source

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d


 Encoder-decoder architecture
 Convolution encodes image features

 Deconvolutional network to decode 
features into pixels/labels

 Deconvolution (transposed convolution) 
reconstructs spatial resolution
 Upscaling convolution operation

 Both encoder and decoder extract 
features

 Generally lose fine-grained information 
in encoding process
 Skip connections utilized to pass higher-

resolution features

 Key architectures: Deconvnet, U-Net, 
SegNet, FC-DenseNet, HRNet

 conv de-conv
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TOP-DOWN/BOTTOM-UP APPROACH

source

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d


 Most segmentation relies on just 
local information but global context 
is important
 Add global features or global context 

information

 Global features
 Global average pool (final layers)

 Large convolution kernels

 Context 
 Use of class mapping

 Helps resolve inaccuracies but lacks 
scaling information of multiscale 
objects

 Key architectures: ParseNet, GCN, 
EncNet
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GLOBAL CONTEXT



 Use of feature pyramid 
techniques for multi-resolution 
representation
 Atrous Special Pooling Pyramid 

(ASPP)

 Pyramid pooling module

 Provides better localization

 Helps incorporate scale 
information of objects for fine-
grained segmentation

 Key architectures: DeepLabv2, 
DeepLabv3, PSPNet, Gated-
SCNN
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RECEPTIVE FIELD ENLARGEMENT AND 
MULTI-SCALE CONTEXT



 Each instance of a particular object 
is masked independently

 Task is intertwined with object 
detection
 Detection gives bounding box while 

instance segmentation further refines 
with mask

 General approach is to give 
proposals of objects/masks and 
refine

 Mask R-CNN as example
 Faster R-CNN extension

 RPN for object proposals – classification 
and bounding box regression

 Separate segmentation network for each 
ROI
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INSTANCE SEGMENTATION



 Combination of instance 
segmentation and semantic 
segmentation

 Newer segmentation task

 General approach: 

 Heads for semantic segmentation

 Head for instance segmentation 

 Panoptic head to combine

 Key architectures: OANet, 
UPSNet, Multitask Network
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PANOPTIC SEGMENTATION



For more complete overview, see recent surveys

Evolution of Image Segmentation using Deep 
Convolutional Neural Network: A Survey

 Image Segmentation Using Deep Learning: A 
Survey
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