Online and Offline List Batching

Wolfgang Bein

Center for the Advanced Study of Algorithms
School of Computer Science
University of Nevada, Las Vegas

2007

supported by NSF grant CCR-0312093
Offline List Batching
Online List Batching

Osaka Kinko’s

Wolfgang Bein
Online and Offline List Batching
List Batching

n jobs are given to be processed in batches

```
    Job 1  Job 2  Job 3  Job 4  Job 5
```

all jobs in a batch finish at the same time

there is a setup time to get a batch started

```
    5   5
    5   13  13
```

the object is to minimize the average completion time
List Batching, continued...

Jobs with processing requirements $p_1, p_2, \ldots p_n$ are given and have to processed in that order.
Jobs with processing requirements p_1, p_2, \ldots, p_n are given and have to processed in that order. There is one machine.
Jobs with processing requirements \(p_1, p_2, \ldots, p_n \) are given and have to processed in that order. There is one machine. Jobs are given to the machine in batches. Every batch has a setup time of 1.
Jobs with processing requirements $p_1, p_2, \ldots p_n$ are given and have to be processed in that order. There is one machine. Jobs are given to the machine in batches. Every batch has a setup time of 1.

- The completion time C_i of job i is the completion time of its batch.
Jobs with processing requirements \(p_1, p_2, \ldots, p_n \) are given and have to be processed in that order.

There is one machine.

Jobs are given to the machine in batches. Every batch has a setup time of 1.

- The completion time \(C_i \) of job \(i \) is the completion time of its batch.
- The object is to batch the jobs in such a way that \(\sum C_i \) is minimized.
Our Example

Job 1 Job 2 Job 3 Job 4 Job 5

4 146 14

52

Job 1 Job 2 Job 3 Job 4 Job 5

4 6 14 145

5

Job 1 Job 2 Job 3 Job 4 Job 5

5 13 135 13

Job 2 Job 5 Job 3 Job 1 Job 4

4 6 11 14 16

51

Job 1 Job 2 Job 3 Job 4 Job 5

12

Wolfgang Bein

Online and Offline List Batching
Offline List Batching
Online List Batching

So far List s-Batching, but here is also **List p-Batching**

- Job 1
- Job 2
- Job 3
- Job 4
- Job 5
- Job 6
- Job 7
History

Large body of work on offline batching, i.e.

- [Coffman, Yannakakis, Magazine, Santos, 1990]
- [Albers, Brucker, 1993]
- [Brucker, Gladky, Hoogeveen, Kovalyov, Pots, Tautenhahn, Velde, 1998]
The offline list s-batching problem can be reduced to a path problem\(^1\)[AB92]:

\[c_{ij} = (n - i)(s + P_j - P_i) \] with \(P_i = \sum_{\ell=0}^{i} p_\ell \)

\(^1\)List p-Batching has a similar reduction
A Simple Dynamic Program

\[E[\ell] = \text{the shortest path from 1 to } \ell \]
\[E[\ell] = \min_{1 \leq k < \ell} \{ E[k] + c_{k\ell} \} \]

\[E[1] = 0 \]

\[O(n^2) \]
A Simple Dynamic Program

\[E[\ell] = \text{the shortest path from 1 to } \ell \]
\[E[\ell] = \min_{1 \leq k < \ell} \{ E[k] + c_{k\ell} \} \]

\[O(n^2) \]
A Simple Dynamic Program

\[E[\ell] = \text{the shortest path from 1 to } \ell \]
\[E[\ell] = \min_{1 \leq k < \ell} \{ E[k] + c_{k\ell} \} \]

\[O(n^2) \]
A Simple Dynamic Program

\[E[\ell] = \text{the shortest path from 1 to } \ell \]
\[E[\ell] = \min_{1 \leq k < \ell} \{ E[k] + c_{k\ell} \} \]

\[O(n^2) \]
How to do this in $O(n \log n)$

Monge Property

$$C_{i_1 j_1} + C_{i_2 j_2} \leq C_{i_2 j_1} + C_{i_1 j_2}$$

Totally Monotone

\[
\begin{array}{ccc}
\min & \min & \min \\
\end{array}
\]
Various Inferences

Entire columns can be eliminated in $O(\log n)$ time:

- Negative: $a < b$
- Positive: $a > b$

Difference is mon. increasing

Wolfgang Bein
The Online Protocol of the Dynamic Program

[LS91]

Protocol:
Once the minimum of the i^{th} row is known, the $(i + 1)^{st}$ column is available.
[LS91]

Protocol:
Once the minimum of the i^{th} row is known, the $(i + 1)^{st}$ column is available.
[LS91]

Protocol:
Once the minimum of the i^{th} row is known, the
$(i + 1)^{st}$ column is available.
Protocol:
Once the minimum of the i^{th} row is known, the $(i+1)^{st}$ column is available.
[LS91]

Protocol: Once the minimum of the i^{th} row is known, the $(i + 1)^{st}$ column is available.
[LS91]

Protocol:
Once the minimum of the i^{th} row is known, the $(i + 1)^{st}$ column is available.

Wolfgang Bein
Online and Offline List Batching
The Online Protocol of the Dynamic Program

[LS91]

Protocol:
Once the minimum of the

\(i^{th} \) row

is known, the

\((i + 1)^{st}\)

column is available.
The Hire/Fire/Retire Algorithm can be implemented in $O(n \log n)$

- Potential: number of rows + number of columns.
- Retire eliminates a column, not-retire eliminates a row, fire eliminates a column, not-fire eliminates a row.

$O(n)$ Algorithms:

- [LARSH 91]
- [Albers, Brucker 93]
A closed form for $p_i = s = 1$

Theorem ([BELN 04])

$$\text{optcost}[n] = \frac{m(m+1)(m+2)(3m+5)}{24} + k(n + m - k + 1) + \frac{k(k+1)}{2}$$

for $n = \frac{m(m+1)}{2} + k$

The optimal size of the first batch

$$= \begin{cases}
 m & \text{if } k = 0 \\
 m \text{ or } m + 1 & \text{if } 0 < k < m + 1 \\
 m + 1 & \text{if } k = m + 1
\end{cases}$$
Online List Batching

- Jobs J_1, J_2, \ldots arrive one by one over a list.
Online List Batching

- Jobs J_1, J_2, \ldots arrive one by one over a list.
- Job J_i must be scheduled before a new job is seen, and even before knowing whether current is the last job.
Jobs J_1, J_2, \ldots arrive one by one over a list.
Job J_i must be scheduled before a new job is seen, and even before knowing whether current is the last job.
For job J_i an online Algorithm must decide whether to
 "batch": to make J_i the first job of a new batch
 "not to batch": to add J_i to the current batch.
Competitiveness

A measure of the performance that compares the decision made online with the optimal offline solution for the same problem.

For any sequence of jobs $\rho = \{ J_1, J_2, \ldots \}$

$cost_{A}(\rho)$: cost of the schedule produced by A for ρ

$cost_{opt}(\rho)$ is the minimum cost of any schedule for ρ

We say that A is C-competitive if for each sequence ρ we have

$cost_{A}(\rho) \leq C \cdot cost_{opt}(\rho)$
Algorithm \textbf{PSEUDOBATCH}(B)

- \textbf{PSEUDOBATCH}(B) maintains a variable P which will be the sum of the processing times of a set of recent jobs.
- When J_1 is received, P is set to 0. After receiving each subsequent J_i, \textbf{PSEUDOBATCH}(B) first adds p_i to P.
- If $P > B$, \textbf{PSEUDOBATCH}(B) batches and also sets P to zero.
Algorithm $\text{PSEUDOBATCH}(B)$

0.2

\[
\begin{array}{c}
P \\
\text{0.2}
\end{array}
\]

- $\text{PSEUDOBATCH}(B)$ maintains a variable P which will be the sum of the processing times of a set of recent jobs.
- When J_1 is received, P is set to 0. After receiving each subsequent J_i, $\text{PSEUDOBATCH}(B)$ first adds p_i to P.
- If $P > B$, $\text{PSEUDOBATCH}(B)$ batches and also sets P to zero.
Algorithm $\text{PSEUDOBATCH}(B)$

- $\text{PSEUDOBATCH}(B)$ maintains a variable P which will be the sum of the processing times of a set of recent jobs.
- When J_1 is received, P is set to 0. After receiving each subsequent J_i, $\text{PSEUDOBATCH}(B)$ first adds p_i to P.
- If $P > B$, $\text{PSEUDOBATCH}(B)$ batches and also sets P to zero.
Algorithm $\text{PSEUDOBATCH}(B)$

- $\text{PSEUDOBATCH}(B)$ maintains a variable P which will be the sum of the processing times of a set of recent jobs.
- When J_i is received, P is set to 0. After receiving each subsequent J_i, $\text{PSEUDOBATCH}(B)$ first adds p_i to P.
- If $P > B$, $\text{PSEUDOBATCH}(B)$ batches and also sets P to zero.
Algorithm \textbf{PSEUDOBATCH}(B)

\begin{center}
\begin{tabular}{ccc}
0.2 & 0.6 & 0.2 \\
0.2 & 0.6 & \\
P & 0.8 & \\
\end{tabular}
\end{center}

Pseudobatch(1)

- \textbf{PSEUDOBATCH}(B) maintains a variable \(P \) which will be the sum of the processing times of a set of recent jobs.

- When \(J_i \) is received, \(P \) is set to 0. After receiving each subsequent \(J_i \), \textbf{PSEUDOBATCH}(B) first adds \(p_i \) to \(P \).

- If \(P > B \), \textbf{PSEUDOBATCH}(B) batches and also sets \(P \) to zero.
Algorithm $\text{PSEUDOBATCH}(B)$

- $\text{PSEUDOBATCH}(B)$ maintains a variable P which will be the sum of the processing times of a set of recent jobs.
- When J_i is received, P is set to 0. After receiving each subsequent J_i, $\text{PSEUDOBATCH}(B)$ first adds p_i to P.
- If $P > B$, $\text{PSEUDOBATCH}(B)$ batches and also sets P to zero.
Algorithm \textsc{Pseudobatch}(B)

\begin{tabular}{cccc}
0.2 & 0.6 & 0.2 & 0.3 \\
\hline
0.2 & 0.6 & 0.2 \\
P & 1.1 \\
\end{tabular}

Pseudobatch(1)

- \textsc{Pseudobatch}(B) maintains a variable P which will be the sum of the processing times of a set of recent jobs.
- When J_i is received, P is set to 0. After receiving each subsequent J_i, \textsc{Pseudobatch}(B) first adds p_i to P.
- If $P > B$, \textsc{Pseudobatch}(B) batches and also sets P to zero.
Algorithm \(\text{PSEUDOBATCH}(B) \)

\[
\begin{array}{cccc}
0.2 & 0.6 & 0.2 & 0.3 \\
0.2 & 0.6 & 0.2 & 0.3 \\
P & 0 \\
\end{array}
\]

Pseudobatch(1)

- \(\text{PSEUDOBATCH}(B) \) maintains a variable \(P \) which will be the sum of the processing times of a set of recent jobs.
- When \(J_i \) is received, \(P \) is set to 0. After receiving each subsequent \(J_i \), \(\text{PSEUDOBATCH}(B) \) first adds \(p_i \) to \(P \).
- If \(P > B \), \(\text{PSEUDOBATCH}(B) \) batches and also sets \(P \) to zero.
Algorithm $\text{PSEUDOBATCH}(B)$

$\begin{array}{cccccc}
0.2 & 0.6 & 0.2 & 0.3 & 0.1 \\
\hline
0.2 & 0.6 & 0.2 & 0.3 \\
\hline
P & 0.1 \\
\end{array}$

Pseudobatch(1)

- $\text{PSEUDOBATCH}(B)$ maintains a variable P which will be the sum of the processing times of a set of recent jobs.
- When J_i is received, P is set to 0. After receiving each subsequent J_i, $\text{PSEUDOBATCH}(B)$ first adds p_i to P.
- If $P > B$, $\text{PSEUDOBATCH}(B)$ batches and also sets P to zero.
Algorithm **PSEUDOBATCH**\((B)\)

<table>
<thead>
<tr>
<th>0.2</th>
<th>0.6</th>
<th>0.2</th>
<th>0.3</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.6</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- **PSEUDOBATCH**\((B)\) maintains a variable \(P\) which will be the sum of the processing times of a set of recent jobs.
- When \(J_i\) is received, \(P\) is set to 0. After receiving each subsequent \(J_i\), **PSEUDOBATCH**\((B)\) first adds \(p_i\) to \(P\).
- If \(P > B\), **PSEUDOBATCH**\((B)\) batches and also sets \(P\) to zero.
Algorithm \textsc{Pseudobatch}(B)

\begin{itemize}
 \item \textsc{Pseudobatch}(B) maintains a variable \(P \) which will be the sum of the processing times of a set of recent jobs.
 \item When \(J_i \) is received, \(P \) is set to 0. After receiving each subsequent \(J_i \), \textsc{Pseudobatch}(B) first adds \(p_i \) to \(P \).
 \item If \(P > B \), \textsc{Pseudobatch}(B) batches and also sets \(P \) to zero.
\end{itemize}
Algorithm \(\text{PSEUDOBATCH}(B) \)

- \(\text{PSEUDOBATCH}(B) \) maintains a variable \(P \) which will be the sum of the processing times of a set of recent jobs.
- When \(J_i \) is received, \(P \) is set to 0. After receiving each subsequent \(J_i \), \(\text{PSEUDOBATCH}(B) \) first adds \(p_i \) to \(P \).
- If \(P > B \), \(\text{PSEUDOBATCH}(B) \) batches and also sets \(P \) to zero.

<table>
<thead>
<tr>
<th>0.2</th>
<th>0.6</th>
<th>0.2</th>
<th>0.3</th>
<th>0.1</th>
<th>1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.6</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

\(P \) = 0

Pseudobatch(1)
Algorithm PSEUDOBATCH(\(B\))

- PSEUDOBATCH(\(B\)) maintains a variable \(P\) which will be the sum of the processing times of a set of recent jobs.
- When \(J_1\) is received, \(P\) is set to 0. After receiving each subsequent \(J_i\), PSEUDOBATCH(\(B\)) first adds \(p_i\) to \(P\).
- If \(P > B\), PSEUDOBATCH(\(B\)) batches and also sets \(P\) to zero.
Theorem ([BELN 04])

The competitiveness of algorithm $\text{PSEUDOBATCH}(1)$ is not larger than 2.
Theorem ([BELN 04])

The competitiveness of algorithm \(\text{PSEUDOBATCH}(1) \) is not larger than 2

Proof.

Let \(S_i = \sum_{j=1}^{i} p_j \).
Theorem ([BELN 04])

The competitiveness of algorithm **Pseudobatch**(1) is not larger than 2

Proof.

Let \(S_i = \sum_{j=1}^{i} p_j \).

- Optimal Completion Times: \(C_i^* \geq 1 + S_i \)
Theorem ([BELN 04])

The competitiveness of algorithm \textsc{Pseudobatch}(1) is not larger than 2

Proof.

Let $S_i = \sum_{j=1}^i p_j$.

- Optimal Completion Times: $C_i^* \geq 1 + S_i$
- For \textsc{Pseudobatch}(1): $C_i \leq \#\text{batches} + S_i + 1$
Theorem ([BELN 04])

The competitiveness of algorithm \(\text{Pseudobatch}(1) \) is not larger than 2.

Proof.

Let \(S_i = \sum_{j=1}^{i} p_j \).

- Optimal Completion Times: \(C_i^* \geq 1 + S_i \)
- For \(\text{Pseudobatch}(1) \): \(C_i \leq \#\text{batches} + S_i + 1 \)
- \(\#\text{batches} \leq 1 + S_i \)
Pseudobatch(1) is 2-competitive

Theorem ([BELN 04])

The competitiveness of algorithm Pseudobatch(1) is not larger than 2

Proof.

Let $S_i = \sum_{j=1}^{i} p_j$.

- Optimal Completion Times: $C_i^* \geq 1 + S_i$
- For Pseudobatch(1): $C_i \leq \#batches + S_i + 1$
- $\#batches \leq 1 + S_i$
- Thus $C_i \leq 2 + 2S_i$, which implies the result.
PSEUDOBATCH(1) is Optimal

Theorem ([BELN 04])

The competitiveness of any deterministic online algorithm for the list s-batch problem is at least 2.

- Construct an adversary such that any deterministic algorithm will perform “poorly”.
- Adversary uses Null Jobs.
- Null Jobs are jobs with “arbitrarily” small processing times.
Lower Bound Adversary
Proof Sketch

Proof.

Let m be a large integer; the sequence ends

a: the first time A does not batch,
b: or at m.
Proof Sketch

Proof.

Let m be a large integer; the sequence ends

a: the first time A does not batch,
b: or at m.

in case a we have $cost_A = n^k(k + k) + \text{low order}$
Proof Sketch

Proof.

Let m be a large integer; the sequence ends

\begin{itemize}
 \item [a:] the first time \mathcal{A} does not batch,
 \item [b:] or at m.
\end{itemize}

In case a we have $\text{cost}_A = n^k(k + k) + \text{low order}$

```
1 2 k
```

Opt places all but the last job into one batch, $\text{cost}_A = n^k(k) + \text{low order}$

```
1 2 k
```

Wolfgang Bein
Online and Offline List Batching
Proof Sketch

Proof.

- Let m be a large integer; the sequence ends
 - **a:** the first time A does not batch,
 - **b:** or at m.

- In **case a** we have $\text{cost}_A = n^k(k + k) + \text{low order}$

  ```
  \[
  \begin{array}{ccc}
  1 & 2 & \cdots & k \\
  \hline
  \text{empty} & \text{empty} & \text{empty} & \text{empty}
  \end{array}
  \]
  
  **opt** places all but the last job into one batch, $\text{cost}_A = n^k(k) + \text{low order}$
  
  ```

  ```
  \[
  \begin{array}{ccc}
  1 & 2 & \cdots & k \\
  \hline
  \text{empty} & \text{empty} & \text{empty} & \text{empty}
  \end{array}
  \]
  
  **case b** similar...
Small jobs are needed...

- The next result shows that the exact competitiveness of 2 relies on the fact that the jobs may be arbitrarily small.
- In fact, if there is a positive lower bound on the size of the jobs, it is possible to construct an algorithm with competitiveness less than two.

**Theorem ([BELN 04])**

*If the processing time of every job is at least $p$, then $A = \text{PSEUDOBATCH}(\sqrt{p+1})$ is $C$-competitive, where*

$$C = \min \left( \frac{1 + \sqrt{p+1}}{\sqrt{p+1}}, \frac{p+1}{p} \right).$$
If jobs are at least $p$...
The uniform case of $p_i = s = 1$

Define $D$ to be the online algorithm which batches after jobs: 2, 5, 9, 13, 18, 23, 29, 35, 41, 48, 54, 61, 68, 76, 84, 91, 100, 108, 117, 126, 135, 145, 156, 167, 179, 192, 206, 221, 238, 257, 278, 302, 329, 361, 397, 439, 488, 545, 612, 690, 781, 888, 1013, 1159, 1329, 1528, 1760, and $2000+40i$ for all $i \geq 0$.

Algorithm was found by computer

**Theorem ([BELN 04])**

$D$ is $\frac{619}{583}$-competitive, and no online algorithm the list batching problem restricted to unit job sizes has competitiveness smaller than $\frac{619}{583}$. 
The case of $p_i = s = 1$: upper bound

- It is easy to show that $\frac{619}{583}$ is an upper bound on the competitive ratio of the algorithms if there are more than 2000 jobs.
- The ratio is only tight when there are fewer than 2000 jobs.
- The algorithm was found by computer simulation.
The case of $p_i = s = 1$; Algorithm

Minimum Competitiveness Layered Graph Problem

Schedule are combined into classes.

A class has schedules where there are $m$ batches, the last batch contains $b$ jobs, and $k$ jobs have been requested.
The case of $p_i = s = 1$; Lower Bound Proof

Pruned Decision Tree

```
 0
 / \ / \
 2 2 6 6
 / | \ / | \\
 6 11 12 12 12
 / \ / \
 12 27 12 27
 / \ \ / \
 18 27 n1 18 n2 27
 \ \ \ \\
 \ \ \
 \ \ \
 \ \ \
 \ \ \
 \ \ \
 \ \ \ \\
 \ \ \ \
 \ \ \
 \ \ \
 \ \
 \ \
 \ \
 \
 \

 Opt 0
 2
 6
 11
 18
 26
 27
 27
 27
 27
 27
 27
 27
 27
 27
 27
```

12 11 12 12 18 18 27 26 27 27 27 27 27 27
**THRESHOLD:**

batches for the \( \ell^{th} \) time whenever the processing requirement of the next job \( \geq (\ell + 1)2^\ell - 1 \), i.e. 3, 11, 31, 79, …
Theorem ([BELN 04])

\textsc{Threshold} is 4-competitive. No deterministic online algorithm for the list p-batch problem can have competitiveness less than 4.

Proof.

Lower bound proof a bit subtle....
Open Problems: Weighted Batching

Problem

Given $n$ jobs with

1. processing times $p_1, \ldots, p_n$
2. non-negative weights $w_1 \ldots w_n$.
3. offline

Find an order and $s$-batching that minimizes $\sum w_i C_i$.

- Problem is NP-hard.
- Sort jobs in order of “priorities” $\frac{w_i}{p_i}$ then $\text{PSEUDOBATCH}(1)$ is a 2-approximation.

PTAS?