The Knuth-Yao Quadrangle Inequality Speedup is a Consequence of Total Monotonicity

Wolfgang W. Bein (University of Nevada)
Mordecai J. Golin (Hong Kong UST)
Lawrence L. Larmore (University of Nevada)
Yan Zhang (Hong Kong UST)
Motivation

- Nothing new: material here goes back 20-30 years.
- There are two classic cookbook Dynamic Programming Speedups in the literature: Knuth-Yao technique & SMAWK algorithm.
- They “feel” similar. Are they related?
- Knuth-Yao predates online algorithms. Can the KY speedup be maintained online?
- Answers to the two questions turned out to be related.
- Note: major confusion arises in the analysis because certain essential terms, e.g., quadrangle-inequality, monotone and online-algorithm have been used in very different ways in the two techniques’ literature.
Outline

Background
- Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup
- SMAWK Algorithm for finding Row Minima of Totally Monotone (TM) Matrices

The D^d Decomposition
A transformation from QI to TM such that SMAWK solves KY problem as quickly as KY.

The L^m and R^m Decompositions
Another transformation from QI to TM that
(1) implies KY speedup and (2) enables online solution.

Extensions
Applying the technique to known generalizations of KY.
Outline

Background

- Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup
- SMAWK Algorithm for finding Row Minima of Totally Monotone (TM) Matrices

The D^d Decomposition

A transformation from QI to TM such that SMAWK solves KY problem as quickly as KY.

The L^m and R^m Decompositions

Another transformation from QI to TM that (1) implies KY speedup and (2) enables online solution.

Extensions

Applying the technique to known generalizations of KY.
Background
Background

- Kunth-Yao Quadrangle Inequality Speedup
Background

- Kunth-Yao Quadrangle Inequality Speedup
Background

- Kunth-Yao Quadrangle Inequality Speedup
 - $\Theta(n)$ speedup: $O(n^3)$ down to $O(n^2)$
Background

- Kunth-Yao Quadrangle Inequality Speedup
 - $\Theta(n)$ speedup: $O(n^3)$ down to $O(n^2)$

- SMAWK Algorithm for finding Row Minima of Totally Monotone Matrices
Kunth-Yao Quadrangle Inequality Speedup
Θ(n) speedup: $O(n^3)$ down to $O(n^2)$

SMAWK Algorithm for finding Row Minima of Totally Monotone Matrices
Background

- Kunth-Yao Quadrangle Inequality Speedup
 - $\Theta(n)$ speedup: $O(n^3)$ down to $O(n^2)$

- SMAWK Algorithm for finding Row Minima of Totally Monotone Matrices
 - $\Theta(n)$ speedup: $O(n^2)$ down to $O(n)$
Background

- Kunth-Yao Quadrangle Inequality Speedup
 - $\Theta(n)$ speedup: $O(n^3)$ down to $O(n^2)$

- SMAWK Algorithm for finding Row Minima of Totally Monotone Matrices
 - $\Theta(n)$ speedup: $O(n^2)$ down to $O(n)$

- Both techniques are often used to speed up DPs.
Background

- Kunth-Yao Quadrangle Inequality Speedup
 - $\Theta(n)$ speedup: $O(n^3)$ down to $O(n^2)$

- SMAWK Algorithm for finding Row Minima of Totally Monotone Matrices
 - $\Theta(n)$ speedup: $O(n^2)$ down to $O(n)$

- Both techniques are often used to speed up DPs.

- How are the two techniques related?
Quadrangle Inequality
Quadrangle Inequality

Original Motivation
Computing Optimal Binary Search Trees (Optimal BST)
[Gilbert and Moore (1959)]
Quadrangle Inequality

Original Motivation
Computing Optimal Binary Search Trees (Optimal BST)
[Gilbert and Moore (1959)]

Optimal BST
- Construct a search tree for \(n \) keys
Quadrangle Inequality

Original Motivation
Computing Optimal Binary Search Trees (Optimal BST)
[Gilbert and Moore (1959)]

Optimal BST

- Construct a search tree for \(n \) keys
- \(n \) internal nodes corresponds to successful search
- \(p_l, (l = 1 \ldots n) \) is the weight that search-key = Key\(_l\)
Quadrangle Inequality

Original Motivation
Computing Optimal Binary Search Trees (Optimal BST)
[Gilbert and Moore (1959)]

Optimal BST
- Construct a search tree for \(n \) keys
- \(n \) internal nodes corresponds to successful search
 \(p_l, (l = 1 \ldots n) \) is the weight that \text{search-key} = \text{Key}_l
- \(n + 1 \) external nodes corresponds to unsuccessful search
 \(q_l, (l = 0 \ldots n) \) is the weight that \text{Key}_l < \text{search-key} < \text{Key}_{l+1} \)
Quadrangle Inequality

Original Motivation
Computing Optimal Binary Search Trees (Optimal BST)
[Gilbert and Moore (1959)]

Optimal BST

Construct a search tree for \(n \) keys

\(n \) internal nodes corresponds to successful search

\(p_l, (l = 1 \ldots n) \) is the weight that search-key = Key\(_l\)

\(n + 1 \) external nodes corresponds to unsuccessful search

\(q_l, (l = 0 \ldots n) \) is the weight that Key\(_l\) < search-key < Key\(_{l+1}\)

Minimize the number of comparisons

\[
\sum_{1 \leq l \leq n} p_l \cdot (1 + d(p_l)) + \sum_{0 \leq l \leq n} q_l \cdot d(q_l)
\]
Optimal BST

Minimize \(\sum_{1 \leq l \leq n} p_l \cdot (1 + d(p_l)) + \sum_{0 \leq l \leq n} q_l \cdot d(q_l) \)
Optimal BST

Minimize \[
\sum_{1 \leq l \leq n} p_l \cdot (1 + d(p_l)) + \sum_{0 \leq l \leq n} q_l \cdot d(q_l)
\]

An example
Optimal BST

Minimize \[\sum_{1 \leq l \leq n} p_l \cdot (1 + d(p_l)) + \sum_{0 \leq l \leq n} q_l \cdot d(q_l) \]

An example

\[n = 2 \quad p = (19, 12), \quad q = (36, 20, 11) \]
Optimal BST

Minimize \[\sum_{1 \leq l \leq n} p_l \cdot (1 + d(p_l)) + \sum_{0 \leq l \leq n} q_l \cdot d(q_l) \]

An example

\[n = 2 \quad p = (19, 12), \quad q = (36, 20, 11) \]

Quadrangle-Inequality and Total-Monotonicity – p.7/52
Optimal BST

Minimize \[\sum_{1 \leq l \leq n} p_l \cdot (1 + d(p_l)) + \sum_{0 \leq l \leq n} q_l \cdot d(q_l) \]

An example

\[n = 2 \quad p = (19, 12), \quad q = (36, 20, 11) \]
Optimal BST

Minimize \(\sum_{1 \leq l \leq n} p_l \cdot (1 + d(p_l)) + \sum_{0 \leq l \leq n} q_l \cdot d(q_l) \)

An example
\(n = 2 \) \(p = (19, 12) \), \(q = (36, 20, 11) \)

Cost = 141
Optimal BST

Minimize \[\sum_{1 \leq l \leq n} p_l \cdot (1 + d(p_l)) + \sum_{0 \leq l \leq n} q_l \cdot d(q_l) \]

An example

\[n = 2 \quad p = (19, 12), \quad q = (36, 20, 11) \]

Cost = 141
Optimal BST

Minimize \[\sum_{1 \leq l \leq n} p_l \cdot (1 + d(p_l)) + \sum_{0 \leq l \leq n} q_l \cdot d(q_l) \]

An example

\(n = 2 \quad p = (19, 12), \quad q = (36, 20, 11) \)

\[\times 1 \]
\[19 \]
\[\times 1 \]
\[\times 2 \]
\[12 \]
\[\times 2 \]
\[\times 2 \]
\[36 \]
\[\times 2 \]
\[20 \]
\[\times 2 \]
\[11 \]
\[\times 2 \]
\[\times 1 \]
\[12 \]
\[\times 1 \]
\[\times 2 \]
\[19 \]
\[\times 2 \]
\[11 \]
\[\times 2 \]
\[36 \]
\[\times 2 \]
\[20 \]
\[\times 2 \]

Cost = 141
Optimal BST

Minimize \[\sum_{1 \leq l \leq n} p_l \cdot (1 + d(p_l)) + \sum_{0 \leq l \leq n} q_l \cdot d(q_l) \]

An example

\(n = 2 \quad p = (19, 12), \quad q = (36, 20, 11) \)

Cost = 141

Cost = 173
Optimal BST

Solution: Dynamic Programming (DP)
Optimal BST

Solution: Dynamic Programming (DP)

- $B_{i,j}$ the optimal BST for the subproblem $\text{Key}_{i+1}, \ldots, \text{Key}_j$
Optimal BST

Solution: Dynamic Programming (DP)

- $B_{i,j}$ the optimal BST for the subproblem $\text{Key}_{i+1}, \ldots, \text{Key}_j$
- DP recurrence

$$B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{B_{i,t-1} + B_{t,j}\}$$
Optimal BST

DP: Straightforward Calculation

\[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]
Optimal BST

DP: Straightforward Calculation

$$B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i<t\leq j}\{B_{i,t-1} + B_{t,j}\}$$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

$B_{i,j}$ depends on the entries to the left and below.
Optimal BST

DP: Straightforward Calculation

\[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

An example

\(n = 6 \quad p = (88, 21, 19, 12, 14, 18) \quad q = (53, 89, 36, 20, 11, 19, 15) \)
Optimal BST

DP: Straightforward Calculation

\[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i<t\leq j} \{ B_{i,t-1} + B_{t,j} \} \]

An example

\(n = 6 \quad p = (88, 21, 19, 12, 14, 18) \quad q = (53, 89, 36, 20, 11, 19, 15) \)
Optimal BST

- **DP: Straightforward Calculation**

\[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

- **An example**

 \(n = 6 \quad p = (88, 21, 19, 12, 14, 18) \quad q = (53, 89, 36, 20, 11, 19, 15) \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Quadrangle-Inequality and Total-Monotonicity – p.9/52
Optimal BST

DP: Straightforward Calculation

\[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

An example

\[n = 6 \quad p = (88, 21, 19, 12, 14, 18) \quad q = (53, 89, 36, 20, 11, 19, 15) \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>141</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>43</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>44</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal BST

DP: Straightforward Calculation

\[
B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \}
\]

An example

\[n = 6 \quad p = (88, 21, 19, 12, 14, 18) \quad q = (53, 89, 36, 20, 11, 19, 15) \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>230</td>
<td>433</td>
<td>586</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>146</td>
<td>260</td>
<td>349</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>75</td>
<td>141</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>43</td>
<td>119</td>
<td>204</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>44</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Optimal BST

DP: Straightforward Calculation

\[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

An example

\[n = 6 \quad p = (88, 21, 19, 12, 14, 18) \quad q = (53, 89, 36, 20, 11, 19, 15) \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>230</td>
<td>433</td>
<td>586</td>
<td>698</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>146</td>
<td>260</td>
<td>349</td>
<td>491</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>75</td>
<td>141</td>
<td>250</td>
<td>357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>43</td>
<td>119</td>
<td>204</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>44</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quadrangle-Inequality and Total-Monotonicity – p.9/52
Optimal BST

DP: Straightforward Calculation

\[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

An example

\[n = 6 \quad p = (88, 21, 19, 12, 14, 18) \quad q = (53, 89, 36, 20, 11, 19, 15) \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>230</td>
<td>433</td>
<td>586</td>
<td>698</td>
<td>862</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>146</td>
<td>260</td>
<td>349</td>
<td>491</td>
<td>624</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>75</td>
<td>141</td>
<td>250</td>
<td>357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>43</td>
<td>119</td>
<td>204</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>44</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Optimal BST

- DP: Straightforward Calculation

\[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

- An example

\[n = 6 \quad p = (88, 21, 19, 12, 14, 18) \quad q = (53, 89, 36, 20, 11, 19, 15) \]

\[
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
0 & 0 & 230 & 433 & 586 & 698 & 862 & 1002 \\
1 & 0 & 146 & 260 & 349 & 491 & 624 & \\
2 & 0 & 75 & 141 & 250 & 357 & \\
3 & 0 & 43 & 119 & 204 & \\
4 & 0 & 44 & 121 & \\
5 & 0 & 52 & \\
6 & \\
\end{array}
\]
Optimal BST

DP: Straightforward Calculation

\[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i<t\leq j} \{ B_{i,t-1} + B_{t,j} \} \]

An example

\(n = 6 \quad p = (88, 21, 19, 12, 14, 18) \quad q = (53, 89, 36, 20, 11, 19, 15) \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>230</td>
<td>433</td>
<td>586</td>
<td>698</td>
<td>862</td>
<td>1002</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>146</td>
<td>260</td>
<td>349</td>
<td>491</td>
<td>624</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>75</td>
<td>141</td>
<td>250</td>
<td>357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>43</td>
<td>119</td>
<td>204</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>44</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Quadrangle-Inequality and Total-Monotonicity – p.9/52
Optimal BST

- Naive: \(O(n^3) = \sum_{i=1}^{n} \sum_{j=i}^{n} \Theta(j - i) \)

\[
B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i<t\leq j} \{B_{i,t-1} + B_{t,j}\}
\]
Optimal BST

Naive: \(O(n^3) = \sum_{i=1}^{n} \sum_{j=i}^{n} \Theta(j - i) \)

\[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

Speedup: \(O(n^2) \) [Knuth (1971)]
Optimal BST

Naive: \(O(n^3) = \sum_{i=1}^{n} \sum_{j=i}^{n} \Theta(j - i) \)

\[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i<t\leq j} \{ B_{i,t-1} + B_{t,j} \} \]

Speedup: \(O(n^2) \) \cite{Knuth (1971)}

\(K_B(i, j) \) the largest index \(t \) that achieves the minimum.
Optimal BST

Naive: \(O(n^3) = \sum_{i=1}^{n} \sum_{j=i}^{n} \Theta(j - i) \)

\[
B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \}
\]

Speedup: \(O(n^2) \) \[Knuth (1971)\]

- \(K_B(i, j) \) the largest index \(t \) that achieves the minimum.

Theorem in [Knuth (1971)]

\[
K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1)
\]
Optimal BST

Naive: $O(n^3) = \sum_{i=1}^{n} \sum_{j=i}^{n} \Theta(j - i)$

$$B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{B_{i,t-1} + B_{t,j}\}$$

Speedup: $O(n^2)$ [Knuth (1971)]

$K_B(i, j)$ the largest index t that achieves the minimum.

Theorem in [Knuth (1971)]

$$K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1)$$

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>$i + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>$K_B(i, j)$</td>
<td>$K_B(i, j + 1)$</td>
</tr>
<tr>
<td>$j + 1$</td>
<td></td>
<td>$K_B(i + 1, j + 1)$</td>
</tr>
</tbody>
</table>
Optimal BST

Speedup: \(B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \)

\[K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1) \]
Optimal BST

- Speedup: \(B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \)

\[K_B(i,j) \leq K_B(i,j + 1) \leq K_B(i+1,j + 1) \]

- The index table
Optimal BST

- Speedup: \(B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \)

\[
K_B(i,j) \leq K_B(i,j + 1) \leq K_B(i + 1, j + 1)
\]

- The index table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal BST

Speedup: \(B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \)

\[K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1) \]

The index table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal BST

- Speedup: $B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j}\{B_{i,t-1} + B_{t,j}\}$

$$K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1)$$

- The index table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal BST

Speedup:

\[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

\[K_B(i,j) \leq K_B(i, j+1) \leq K_B(i+1, j+1) \]

The index table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal BST

- Speedup: \(B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j}\{B_{i,t-1} + B_{t,j}\} \)

\[K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1) \]

- The index table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quadrangle-Inequality and Total-Monotonicity – p.11/52
Optimal BST

Speedup: \(B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \)

\[K_B(i,j) \leq K_B(i,j+1) \leq K_B(i+1,j+1) \]

The index table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal BST

Speedup: $B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i<t\leq j}\{B_{i,t-1} + B_{t,j}\}$

$K_B(i,j) \leq K_B(i,j+1) \leq K_B(i+1,j+1)$

The index table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal BST

- Speedup: \(B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i<t\leq j} \{ B_{i,t-1} + B_{t,j} \} \)

\[
K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1)
\]

- The index table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal BST

Speedup: \[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

\[K_B(i,j) \leq K_B(i,j+1) \leq K_B(i+1,j+1) \]

The index table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal BST

- Speedup:
 \[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i<t\leq j} \{ B_{i,t-1} + B_{t,j} \} \]

- The index table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal BST

Speedup: \(B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \)

\(K_B(i,j) \leq K_B(i,j+1) \leq K_B(i+1,j+1) \)

The index table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal BST

- Speedup:

\[K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1) \]
Optimal BST

Speedup:

\[K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1) \]

Each diagonal \(j - i = d \)

\[
O(n) = \sum_{i=1}^{n-d} (K_B(i + 1, i + d) - K_B(i, i + d - 1))
\]

\[
= K_B(n - d + 1, n) - K_B(1, d)
\]
Optimal BST

Speedup:

\[K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1) \]

Each diagonal \(j - i = d \)

\[
O(n) = \sum_{i=1}^{n-d} (K_B(i + 1, i + d) - K_B(i, i + d - 1)) \\
= K_B(n - d + 1, n) - K_B(1, d)
\]

\(O(n^2) \) total work over all \(n \) diagonals.
Quadrangle Inequality
Quadrangle Inequality

Definition [Yao (1980, 1982)]
Quadrangle Inequality

Definition [Yao (1980, 1982)]

Function $f(i, j), (0 \leq i \leq j \leq n)$ satisfies a Quadrangle Inequality (QI), if $\forall i \leq i' \leq j \leq j'$

$$f(i, j) + f(i', j') \leq f(i', j) + f(i, j')$$
Quadrangle Inequality

Definition [Yao (1980, 1982)]

Function $f(i, j)$, $(0 \leq i \leq j \leq n)$ satisfies a **Quadrangle Inequality (QI)**, if $\forall i \leq i' \leq j \leq j'$

$$f(i, j) + f(i', j') \leq f(i', j) + f(i, j')$$

![Quadrangle Inequality Diagram]
Definition [Yao (1980, 1982)]

Function $f(i, j), (0 \leq i \leq j \leq n)$ satisfies a Quadrangle Inequality (QI), if $\forall i \leq i' \leq j \leq j'$

$$f(i, j) + f(i', j) \leq f(i', j) + f(i, j')$$

Function $f(i, j), (0 \leq i \leq j \leq n)$ is Monotone over the integer lattice (MIL), if $\forall [i, j] \subseteq [i', j']$

$$f(i, j) \leq f(i', j')$$
Speedup using Quadrangle Inequality

\[B_{i,j} = w(i, j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]
Speedup using Quadrangle Inequality

\[B_{i,j} = w(i, j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

Lemmas from [Yao (1980)]
Speedup using Quadrangle Inequality

\[B_{i,j} = w(i, j) + \min_{i<t\leq j} \{ B_{i,t-1} + B_{t,j} \} \]

Lemmas from [Yao (1980)]

(A) If \(w(i, j) \) satisfies QI and is MIL,
\[\Rightarrow B_{i,j} \text{ satisfies QI.} \]
Speedup using Quadrangle Inequality

\[B_{i,j} = w(i,j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

- Lemmas from [Yao (1980)]
 - (A) If \(w(i,j) \) satisfies QI and is MIL,
 \[\Rightarrow B_{i,j} \text{ satisfies QI.} \]
 - (B) If \(B_{i,j} \) satisfies QI,
 \[\Rightarrow K_B(i,j) \leq K_B(i,j+1) \leq K_B(i+1,j+1) \]
Speedup using Quadrangle Inequality

\[B_{i,j} = w(i, j) + \min_{i<t\leq j} \{ B_{i,t-1} + B_{t,j} \} \]

- Lemmas from [Yao (1980)]
 - (A) If \(w(i, j) \) satisfies QI and is MIL,
 \[\Rightarrow B_{i,j} \text{ satisfies QI.} \]
 - (B) If \(B_{i,j} \) satisfies QI,
 \[\Rightarrow K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1) \]

- In optimal BST problem,
 \[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i<t\leq j} \{ B_{i,t-1} + B_{t,j} \} \]
Speedup using Quadrangle Inequality

\[B_{i,j} = w(i, j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

- Lemmas from [Yao (1980)]
 - (A) If \(w(i, j) \) satisfies QI and is MIL,
 \[\Rightarrow B_{i,j} \text{ satisfies QI.} \]
 - (B) If \(B_{i,j} \) satisfies QI,
 \[\Rightarrow K_{B}(i, j) \leq K_{B}(i, j + 1) \leq K_{B}(i + 1, j + 1) \]

- In optimal BST problem,
 \[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

- Optimal BST \(w(i, j) \) satisfies QI as equality and is MIL.
Speedup using Quadrangle Inequality

\[B_{i,j} = w(i, j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

- Lemmas from [Yao (1980)]
 - (A) If \(w(i, j) \) satisfies QI and is MIL,
 \[\Rightarrow B_{i,j} \text{ satisfies QI.} \]
 - (B) If \(B_{i,j} \) satisfies QI,
 \[\Rightarrow K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1) \]

- In optimal BST problem,

\[B_{i,j} = \sum_{l=i+1}^{j} p_l + \sum_{l=i}^{j} q_l + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

- Optimal BST \(w(i, j) \) satisfies QI as equality and is MIL.
 \[\Rightarrow \text{exactly Knuth’s result.} \]
Online Problem
Online Problem

Definition: Two-sided online problem
Online Problem

• Definition: Two-sided online problem

• Current step: Optimal BST for $\text{Key}_{l+1}, \ldots, \text{Key}_r$
Online Problem

Definition: Two-sided online problem

- Current step: Optimal BST for $\text{Key}_{l+1}, \ldots, \text{Key}_r$
- Next step: Add either Key_l or Key_{r+1}.
Definition: Two-sided online problem

Current step: Optimal BST for $\text{Key}_{l+1}, \ldots, \text{Key}_r$

Next step: Add either Key_l or Key_{r+1}.

An example
Online Problem

Definition: Two-sided online problem

Current step: Optimal BST for \(\text{Key}_{l+1}, \ldots, \text{Key}_r \)

Next step: Add either \(\text{Key}_l \) or \(\text{Key}_{r+1} \).

An example

\[p = (19, 12, 14) \quad q = (36, 20, 11, 19) \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>75</td>
<td>141</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>43</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quadrangle-Inequality and Total-Monotonicity – p.15/52
Online Problem

Definition: Two-sided online problem

- Current step: Optimal BST for $\text{Key}_{l+1}, \ldots, \text{Key}_r$
- Next step: Add either Key_l or Key_{r+1}.

An example

$p = (19, 12, 14, 18)$ \quad q = (36, 20, 11, 19, 15)$

\begin{tabular}{cccccc}
 & 1 & 2 & 3 & 4 & 5 & 6 \\
 1 & & & & & & \\
 2 & 0 & 75 & 141 & 250 & 357 & \\
 3 & & 0 & 43 & 119 & 204 & \\
 4 & & & 0 & 44 & 121 & \\
 5 & & & & 0 & 52 & \\
 6 & & & & & 0 & \\
\end{tabular}

Quadrangle-Inequality and Total-Monotonicity – p.15/52
Online Problem

Definition: Two-sided online problem

- Current step: Optimal BST for $\text{Key}_{l+1}, \ldots, \text{Key}_r$
- Next step: Add either Key_l or Key_{r+1}.

An example

$p = (21, 19, 12, 14, 18) \quad q = (89, 36, 20, 11, 19, 15)$

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>146</td>
<td>260</td>
<td>349</td>
<td>491</td>
<td>624</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>75</td>
<td>141</td>
<td>250</td>
<td></td>
<td>357</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>43</td>
<td>119</td>
<td></td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>44</td>
<td></td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>0</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
```

```
  19
 / \  
14 21
 /   /  
 89 36 12
 /   /   /
20 11 19 18
  /
20
```

Quadrangle-Inequality and Total-Monotonicity – p.15/52
Outline

Background
- Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup
- SMAWK Algorithm for finding Row Minima of Totally Monotone (TM) Matrices

The D^d Decomposition
A transformation from QI to TM such that SMAWK solves KY problem as quickly as KY.

The L^m and R^m Decompositions
Another transformation from QI to TM that (1) implies KY speedup and (2) enables online solution.

Extensions
Applying the technique to known generalizations of KY.
Totally Monotone Matrices

Definition
Totally Monotone Matrices

Definition

M is an $m \times n$ matrix
Definition

M is an $m \times n$ matrix

$RM_M(i)$ is index of rightmost minimum item of row i of M.
Totally Monotone Matrices

Definition

\(M \) is an \(m \times n \) matrix

- \(RM_M(i) \) is index of rightmost minimum item of row \(i \) of \(M \).

- \(M \) is **Monotone** if \(\forall i \leq i', \quad RM_M(i) \leq RM_M(i') \).
Totally Monotone Matrices

Definition

M is an $m \times n$ matrix

$RM_M(i)$ is index of rightmost minimum item of row i of M.

M is Monotone if $\forall i \leq i'$, $RM_M(i) \leq RM_M(i')$.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>4</th>
<th>3</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

$RM_M(1) = 2$

$RM_M(2) = 4$

$RM_M(3) = 4$

$RM_M(4) = 4$

$RM_M(5) = 6$

$RM_M(6) = 6$
Totally Monotone Matrices

Definition (Cond.)

A 2×2 Monotone matrix

\[
\begin{array}{cc}
2 & 4 \\
4 & 5 \\
\end{array}
\quad
\begin{array}{cc}
2 & 3 \\
5 & 3 \\
\end{array}
\quad
\begin{array}{cc}
7 & 1 \\
2 & 2 \\
\end{array}
\]
Totally Monotone Matrices

Definition (Cond.)

A 2×2 Monotone matrix

\[
\begin{array}{cc}
2 & 4 \\
4 & 5 \\
\end{array}
\quad \begin{array}{cc}
2 & 3 \\
5 & 3 \\
\end{array}
\quad \begin{array}{cc}
7 & 1 \\
2 & 2 \\
\end{array}
\]

An $m \times n$ matrix M is Totally Monotone (TM) if every 2×2 submatrix is Monotone.

(submatrix: not necessarily contiguous in the original matrix)
Totally Monotone Matrices

Definition (Cond.)

A 2×2 Monotone matrix

\[
\begin{array}{cc}
2 & 4 \\
4 & 5 \\
\end{array}
\quad
\begin{array}{cc}
2 & 3 \\
5 & 3 \\
\end{array}
\quad
\begin{array}{cc}
7 & 1 \\
2 & 2 \\
\end{array}
\]

An $m \times n$ matrix M is Totally Monotone (TM) if every 2×2 submatrix is Monotone.

(submatrix: not necessarily contiguous in the original matrix)

Property

M is Totally Monotone $\implies M$ is Monotone
Totally Monotone Matrices

Definition (Cond.)

A 2×2 Monotone matrix

\[
\begin{pmatrix}
2 & 4 \\
4 & 5
\end{pmatrix}
\begin{pmatrix}
2 & 3 \\
5 & 3
\end{pmatrix}
\begin{pmatrix}
7 & 1 \\
2 & 2
\end{pmatrix}
\]

An $m \times n$ matrix M is Totally Monotone (TM) if every 2×2 submatrix is Monotone.

(submatrix: not necessarily contiguous in the original matrix)

Property

M is Totally Monotone $\Rightarrow M$ is Monotone

M is Totally Monotone $\nRightarrow M$ is Monotone
SMAWK Algorithm
Motivation

Find all m row minima of an implicitly given $m \times n$ matrix M.
SMAWK Algorithm

Motivation
Find all m row minima of an implicitly given $m \times n$ matrix M

Naive Algorithm: $O(mn)$
Motivation
Find all m row minima of an implicitly given $m \times n$ matrix M

Naive Algorithm: $O(mn)$

SMAWK Algorithm
[Aggarwal, Klawe, Moran, Shor, Wilber (1986)]
SMAWK Algorithm

Motivation
Find all m row minima of an implicitly given $m \times n$ matrix M

Naive Algorithm: $O(mn)$

SMAWK Algorithm
[Aggarwal, Klawe, Moran, Shor, Wilber (1986)]

If M is Totally Monotone,
all m row minima can be found in $O(m + n)$ time.
SMAWK Algorithm

Motivation
Find all m row minima of an implicitly given $m \times n$ matrix M

Naive Algorithm: $O(mn)$

SMAWK Algorithm
[Aggarwal, Klawe, Moran, Shor, Wilber (1986)]

If M is Totally Monotone,
all m row minima can be found in $O(m + n)$ time.

Usually $m = \Theta(n)$

$\Theta(n)$ speedup: $O(n^2)$ down to $O(n)$.

Quadrangle-INEQUALITY and Total-Monotonicity – p.19/52
SMAWK Algorithm

- **Motivation**
 Find all m row minima of an implicitly given $m \times n$ matrix M

- **Naive Algorithm:** $O(mn)$

- **SMAWK Algorithm**
 [Aggarwal, Klawe, Moran, Shor, Wilber (1986)]

 If M is Totally Monotone,
 all m row minima can be found in $O(m + n)$ time.

 Usually $m = \Theta(n)$

 $\Theta(n)$ speedup: $O(n^2)$ down to $O(n)$.

- SMAWK was culmination of decade(s) of work on similar problems; speedups using convexity and concavity.
Motivation
Find all m row minima of an implicitly given $m \times n$ matrix M

Naive Algorithm: $O(mn)$

SMAWK Algorithm
[Aggarwal, Klawe, Moran, Shor, Wilber (1986)]
If M is Totally Monotone,
all m row minima can be found in $O(m + n)$ time.

Usually $m = \Theta(n)$
$\Theta(n)$ speedup: $O(n^2)$ down to $O(n)$.

SMAWK was culmination of decade(s) of work on similar problems; speedups using convexity and concavity.

Has been used to speed up many DP problems, e.g., computational geometry, bioinformatics, k-center on a line, etc.
Motivation

TM property is often established via Monge property.
The Monge Property

Motivation

TM property is often established via Monge property.

Definition

An $m \times n$ matrix M is Monge if $\forall i \leq i'$ and $\forall j \leq j'$

$$M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'}$$
The Monge Property

Quadrangle Inequality

Function \(f(i, j) \)
\[\forall i \leq i' \leq j \leq j' \]
\[f(i, j) + f(i', j') \leq f(i', j) + f(i, j') \]

Monge

Matrix \(M \)
\[\forall i \leq i' \ \text{and} \ \forall j \leq j' \]
\[M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'} \]
The Monge Property

Quadrangle Inequality

Function $f(i, j)$

$\forall i \leq i' \leq j \leq j'$

$f(i, j) + f(i', j') \leq f(i', j) + f(i, j')$

Monge

Matrix M

$\forall i \leq i' \text{ and } \forall j \leq j'$

$M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'}$

QI vs. Monge
The Monge Property

Quadrangle Inequality

Function $f(i, j)$

\[\forall i \leq i' \leq j \leq j' \]

\[f(i, j) + f(i', j') \leq f(i', j) + f(i, j') \]

Monge

Matrix M

\[\forall i \leq i' \text{ and } \forall j \leq j' \]

\[M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'} \]

QI vs. Monge

Different names for same type of inequality.
The Monge Property

Quadrangle Inequality

Function \(f(i, j) \)

\[\forall i \leq i' \leq j \leq j' \]

\[f(i, j) + f(i', j') \leq f(i', j) + f(i, j') \]

Monge

Matrix \(M \)

\[\forall i \leq i' \text{ and } \forall j \leq j' \]

\[M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'} \]

QI vs. Monge

- Different names for same type of inequality.
- Used differently in literature.
The Monge Property

Quadrangle Inequality

Function $f(i, j)$

$\forall i \leq i' \leq j \leq j'$

$f(i, j) + f(i', j') \leq f(i', j) + f(i, j')$

Monge

Matrix M

$\forall i \leq i'$ and $\forall j \leq j'$

$M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'}$

QI vs. Monge

- Different names for same type of inequality.
- Used differently in literature.
- QI: $f(i, j)$ is function to be calculated.

Monge: $M_{i,j}$ implicitly given.
The Monge Property

Quadrangle Inequality

Function $f(i, j)$

$\forall i \leq i' \leq j \leq j'$

$f(i, j) + f(i', j') \leq f(i', j) + f(i, j')$

Monge

Matrix M

$\forall i \leq i'$ and $\forall j \leq j'$

$M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'}$

QI vs. Monge

Different names for same type of inequality.

Used differently in literature.

QI: $f(i, j)$ is function to be calculated.

Need all $f(i, j)$ entries.

Monge: $M_{i,j}$ implicitly given.

Only need the row minima, but not other entries.
Monge Property

\[\forall i \leq i' \quad \forall j \leq j' \quad M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'} \]

Theorems
Monge Property

\[\forall i \leq i', \forall j \leq j' \quad M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'} \]

Theorems

- \(M \) is Monge \(\Rightarrow \) \(M \) is Totally Monotone
- \(M \) is Monge \(\Leftrightarrow \) \(M \) is Totally Monotone
Monge Property

\[\forall i \leq i' \quad \forall j \leq j' \quad M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'} \]

Theorems

- \(M \text{ is Monge} \Rightarrow M \text{ is Totally Monotone} \)
- \(M \text{ is Monge} \iff M \text{ is Totally Monotone} \)
- If \(\forall i \) and \(\forall j \), \(M_{i,j} + M_{i+1,j+1} \leq M_{i+1,j} + M_{i,j+1} \),
 then \(M \) is Monge.
Monge Property

\[\forall i \leq i' \quad \forall j \leq j' \quad M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'} \]

Theorems

- \(M \) is Monge \(\Rightarrow \) \(M \) is Totally Monotone
- \(M \) is Monge \(\Leftrightarrow \) \(M \) is Totally Monotone

If \(\forall i \) and \(\forall j \), \(M_{i,j} + M_{i+1,j+1} \leq M_{i+1,j} + M_{i,j+1} \), then \(M \) is Monge.

\(\Rightarrow \) Only need to prove Monge property for adjacent rows and columns.
Monge Property

General Scheme
Monge Property

General Scheme

1. Prove Monge Property for adjacent rows and columns
Monge Property

General Scheme

1. Prove Monge Property for adjacent rows and columns
2. (Automatically implies) Monge Property
Monge Property

General Scheme

1. Prove Monge Property for adjacent rows and columns
2. (Automatically implies) Monge Property
3. (Automatically implies) Totally Monotone Property
Monge Property

General Scheme

1. Prove Monge Property for adjacent rows and columns
2. (Automatically implies) Monge Property
3. (Automatically implies) Totally Monotone Property
4. Use SMAWK algorithm to find row minima
Monge Property

General Scheme

1. Prove Monge Property for adjacent rows and columns
2. (Automatically implies) Monge Property
3. (Automatically implies) Totally Monotone Property
4. Use SMAWK algorithm to find row minima
5. Usually $\Theta(n)$ speedup
Relationship?

Quadrangle Inequality Totally Monotone (Monge)
Relationship?

<table>
<thead>
<tr>
<th>Quadrangle Inequality</th>
<th>Totally Monotone (Monge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A matrix to be calculated</td>
<td>A matrix given implicitly</td>
</tr>
</tbody>
</table>
Relationship?

<table>
<thead>
<tr>
<th>Quadrangle Inequality</th>
<th>Totally Monotone (Monge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A matrix to be calculated</td>
<td>A matrix given implicitly</td>
</tr>
<tr>
<td>Need all $O(n^2)$ entries</td>
<td>Need only $O(n)$ row minima</td>
</tr>
</tbody>
</table>
Relationship?

<table>
<thead>
<tr>
<th>Quadrangle Inequality</th>
<th>Totally Monotone (Monge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A matrix to be calculated</td>
<td>A matrix given implicitly</td>
</tr>
<tr>
<td>Need all $O(n^2)$ entries</td>
<td>Need only $O(n)$ row minima</td>
</tr>
<tr>
<td>$O(n^3)$ to $O(n^2)$ speedup</td>
<td>$O(n^2)$ to $O(n)$ speedup</td>
</tr>
</tbody>
</table>
Relationship?

<table>
<thead>
<tr>
<th>Quadrangle Inequality</th>
<th>Totally Monotone (Monge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A matrix to be calculated</td>
<td>A matrix given implicitly</td>
</tr>
<tr>
<td>Need all $O(n^2)$ entries</td>
<td>Need only $O(n)$ row minima</td>
</tr>
<tr>
<td>$O(n^3)$ to $O(n^2)$ speedup</td>
<td>$O(n^2)$ to $O(n)$ speedup</td>
</tr>
</tbody>
</table>

This talk
Relationship?

<table>
<thead>
<tr>
<th>Quadrangle Inequality</th>
<th>Totally Monotone (Monge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A matrix to be calculated</td>
<td>A matrix given implicitly</td>
</tr>
<tr>
<td>Need all $O(n^2)$ entries</td>
<td>Need only $O(n)$ row minima</td>
</tr>
<tr>
<td>$O(n^3)$ to $O(n^2)$ speedup</td>
<td>$O(n^2)$ to $O(n)$ speedup</td>
</tr>
</tbody>
</table>

This talk

- QI instance is decomposed into $\Theta(n)$ TM instances
Relationship?

Quadrangle Inequality
- A matrix to be calculated
- Need all $O(n^2)$ entries
- $O(n^3)$ to $O(n^2)$ speedup

Totally Monotone (Monge)
- A matrix given implicitly
- Need only $O(n)$ row minima
- $O(n^2)$ to $O(n)$ speedup

This talk
- QI instance is decomposed into $\Theta(n)$ TM instances
- Each TM instance requires $O(n)$ time
Relationship?

Quadrangle Inequality
- A matrix to be calculated
- Need all $O(n^2)$ entries
- $O(n^3)$ to $O(n^2)$ speedup

Totally Monotone (Monge)
- A matrix given implicitly
- Need only $O(n)$ row minima
- $O(n^2)$ to $O(n)$ speedup

This talk
- QI instance is decomposed into $\Theta(n)$ TM instances
- Each TM instance requires $O(n)$ time
- \(\Rightarrow \) QI instance requires $O(n^2)$ time in total
Decompositions

QI instance $\rightarrow \Theta(n)$ TM instances
Decompositions

QI instance $\rightarrow \Theta(n)$ TM instances

- D^d decomposition

- L^m and R^m decompositions
 Decompositions

\[\text{QI instance} \longrightarrow \Theta(n) \text{ TM instances} \]

- \(D^d \) decomposition
 - Each diagonal \(\longrightarrow \) TM instance

- \(L^m \) and \(R^m \) decompositions
Decompositions

\[
\text{QI instance} \rightarrow \Theta(n) \text{ TM instances}
\]

- **\(D^d\) decomposition**
 - Each diagonal \(\rightarrow\) TM instance

- **\(L^m\) and \(R^m\) decompositions**
 - \(L^m\): Each row \(\rightarrow\) TM instance
 - \(R^m\): Each column \(\rightarrow\) TM instance
Decompositions

QI instance $\rightarrow \Theta(n)$ TM instances

D^d decomposition
- Each diagonal \rightarrow TM instance
- Permits solving QI problem directly using SMAWK.
 Same time bound as KY but different technique.

L^m and R^m decompositions
- L^m: Each row \rightarrow TM instance
- R^m: Each column \rightarrow TM instance
Decompositions

QI instance $\rightarrow \Theta(n)$ TM instances

D^d decomposition
- Each diagonal \rightarrow TM instance
- Permits solving QI problem directly using SMAWK.
 Same time bound as KY but different technique.

L^m and R^m decompositions
- L^m: Each row \rightarrow TM instance
- R^m: Each column \rightarrow TM instance
- Immediately implies the original KY speedup
Decompositions

QI instance $\xrightarrow{} \Theta(n)$ TM instances

D^d decomposition
- Each diagonal \rightarrow TM instance
- Permits solving QI problem directly using SMAWK.
 Same time bound as KY but different technique.

L^m and R^m decompositions
- L^m: Each row \rightarrow TM instance
- R^m: Each column \rightarrow TM instance
- Immediately implies the original KY speedup
- Permits using algorithm of [Larmore, Schieber (1990)], to get “online” KY speedup.
D^d Decomposition
D^d Decomposition

Each diagonal d in original QI matrix corresponds to a new Monge Matrix D^d
D^d Decomposition

- Each diagonal d in original QI matrix corresponds to a new Monge Matrix D^d.

- Entries on diagonal d are row minima of corresponding rows in D^d.
D^d Decomposition

- Each diagonal d in original QI matrix corresponds to a new Monge Matrix D^d.
- Entries on diagonal d are row minima of corresponding rows in D^d.
D^d Decomposition

Each **diagonal** d in original QI matrix corresponds to a new Monge Matrix D^d.

Entries on **diagonal** d are the row minima of corresponding rows in D^d.
D^d Decomposition

- Each diagonal d in original QI matrix corresponds to a new Monge Matrix D^d.

- Entries on diagonal d are row minima of corresponding rows in D^d.

Quadrangle-Inequality and Total-Monotonicity – p.26/52
Each diagonal d in original QI matrix corresponds to a new Monge Matrix D^d.

Entries on diagonal d are row minima of corresponding rows in D^d.
D^d Decomposition

- Each diagonal d in original QI matrix corresponds to a new Monge Matrix D^d.
- Entries on diagonal d are row minima of corresponding rows in D^d.

![Diagram showing the decomposition process](image)
L^m and R^m Decompositions (R^m shown)
L^m and R^m Decompositions (R^m shown)

Each column (row) m in original QI matrix corresponds to a new Monge Matrix R^m (L^m)
L^m and R^m Decompositions (R^m shown)

- Each column (row) m in original QI matrix corresponds to a new Monge Matrix $R^m (L^m)$
- Entries on column (row) m are row minima of corresponding rows in $R^m (L^m)$.
L^m and R^m Decompositions (R^m shown)

- Each column (row) m in original QI matrix corresponds to a new Monge Matrix $R^m (L^m)$.
- Entries on column (row) m are row minima of corresponding rows in $R^m (L^m)$.

Quadrangle-Inequality and Total-Monotonicity – p.27/52
Each column (row) \(m \) in original QI matrix corresponds to a new Monge Matrix \(R^m \) (\(L^m \)).

Entries on column (row) \(m \) are row minima of corresponding rows in \(R^m \) (\(L^m \)).
\(L^m \) and \(R^m \) Decompositions \((R^m \text{ shown})\)

- Each column (row) \(m \) in original QI matrix corresponds to a new Monge Matrix \(R^m (L^m) \).
- Entries on column (row) \(m \) are row minima of corresponding rows in \(R^m (L^m) \).
L^m and R^m Decompositions (R^m shown)

- Each column (row) m in original QI matrix corresponds to a new Monge Matrix $R^m (L^m)$
- Entries on column (row) m are row minima of corresponding rows in $R^m (L^m)$.
L^m and R^m Decompositions \(^{(R^m \text{ shown})}\)

- Each column (row) \(m\) in original QI matrix corresponds to a new Monge Matrix \(R^m (L^m)\).

- Entries on column (row) \(m\) are row minima of corresponding rows in \(R^m (L^m)\).
Outline

Background

- Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup
- SMAWK Algorithm for finding Row Minima of Totally Monotone (TM) Matrices

The D^d Decomposition
A transformation from QI to TM such that SMAWK solves KY problem as quickly as KY.

The L^m and R^m Decompositions
Another transformation from QI to TM that (1) implies KY speedup and (2) enables online solution.

Extensions
Applying the technique to known generalizations of KY.
\(D^d \) Decomposition

Definition
\(D^d \) Decomposition

Definition

- General recurrence

\[
B_{i,j} = w(i,j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \}
\]
D^d Decomposition

Definition

- General recurrence
 \[B_{i,j} = w(i, j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

- For diagonal \(d \), \(1 \leq d < n \)
 \[B_{i,i+d} = w(i, i+d) + \min_{i < j \leq i+d} \{ B_{i,j-1} + B_{j,i+d} \} \]
D^d Decomposition

Definition

- General recurrence
 \[B_{i,j} = w(i, j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

- For diagonal \(d \), (1 \(\leq \) \(d \) \(< \) \(n \))
 \[B_{i,i+d} = w(i, i+d) + \min_{i < j \leq i+d} \{ B_{i,j-1} + B_{j,i+d} \} \]

- Define \((n - d + 1) \times (n + 1)\) matrix \(D^d \)
 \[D_{i,j}^d = \begin{cases}
 w(i, i+d) + \{ B_{i,j-1} + B_{j,i+d} \} & \text{if } 0 \leq i < j \leq i + d \leq n \\
 \infty & \text{otherwise}
 \end{cases} \]
D^d Decomposition

Definition

General recurrence

$$B_{i,j} = w(i,j) + \min_{i<t\leq j}\{B_{i,t-1} + B_{t,j}\}$$

For diagonal d, $(1 \leq d < n)$

$$B_{i,i+d} = w(i,i+d) + \min_{i<j\leq i+d}\{B_{i,j-1} + B_{j,i+d}\}$$

Define $(n - d + 1) \times (n + 1)$ matrix D^d

$$D^d_{i,j} = \begin{cases}
 w(i,i+d) + \{B_{i,j-1} + B_{j,i+d}\} & \text{if } 0 \leq i < j \leq i + d \leq n \\
 \infty & \text{otherwise}
\end{cases}$$

Then,

$$B_{i,i+d} = \min_{i<j\leq i+d} D^d_{i,j} = \min_{0\leq j\leq n} D^d_{i,j}$$
D^d Decomposition

Definition

- General recurrence
 \[B_{i,j} = w(i, j) + \min_{i<t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]
- For diagonal d, $(1 \leq d < n)$
 \[B_{i,i+d} = w(i, i+d) + \min_{i<j \leq i+d} \{ B_{i,j-1} + B_{j,i+d} \} \]
- Define $(n - d + 1) \times (n + 1)$ matrix D^d
 \[
 D^d_{i,j} = \begin{cases}
 w(i, i+d) + \{ B_{i,j-1} + B_{j,i+d} \} & \text{if } 0 \leq i < j \leq i + d \leq n \\
 \infty & \text{otherwise}
 \end{cases}
 \]
- Then,
 \[B_{i,i+d} = \min_{i<j \leq i+d} D^d_{i,j} = \min_{0 \leq j \leq n} D^d_{i,j} \]

Lemma

- D^d is Monge, for each $1 \leq d < n$.

Quadrangle-Inequality and Total-Monotonicity – p.29/52
\(D^d \) Decomposition

\[
D^d_{i,j} = \begin{cases}
 w(i, i + d) + \{B_{i,j-1} + B_{j,i+d}\} & \text{if } 0 \leq i < j \leq i + d \leq n \\
 \infty & \text{otherwise}
\end{cases}
\]

- **Shape of** \(D^d \)
\[D^d_{i,j} = \begin{cases}
 w(i, i + d) + \{B_{i,j-1} + B_{j,i+d}\} & \text{if } 0 \leq i < j \leq i + d \leq n \\
 \infty & \text{otherwise}
\end{cases} \]
D^d is Monge
Definition \(D^d_{i,j} = w(i, i + d) + \{B_{i,j-1} + B_{j,i+d}\} \)

$D^d_{\text{is Monge}}$

Definition

$D^d_{i,j} = w(i, i + d) + \left\{ B_{i,j - 1} + B_{j,i + d} \right\}$

Goal

$D^d_{i,j} + D^d_{i+1,j+1} \leq D^d_{i+1,j} + D^d_{i,j+1}$
D^d is Monge

Definition \(D^d_{i,j} = w(i, i + d) + \{ B_{i,j-1} + B_{j,i+d} \} \)

By definition

\[
D^d_{i,j} + D^d_{i+1,j+1} = \{ w(i, i + d) + w(i + 1, i + d + 1) \} + \\
\{ B_{i,j-1} + B_{i+1,j} \} + \{ B_{j,i+d} + B_{j+1,i+d+1} \}
\]

\[
D^d_{i+1,j} + D^d_{i,j+1} = \{ w(i + 1, i + d + 1) + w(i, i + d) \} + \\
\{ B_{i+1,j-1} + B_{i,j} \} + \{ B_{j,i+d+1} + B_{j+1,i+d} \}
\]

Goal

\[
D^d_{i,j} + D^d_{i+1,j+1} \leq D^d_{i+1,j} + D^d_{i,j+1}
\]
D^d is Monge

Definition

\[D^d_{i,j} = w(i, i + d) + \{ B_{i,j-1} + B_{j,i+d} \} \]

By definition

\[
D^d_{i,j} + D^d_{i+1,j+1} = \{ w(i, i + d) + w(i + 1, i + d + 1) \} + \{ B_{i,j-1} + B_{i+1,j} \} + \{ B_{j,i+d} + B_{j+1,i+d+1} \} \\
D^d_{i+1,j} + D^d_{i,j+1} = \{ w(i + 1, i + d + 1) + w(i, i + d) \} + \{ B_{i+1,j-1} + B_{i,j} \} + \{ B_{j,i+d+1} + B_{j+1,i+d} \}
\]

Since B satisfies QI,

\[
B_{i,j-1} + B_{i+1,j} \leq B_{i+1,j-1} + B_{i,j} \\
B_{j,i+d} + B_{j+1,i+d+1} \leq B_{j,i+d+1} + B_{j+1,i+d}
\]

Goal

\[
D^d_{i,j} + D^d_{i+1,j+1} \leq D^d_{i+1,j} + D^d_{i,j+1}
\]
D^d is Monge

Definition
\[D^d_{i,j} = w(i, i + d) + \{ B_{i,j-1} + B_{j,i+d} \} \]

By definition
\[
D^d_{i,j} + D^d_{i+1,j+1} = \{ w(i, i + d) + w(i + 1, i + d + 1) \} + \\
\{ B_{i,j-1} + B_{i+1,j} \} + \{ B_{j,i+d} + B_{j+1,i+d+1} \}
\]
\[
D^d_{i+1,j} + D^d_{i,j+1} = \{ w(i + 1, i + d + 1) + w(i, i + d) \} + \\
\{ B_{i+1,j-1} + B_{i,j} \} + \{ B_{j,i+d+1} + B_{j+1,i+d} \}
\]

Since B satisfies QI,
\[
B_{i,j-1} + B_{i+1,j} \leq B_{i+1,j-1} + B_{i,j}
\]
\[
B_{j,i+d} + B_{j+1,i+d+1} \leq B_{j,i+d+1} + B_{j+1,i+d}
\]

So
\[
D^d_{i,j} + D^d_{i+1,j+1} \leq D^d_{i+1,j} + D^d_{i,j+1}
\]
SMAWK replaces KY
SMAWK replaces KY

We know

\[D^d_{i,j} = \begin{cases}
 w(i, i + d) + \{ B_{i,j-1} + B_{j,i+d} \} & \text{if } 0 \leq i < j \leq i + d \leq n \\
 \infty & \text{otherwise}
\end{cases} \]

\[B_{i,i+d} = \min_{0 \leq j \leq n} D^d_{i,j} \] is minimum of row \(i \) of \(D^d \)

\(D^d \) is Monge, for each \(1 \leq d < n \).
We know

\[D^d_{i,j} = \begin{cases}
 w(i, i + d) + \{B_{i,j-1} + B_{j,i+d}\} & \text{if } 0 \leq i < j \leq i + d \leq n \\
 \infty & \text{otherwise}
\end{cases} \]

\[B_{i,i+d} = \min_{0 \leq j \leq n} D^d_{i,j} = \text{minimum of row } i \text{ of } D^d \]

\[D^d \text{ is Monge, for each } 1 \leq d < n. \]

For fixed \(d \), SMAWK can be used to find all the \(B_{i,i+d} \) (row minima of \(D^d \)) in \(O(n) \) time.
We know

\[D^d_{i,j} = \begin{cases}
 w(i, i + d) + \{B_{i,j-1} + B_{j,i+d}\} & \text{if } 0 \leq i < j \leq i + d \leq n \\
 \infty & \text{otherwise}
 \end{cases} \]

\[B_{i,i+d} = \min_{0 \leq j \leq n} D^d_{i,j} = \text{minimum of row } i \text{ of } D^d \]

\(D^d \) is Monge, for each \(1 \leq d < n \).

For fixed \(d \), SMAWK can be used to find all the \(B_{i,i+d} \) (row minima of \(D^d \)) in \(O(n) \) time.

\(\Rightarrow O(n^2) \) time for all \(D^d \).
SMAWK replaces KY

We know

\[D_{i,j}^d = \begin{cases}
 w(i, i + d) + \{ B_{i,j-1} + B_{j,i+d} \} & \text{if } 0 \leq i < j \leq i + d \leq n \\
 \infty & \text{otherwise}
\end{cases} \]

\[B_{i,i+d} = \min_{0 \leq j \leq n} D_{i,j}^d = \text{minimum of row } i \text{ of } D^d \]

\[D^d \text{ is Monge, for each } 1 \leq d < n. \]

For fixed \(d \), SMAWK can be used to find all the \(B_{i,i+d} \) (row minima of \(D^d \)) in \(O(n) \) time.

\(\Rightarrow O(n^2) \) time for all \(D^d \).

Note: Must run SMAWK on \(D^d \) in the order \(d = 1, 2, 3, \ldots \)

Entries in \(D^d \) depend upon row minima of \(D^{d'} \) where \(d' < d \).
Outline

- Background
 - Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup
 - SMAWK Algorithm for finding Row Minima of Totally Monotone (TM) Matrices

- The D^d Decomposition
 A transformation from QI to TM such that SMAWK solves KY problem as quickly as KY.

- The L^m and R^m Decompositions
 Another transformation from QI to TM that (1) implies KY speedup and (2) enables online solution.

- Extensions
 Applying the technique to known generalizations of KY.
R^m Decomposition

R^m decomposition
R^m Decomposition

R^m decomposition
R^m Decomposition

R^m decomposition
R^m Decomposition

R^m decomposition

\[\rightarrow \]
R^m Decomposition

R^m decomposition

→

Quadrangle-Inequality and Total-Monotonicity – p.34/52
R^m Decomposition

R^m decomposition

Quadrangle-Inequality and Total-Monotonicity – p.34/52
R^m Decomposition

Definition
R^m Decomposition

Definition

- General recurrence

 $$B_{i,j} = w(i, j) + \min_{i < t \leq j} \{B_{i,t-1} + B_{t,j}\}$$
Definition

General recurrence

\[B_{i,j} = w(i, j) + \min_{i < t \leq j} \{B_{i,t-1} + B_{t,j}\} \]

For column \(m \), \(1 \leq m \leq n \)

\[B_{i,m} = w(i, m) + \min_{i < j \leq m} \{B_{i,j-1} + B_{j,m}\} \]
Decomposition

Definition

General recurrence

\[B_{i,j} = w(i,j) + \min_{i<t\leq j}\{B_{i,t-1} + B_{t,j}\} \]

For column \(m, \ (1 \leq m \leq n) \)

\[B_{i,m} = w(i,m) + \min_{i<j\leq m}\{B_{i,j-1} + B_{j,m}\} \]

Define \((m+1) \times (m+1)\) matrix \(R^m \)

\[
R^m_{i,j} = \begin{cases}
 w(i,m) + \{B_{i,j-1} + B_{j,m}\} & \text{if } 0 \leq i < j \leq m \\
 \infty & \text{otherwise}
\end{cases}
\]
\(R^m \) Decomposition

Definition

- **General recurrence**
 \[B_{i,j} = w(i, j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

- **For column** \(m, (1 \leq m \leq n) \)
 \[B_{i,m} = w(i, m) + \min_{i < j \leq m} \{ B_{i,j-1} + B_{j,m} \} \]

- **Define** \((m + 1) \times (m + 1)\) matrix \(R^m \)
 \[
 R^m_{i,j} = \begin{cases}
 w(i, m) + \{ B_{i,j-1} + B_{j,m} \} & \text{if } 0 \leq i < j \leq m \\
 \infty & \text{otherwise}
 \end{cases}
 \]

- **Then**
 \[B_{i,m} = \min_{i < j \leq m} R^m_{i,j} = \min_{0 < j \leq m} R^m_{i,j} \]
R^m Decomposition

Definition

- General recurrence

 \[B_{i,j} = w(i, j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

- For column m, $(1 \leq m \leq n)$

 \[B_{i,m} = w(i, m) + \min_{i < j \leq m} \{ B_{i,j-1} + B_{j,m} \} \]

- Define $(m + 1) \times (m + 1)$ matrix R^m

 \[
 R^m_{i,j} = \begin{cases}
 w(i, m) + \{ B_{i,j-1} + B_{j,m} \} & \text{if } 0 \leq i < j \leq m \\
 \infty & \text{otherwise}
 \end{cases}
 \]

- Then

 \[B_{i,m} = \min_{i < j \leq m} R^m_{i,j} = \min_{0 < j \leq m} R^m_{i,j} \]

Lemma

- R^m is **Monge**, for each $1 \leq m \leq n$.
\[R_m \text{ Decomposition} \]

\[R_{i,j}^m = \begin{cases}
 w(i, m) + \{B_{i,j-1} + B_{j,m}\} & \text{if } 0 \leq i < j \leq m \\
 \infty & \text{otherwise}
\end{cases} \]

Shape of \(R^m \)
\(R^m \) Decomposition

\[
R^m_{i,j} = \begin{cases}
 w(i, m) + \{B_{i,j-1} + B_{j,m}\} & \text{if } 0 \leq i < j \leq m \\
 \infty & \text{otherwise}
\end{cases}
\]

Shape of \(R^m \)
R^m is Monge
\(R^m \) is Monge

Definition

\[R^m_{i,j} = w(i, m) + \{ B_{i,j-1} + B_{j,m} \} \]
R^m is Monge

Definition \[R^m_{i,j} = w(i,m) + \{B_{i,j-1} + B_{j,m}\} \]

Goal \[R^m_{i,j} + R^m_{i+1,j+1} \leq R^m_{i+1,j} + R^m_{i,j+1} \]
Definition \[R^m_{i,j} = w(i,m) + \{B_{i,j-1} + B_{j,m}\} \]

By definition
\[
R^m_{i,j} + R^m_{i+1,j+1} = \{w(i,m) + w(i+1,m)\} + \\
\{B_{i,j-1} + B_{i+1,j}\} + \{B_{j,m} + B_{j+1,m}\}
\]
\[
R^m_{i+1,j} + R^m_{i,j+1} = \{w(i+1,m) + w(i,m)\} + \\
\{B_{i+1,j-1} + B_{i,j}\} + \{B_{j,m} + B_{j+1,m}\}
\]

Goal
\[
R^m_{i,j} + R^m_{i+1,j+1} \leq R^m_{i+1,j} + R^m_{i,j+1}
\]
\(R^m \) is Monge

Definition \(R^m_{i,j} = w(i,m) + \{B_{i,j-1} + B_{j,m}\} \)

By definition
\[
\begin{align*}
R^m_{i,j} + R^m_{i+1,j+1} &= \{w(i,m) + w(i+1,m)\} + \\
&\quad \{B_{i,j-1} + B_{i+1,j}\} + \{B_{j,m} + B_{j+1,m}\}
\end{align*}
\]
\[
\begin{align*}
R^m_{i+1,j} + R^m_{i,j+1} &= \{w(i+1,m) + w(i,m)\} + \\
&\quad \{B_{i+1,j-1} + B_{i,j}\} + \{B_{j,m} + B_{j+1,m}\}
\end{align*}
\]

Since \(B \) satisfies QI,
\[
B_{i,j-1} + B_{i+1,j} \leq B_{i+1,j-1} + B_{i,j}
\]

Goal
\[
R^m_{i,j} + R^m_{i+1,j+1} \leq R^m_{i+1,j} + R^m_{i,j+1}
\]
\(R^m \) is Monge

Definition \[R^m_{i,j} = w(i, m) + \{B_{i,j-1} + B_{j,m}\} \]

By definition
\[
R^m_{i,j} + R^m_{i+1,j+1} = \{w(i, m) + w(i + 1, m)\} + \\
\{B_{i,j-1} + B_{i+1,j}\} + \{B_{j,m} + B_{j+1,m}\}
\]
\[
R^m_{i+1,j} + R^m_{i,j+1} = \{w(i + 1, m) + w(i, m)\} + \\
\{B_{i+1,j-1} + B_{i,j}\} + \{B_{j,m} + B_{j+1,m}\}
\]

Since \(B \) satisfies QI,
\[
B_{i,j-1} + B_{i+1,j} \leq B_{i+1,j-1} + B_{i,j}
\]
So
\[
R^m_{i,j} + R^m_{i+1,j+1} \leq R^m_{i+1,j} + R^m_{i,j+1}
\]
Outline

Background

- Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup
- SMAWK Algorithm for finding Row Minima of Totally Monotone (TM) Matrices

The D^d Decomposition
A transformation from QI to TM such that SMAWK solves KY problem as quickly as KY.

The L^m and R^m Decompositions
Another transformation from QI to TM that
(1) implies KY speedup and (2) enables online solution.

Extensions
Applying the technique to known generalizations of KY.
L^m and R^m Imply Original KY Result

- KY Speedup

 $K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1)$
L^m and R^m Imply Original KY Result

KY Speedup

$K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1)$

$R^m \rightarrow K_B(i, j + 1) \leq K_B(i + 1, j + 1)$
\(L^m \text{ and } R^m \) Imply Original KY Result

KY Speedup

\[
K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1)
\]

\(R^m \longrightarrow K_B(i, j + 1) \leq K_B(i + 1, j + 1) \)

Recall

\(\text{RM}_{R^m}(i) \) is index of rightmost minimum of row \(i \) of \(R^m \).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{RM}_M(1) &= 2 \\
\text{RM}_M(2) &= 4 \\
\text{RM}_M(3) &= 4 \\
\text{RM}_M(4) &= 4 \\
\text{RM}_M(5) &= 6 \\
\text{RM}_M(6) &= 6
\end{align*}
\]
\(L^m \) and \(R^m \) Imply Original KY Result

KY Speedup
\[
K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1)
\]

\(R^m \rightarrow K_B(i, j + 1) \leq K_B(i + 1, j + 1) \)

Recall

\(\text{RM}_{R^m}(i) \) is index of rightmost minimum of row \(i \) of \(R^m \).

From the definition
\[
B_{i,m} = \min_{i < j \leq m} R^m_{i,j} \quad \rightarrow \quad K_B(i, m) = \text{RM}_{R^m}(i)
\]

Quadrangle-Inequality and Total-Monotonicity – p.39/52
L^m and R^m Imply Original KY Result

KY Speedup

- $K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1)$

- $R^m \rightarrow K_B(i, j + 1) \leq K_B(i + 1, j + 1)$

Recall

$RM_{R^m}(i)$ is *index* of rightmost minimum of row i of R^m.

From the definition

$$B_{i,m} = \min_{i<j \leq m} R_{i,j}^m \quad \rightarrow \quad K_B(i, m) = RM_{R^m}(i)$$

So

R^m is TM \hspace{1cm} \rightarrow \hspace{1cm} $RM_{R^m}(i) \leq RM_{R^m}(i + 1)$

\hspace{1cm} \rightarrow \hspace{1cm} $K_B(i, m) \leq K_B(i + 1, m)$
L^m and R^m Imply Original KY Result

KY Speedup

- $K_B(i, j) \leq K_B(i, j + 1) \leq K_B(i + 1, j + 1)$

- $R^m \rightarrow K_B(i, j + 1) \leq K_B(i + 1, j + 1)$

Recall

$RM_{R^m}(i)$ is index of rightmost minimum of row i of R^m.

From the definition

$$B_{i,m} = \min_{i<j\leq m} R^m_{i,j} \quad \rightarrow \quad K_B(i, m) = RM_{R^m}(i)$$

So

- R^m is TM \rightarrow $RM_{R^m}(i) \leq RM_{R^m}(i + 1) \rightarrow K_B(i, m) \leq K_B(i + 1, m)$

- $L^m \rightarrow K_B(i, j) \leq K_B(i, j + 1)$

Similar
Outline

- Background
 - Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup
 - SMAWK Algorithm for finding Row Minima of Totally Monotone (TM) Matrices

- The D^d Decomposition
 A transformation from QI to TM such that SMAWK solves KY problem as quickly as KY.

- The L^m and R^m Decompositions
 Another transformation from QI to TM that
 (1) implies KY speedup and (2) enables online solution.

- Extensions
 Applying the technique to known generalizations of KY.
LARSCH Algorithm
D^d decomposition
LARSCH Algorithm

- D^d decomposition

 $$D^d_{i,j} = w(i, i + d) + \{ B_{i,j-1} + B_{j,i+d} \} \quad (0 \leq i < j \leq i + d \leq n)$$
LARSCH Algorithm

*$D^d_\text{decomposition}$

$D^d_{i,j} = w(i, i + d) + \{B_{i,j-1} + B_{j,i+d}\} \quad (0 \leq i < j \leq i + d \leq n)$

SMAWK algorithm
LARSCH Algorithm

- D^d decomposition
 - $D_{i,j}^d = w(i, i + d) + \{B_{i,j-1} + B_{j,i+d}\}$ (0 ≤ i < j ≤ i + d ≤ n)
- SMAWK algorithm
- L^m and R^m decomposition
LARSCH Algorithm

\(D_d \) decomposition

\[
D_{i,j}^d = w(i, i + d) + \{B_{i,j-1} + B_{j,i+d}\} \quad (0 \leq i < j \leq i + d \leq n)
\]

SMAWK algorithm

\(L^m \) and \(R^m \) decomposition

\[
R_{i,j}^m = w(i, m) + \{B_{i,j-1} + B_{j,m}\} \quad (0 \leq i < j \leq m)
\]
LARSCH Algorithm

- D^d decomposition

 $D^d_{i,j} = w(i, i + d) + \{B_{i,j-1} + B_{j,i+d}\}$ \hspace{1cm} (0 \leq i < j \leq i + d \leq n)

- SMAWK algorithm

- L^m and R^m decomposition

 $R^m_{i,j} = w(i, m) + \{B_{i,j-1} + B_{j,m}\}$ \hspace{1cm} (0 \leq i < j \leq m)

- Can not use SMAWK algorithm:

 $B_{j,m} = \min_t R^m_{j,t}$ is row-minima of row j of R^m

 and is therefore not known.
LARSCH Algorithm

\(D^d \) decomposition

\[D^d_{i,j} = w(i, i + d) + \{ B_{i,j-1} + B_{j,i+d} \} \quad (0 \leq i < j \leq i + d \leq n) \]

SMAWK algorithm

\(L^m \) and \(R^m \) decomposition

\[R^m_{i,j} = w(i, m) + \{ B_{i,j-1} + B_{j,m} \} \quad (0 \leq i < j \leq m) \]

Can not use SMAWK algorithm:

\[B_{j,m} = \min_t R^m_{j,t} \text{ is row-minima of row } j \text{ of } R^m \]
and is therefore not known.

LARSCH algorithm \[\text{[Larmore, Schieber (1990)]}\]
permits calculating row minima of TM matrices in \(O(n) \) time,
even with this dependency.
LARSCH Algorithm

- D^d decomposition

 \[D^d_{i, j} = w(i, i + d) + \{ B_{i, j-1} + B_{j, i+d} \} \quad (0 \leq i < j \leq i + d \leq n) \]

- SMAWK algorithm

- L^m and R^m decomposition

 \[R^m_{i, j} = w(i, m) + \{ B_{i, j-1} + B_{j, m} \} \quad (0 \leq i < j \leq m) \]

 Can not use SMAWK algorithm:
 \[
 B_{j, m} = \min_t R^m_{j, t} \text{ is row-minima of row } j \text{ of } R^m \\
 \text{and is therefore not known.}
 \]

- LARSCH algorithm [Larmore, Schieber (1990)]

 permits calculating row minima of TM matrices in $O(n)$ time, even with this dependency.

- $O(n)$ time for each column $\Rightarrow O(n^2)$ in total.

Quadrangle-Inequality and Total-Monotonicity – p.41/52
LARSCH Algorithm

Finding row minima in totally monotone matrices with limited dependency. This is also known as online TM problem.
LARSCH Algorithm

Finding row minima in totally monotone matrices with limited dependency. This is also known as online TM problem.

Entries of column j can depend on the row minima of rows i where $M_{i,j} = \infty$.

Green: the column j.
Red: rows that column j can depend on.
LARSCH Algorithm

Finding row minima in totally monotone matrices with limited dependency. This is also known as online TM problem.

Entries of column j can depend on the row minima of rows i where $M_{i,j} = \infty$.

Green: the column j.
Red: rows that column j can depend on.
LARSCH Algorithm

Finding row minima in totally monotone matrices with limited dependency. This is also known as online TM problem.

Entries of column j can depend on the row minima of rows i where $M_{i,j} = \infty$.

Green: the column j.
Red: rows that column j can depend on.
LARSCH Algorithm

Finding row minima in totally monotone matrices with limited dependency. This is also known as online TM problem.

Entries of column j can depend on the row minima of rows i where $M_{i,j} = \infty$.

Green: the column j.
Red: rows that column j can depend on.
LARSCH Algorithm

Finding row minima in totally monotone matrices with limited dependency. This is also known as online TM problem.

Entries of column j can depend on the row minima of rows i where $M_{i,j} = \infty$.

Green: the column j.
Red: rows that column j can depend on.

\[
R^m_{i,j} = w(i, m) + \{B_{i,j-1} + B_{j,m}\} \quad (0 \leq i < j \leq m)
\]
LARSCH Algorithm

Finding row minima in totally monotone matrices with limited dependency. This is also known as online TM problem.

Entries of column j can depend on the row minima of rows i where $M_{i,j} = \infty$.

Green: the column j.
Red: rows that column j can depend on.

$$R_{i,j}^m = w(i, m) + \{ B_{i,j-1} + B_{j,m} \} \quad (0 \leq i < j \leq m)$$

R^m satisfies the condition of LARSCH.
Aggarwal and Park (FOCS ’88) developed a 3-D monotone matrix representation of the KY problem and then showed how to use an algorithm due to Wilber (for online computation of maxima of certain concave sequences) to calculate “tube-maxima” of their matrices.

Careful decomposition of their work yields a decomposition similar to L^m and an $O(n)$ algorithm for calculating its row-minima. This provides an alternative derivation of the previous result (with a symmetry argument extending it to R^m).
Online Algorithm
Recall: Two-sided online
Online Algorithm

- Recall: Two-sided online
- Current step: Optimal BST for $\text{Key}_{l+1}, \ldots, \text{Key}_r$
Online Algorithm

Recall: Two-sided online

- Current step: Optimal BST for $\text{Key}_{l+1}, \ldots, \text{Key}_r$
- Next step: Add either Key_l or Key_{r+1}.
Online Algorithm

Recall: Two-sided online

Current step: Optimal BST for $\text{Key}_{l+1}, \ldots, \text{Key}_r$

Next step: Add either Key_l or Key_{r+1}.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>146</td>
<td>260</td>
<td>349</td>
<td>491</td>
<td>624</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>75</td>
<td>141</td>
<td>250</td>
<td>357</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>43</td>
<td>119</td>
<td>204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>44</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Online Algorithm

Recall: Two-sided online

- Current step: Optimal BST for $\text{Key}_{l+1}, \ldots, \text{Key}_r$
- Next step: Add either Key_l or Key_{r+1}.

Online algorithm: using LARSCH
Online Algorithm

- Recall: Two-sided online
 - Current step: Optimal BST for $\text{Key}_{l+1}, \ldots, \text{Key}_r$
 - Next step: Add either Key_l or Key_{r+1}.

- Online algorithm: using LARSCH
 - Add Key_{r+1}
Online Algorithm

- Recall: Two-sided online
 - Current step: Optimal BST for $\text{Key}_{l+1}, \ldots, \text{Key}_r$
 - Next step: Add either Key_l or Key_{r+1}.

- Online algorithm: using LARSCH
 - Add Key_{r+1}
 - Construct R^{r+1}
Online Algorithm

Recall: Two-sided online

- Current step: Optimal BST for $\text{Key}_{l+1}, \ldots, \text{Key}_r$
- Next step: Add either Key_l or Key_{r+1}.

Online algorithm: using LARSCH

- Add Key_{r+1}
- Construct R^{r+1}
- Solve by LARSCH
Online Algorithm

- Recall: Two-sided online
 - Current step: Optimal BST for $\text{Key}_{l+1}, \ldots, \text{Key}_r$
 - Next step: Add either Key_l or Key_{r+1}.

- Online algorithm: using LARSCH
 - Add Key_{r+1}
 - Construct R^{r+1}
 - Solve by LARSCH
 - $O(n)$ time worst case
Outline

- Background
 - Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup
 - SMAWK Algorithm for finding Row Minima of Totally Monotone (TM) Matrices

- The D^d Decomposition
 A transformation from QI to TM such that SMAWK solves KY problem as quickly as KY.

- The L^m and R^m Decompositions
 Another transformation from QI to TM that
 (1) implies KY speedup and (2) enables online solution.

- Extensions
 Applying the technique to known generalizations of KY.
Extensions

Some known extensions
Extensions

Some known extensions

[Michelle L. Wachs (1989)]
Extensions

Some known extensions

- [Michelle L. Wachs (1989)]
- [Al Borchers, Prosenjit Gupta (1994)]
Recurrence
Original Knuth-Yao

\[B_{i,j} = w(i, j) + \min_{i < t \leq j} \left\{ B_{i,t-1} + B_{t,j} \right\} \]
Recurrence

- Original Knuth-Yao
 \[B_{i,j} = w(i,j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

- Borchers and Gupta
 \[B_{i,j} = \min_{i < t \leq j} \{ w(i,t,j) + aB_{i,t-1} + bB_{t,j} \} \]
Generalization of QI
Generalization of QI

Original Knuth-Yao

\[B_{i,j} = w(i, j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]
Generalization of QI

Original Knuth-Yao

\[B_{i,j} = w(i, j) + \min_{i < t \leq j} \{B_{i,t-1} + B_{t,j}\} \]

\(w(i, j) \) satisfies QI, if \(\forall i \leq i' \leq j \leq j' \)

\[w(i, j) + w(i', j') \leq w(i', j) + w(i, j') \]
Generalization of QI

Original Knuth-Yao

\[B_{i,j} = w(i, j) + \min_{i<t\leq j}\{B_{i,t-1} + B_{t,j}\} \]

\(w(i, j) \) satisfies QI, if \(\forall i \leq i' \leq j \leq j' \)

\[w(i, j) + w(i', j') \leq w(i', j) + w(i, j') \]

Borchers and Gupta

\[B_{i,j} = \min_{i<t\leq j}\{w(i, t, j) + aB_{i,t-1} + bB_{t,j}\} \]
Generalization of QI

Original Knuth-Yao

\[B_{i,j} = w(i, j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

\(w(i, j) \) satisfies QI, if \(\forall i \leq i' \leq j \leq j' \)

\[w(i, j) + w(i', j') \leq w(i', j) + w(i, j') \]

Borchers and Gupta

\[B_{i,j} = \min_{i < t \leq j} \{ w(i, t, j) + aB_{i,t-1} + bB_{t,j} \} \]

\(w(i, t, j) \) satisfies QI, if \(\forall i \leq i' < t \leq t' \leq j' \) and \(t \leq j \leq j' \)

\[w(i, t, j) + w(i', t', j') \leq w(i', t, j) + w(i, t', j') \]

and \(\forall i < t \leq t' \leq j \leq j' \) and \(i \leq i' < t' \)

\[w(i', t', j') + w(i, t, j) \leq w(i', t', j) + w(i, t, j') \]
Generalization of QI

Original Knuth-Yao

\[B_{i,j} = w(i, j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

\(w(i, j) \) satisfies QI, if \(\forall i \leq i' \leq j \leq j' \)

\[w(i, j) + w(i', j') \leq w(i', j) + w(i, j') \]

Borchers and Gupta

\[B_{i,j} = \min_{i < t \leq j} \{ w(i, t, j) + aB_{i,t-1} + bB_{t,j} \} \]

\(w(i, t, j) \) satisfies QI, if \(\forall i \leq i' < t \leq t' \leq j' \) and \(t \leq j \leq j' \)

\[w(i, t, j) + w(i', t', j') \leq w(i', t, j) + w(i, t', j') \]

and \(\forall i < t \leq t' \leq j \leq j' \) and \(i \leq i' < t' \)

\[w(i', t', j') + w(i, t, j) \leq w(i', t', j) + w(i, t, j') \]

If the value of \(w(i, t, j) \) is independent of \(t \), the Borchers and Gupta definition becomes the original Knuth-Yao definition.
Generalization of MIL
Generalization of MIL

Original Knuth-Yao

\[B_{i,j} = w(i, j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]
Generalization of MIL

- Original Knuth-Yao

\[B_{i,j} = w(i,j) + \min_{i<t\leq j}\{B_{i,t-1} + B_{t,j}\} \]

- \(w(i,j) \) is Monotone on the integer lattice (MIL),

 if \(\forall [i,j] \subseteq [i',j'] \), \(w(i,j) \leq w(i',j') \).
Generalization of MIL

Original Knuth-Yao

\[B_{i,j} = w(i, j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

\(w(i, j) \) is Monotone on the integer lattice (MIL), if \(\forall [i, j] \subseteq [i', j'] \), \(w(i, j) \leq w(i', j') \).

Borchers and Gupta

\[B_{i,j} = \min_{i < t \leq j} \{ w(i, t, j) + aB_{i,t-1} + bB_{t,j} \} \]
Generalization of MIL

Original Knuth-Yao

\[B_{i,j} = w(i,j) + \min_{i < t \leq j} \{ B_{i,t-1} + B_{t,j} \} \]

\(w(i, j) \) is Monotone on the integer lattice (MIL),
if \(\forall [i, j] \subseteq [i', j'], w(i, j) \leq w(i', j') \).

Borchers and Gupta

\[B_{i,j} = \min_{i < t \leq j} \{ w(i, t, j) + aB_{i,t-1} + bB_{t,j} \} \]

\(w(i, t, j) \) is Monotone on the integer lattice (MIL),
if \(\forall [i, j] \subseteq [i', j'] \) and \(i < t \leq j \), \(w(i, t, j) \leq w(i', t, j') \).
Applications
Applications

[Borchers, Gupta (1994)]
Rectilinear Steiner Minimal Arborescence (RSMA) of a slide
Applications

[Borchers, Gupta (1994)]
Rectilinear Steiner Minimal Arborescence (RSMA) of a slide

Slide: a set of points \((x_i, y_i)\) such that, if \(i < j\), then \(x_i < x_j\) and \(y_i > y_j\).
Applications

[Borchers, Gupta (1994)]
Rectilinear Steiner Minimal Arborescence (RSMA) of a slide

- **Slide**: a set of points \((x_i, y_i)\) such that,
 if \(i < j\), then \(x_i < x_j\) and \(y_i > y_j\).
- **RSMA**: a directed tree where each edge
 either goes up or to the right.
Applications

[Borchers, Gupta (1994)]
Rectilinear Steiner Minimal Arborescence (RSMA) of a slide

Slide: a set of points \((x_i, y_i)\) such that,
if \(i < j\), then \(x_i < x_j\) and \(y_i > y_j\).

RSMA: a directed tree where each edge either goes up or to the right.
Applications

[Borchers, Gupta (1994)]
Rectilinear Steiner Minimal Arborescence (RSMA) of a slide

Slide: a set of points \((x_i, y_i)\) such that,
if \(i < j\), then \(x_i < x_j\) and \(y_i > y_j\).

RSMA: a directed tree where each edge
either goes up or to the right.

\[B_{i,j} = \min_{i < t \leq j} \left\{ (x_t - x_i + y_{t-1} - y_j) + B_{i,t-1} + B_{t,j} \right\} \]
Applications

[Borchers, Gupta (1994)]
Rectilinear Steiner Minimal Arborescence (RSMA) of a slide

- **Slide**: a set of points \((x_i, y_i)\) such that, if \(i < j\), then \(x_i < x_j\) and \(y_i > y_j\).
- **RSMA**: a directed tree where each edge either goes up or to the right.

\[
B_{i,j} = \min_{i < t \leq j} \left\{ \left(x_t - x_i + y_{t-1} - y_j \right) + B_{i,t-1} + B_{t,j} \right\}
\]

- \(w(i, t, j)\) satisfies generalized QI and MIL.

Quadrangle-Inequality and Total-Monotonicity – p.50/52
Outline

Background
- Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup
- SMAWK Algorithm for finding Row Minima of Totally Monotone (TM) Matrices

The D^d Decomposition
A transformation from QI to TM such that SMAWK solves KY problem as quickly as KY.

The L^m and R^m Decompositions
Another transformation from QI to TM that
(1) implies KY speedup and (2) enables online solution.

Extensions
Applying the technique to known generalizations of KY.
Questions?