SERIES PARALLEL COMPOSITION
OF
GREEDY LINEAR PROGRAMMING PROBLEMS

Wolfgang W. Bein
American Airlines Decision Technologies
P.O. Box 619616, MD 4462
Dallas/Fort Worth Airport, TX 75261, U.S.A.

Peter Brucker
Fachbereich Mathematik/Informatik
Universität Osnabrück
D-4500 Osnabrück, Germany

Alan J. Hoffman
Department of Mathematical Science
IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598, U.S.A.

Written: August, 1990
Revised: February, 1992
Abstract. We study the concept of series and parallel composition of linear programming problems and show that greedy properties are inherited by such compositions. Our results are inspired by earlier work on compositions of flow problems. We make use of certain Monge properties as well as convexity properties which support the greedy method in other contexts.

Key words. greedy algorithm, Monge arrays, series parallel graphs, linear programming, network flow, transportation problem, integrality, convexity

1. Introduction. Hoffman [Hof61] showed that the transportation problem is solved by a greedy algorithm if the underlying cost array is a Monge array (so named after the mathematician G. Monge, who first considered such properties [Mon81].) Meanwhile many new results concerning the question when greedy algorithms solve linear programming problems have been obtained (see [Hof85] for a survey), but at the same time many aspects are still not fully understood.

In [Bei86, BBT85, BB86] Bein, Brucker and Tamir explore the concept of series parallel compositions of network flow problems. They consider linear programming descriptions of cost network flow problems and study the programming description of the flow problems that result when two networks are combined by a series or parallel composition. They show that the greedy algorithm solves the combined problem if it solves the original problems. Based on [Bei86] and ideas presented in [ACN85] Hoffman [Hof88] generalized this work further. He shows that the compositions preserve the greedy property not only if path costs are obtained from edge costs by summation but also if they are obtained from more general operations, if they have certain monotonicity and Monge properties.

This paper is inspired by the earlier work in [BB86] and [Hof88]. In this paper we show that under certain conditions the assumption that the underlying linear programs are specific descriptions of flow problems can, in fact, be dropped entirely.

We will state our main results now and prove them in Section 2. In Section 3 we discuss how earlier work can be reinterpreted in the framework of series parallel composition of linear programs. Section 3 also contains a lemma that links a certain convexity property with Monge arrays. We close with a number of technical remarks.
In what follows we will assume that all matrices are nonnegative real matrices without zero columns. Consider then the two linear programming problems I and II:

\[
(1.1) \quad \begin{align*}
\max \sum_i c_i x_i \\
I : \quad \sum_i x_i A_i &\leq a \\
x_i &\geq 0
\end{align*}
\]

\[
(1.2) \quad \begin{align*}
\max \sum_j d_j y_j \\
II : \quad \sum_j y_j B_j &\leq b \\
y_j &\geq 0
\end{align*}
\]

where \(A_i \) and \(B_j \) denote the columns of \(A \) and \(B \) and along with those matrices all other constants \(a, b, c, d \) are nonnegative and real. Without loss of generality we will assume that

\[
(1.3) \quad c_1 \geq c_2 \geq \ldots \quad \text{and} \quad d_1 \geq d_2 \geq \ldots.
\]

and introduce intervals \(K := [0, c_1] \) and \(L := [0, d_1] \), which contain all \(c_i \) and \(d_j \).

Furthermore we will consider the parametric programs \((I')\) and \((II')\) where the constraints \(\sum_i x_i = v_i \) and \(\sum_j y_j = v_{i1} \) are added.

The parallel composition of I and II is then defined as:

\[
(1.4) \quad \begin{align*}
\max \sum_i c_i x_i + \sum_j d_j y_j \\
III : \quad \sum_i x_i A_i &\leq a \\
&\quad \sum_j y_j B_j \leq b \\
x_i, y_j &\geq 0
\end{align*}
\]

with \(\sum_i x_i + \sum_j y_j = v_{i11} \) added for the parametric problem \((III')\).

We now define the series composition of I and II. For a given function \(F : K \times L \to R_+ \) it is defined as:

\[
(1.5) \quad \begin{align*}
\max \sum_{i,j} F(c_i, d_j) z_{ij} \\
IV : \quad \sum_{i,j} \left(\begin{array}{c} A_i \\ B_j \end{array} \right) z_{ij} &\leq \left(\begin{array}{c} a \\ b \end{array} \right) \\
z_{ij} &\geq 0
\end{align*}
\]
(the columns of IV are all possible combinations of I and II) with \(\sum_{ij} z_{ij} = v_{IV} \) added for the parametric problem IV'.

In the following we will obtain results about the inheritance of certain properties under series and parallel compositions. A linear program such as I (or II) is called a greedy linear program if the vector \(\bar{x} = (\bar{x}_1, \bar{x}_2, \ldots) \) found by successively maximizes \(x_1 \), then \(x_2, \ldots \) satisfies

\[
\sum_i c_i \bar{x}_i = \max \left\{ \sum_i c_i x_i : \sum_i x_i A_i \leq a, x_i \geq 0 \right\}.
\]

For our context we introduce a somewhat stronger greedy property:

Let

\[
\nu^*_i = \max \left\{ \sum_i x_i : \sum_i x_i A_i \leq a, x_i \geq 0 \right\}.
\]

For any \(0 \leq \nu_i \leq \nu^*_i \) consider \(\bar{x}^{\nu_i} \) the vector \(\bar{x} \) truncated at \(\nu_i \). \(^1\) We then call I (or II respectively) a strongly constrained parametrically greedy (scpg) linear program if

\[
\sum_i c_i \bar{x}_i^{\nu_i} \text{ maximizes } P' \text{ for all } 0 \leq \nu_i \leq \nu^*_i.
\]

The notion of strongly greedy linear programs is quite natural. In fact, many programs that are greedy linear programs are also strongly greedy. Examples are polymatroids or the flow problems considered in [Bei86, BBT85, BB86]. But we do not know of any problems where the new aspects of "greediness" described in this paper illuminate any cases where a greedy algorithm was previously sought or is now joyously welcomed.

We are now ready to state two central results, which we will prove in the next section:

Theorem 1.1. If linear program I (1.1) and II (1.2) are (scpg), so is their parallel composition III (1.4)

Theorem 1.2. If linear program I (1.1) and II (1.2) are (scpg), so is their series composition IV (1.5) if \(F \) has the following properties:

\[
F(\cdot, \nu) \text{ and } F(\nu, \cdot) \text{ are nondecreasing}
\]

\(^1\) Vector \(z \) truncated by \(w \) is defined inductively by \(z_1 := \min(w, z_1) \); \(z_i := \min(w - \sum_{k=1}^{i-1} z_k, z_i) \) for \(i > 1 \).
\[(1.10) \quad \text{for each } u \in L, \quad F(\cdot, u) \text{ is convex, for each } u \in K, \quad F(u, \cdot) \text{ is convex}\]

\[(1.11) \quad u_1 \geq u_2, v_1 \geq v_2 \Rightarrow F(u_1, v_1) + F(u_2, v_2) \geq F(u_1, v_2) + F(u_2, v_1)\]

Property \((1.11)\) is known as the Monge property, which we mentioned at the beginning of this section. Note that if \(F\) is differentiable \((1.9)\) becomes the condition that the first partials are nonnegative, \((1.10)\) and \((1.11)\) says that all second partials are nonnegative.

Based on compositions \((1.4)\) and \((1.5)\) one can introduce the notion of a \textit{series parallel linear program}. A two terminal directed graph \(G = (V, E)\) is called a \textit{series parallel graph} if it fits the following recursive definition (see [Val78] for a detailed treatment of series parallel graphs): A single edge from one terminal \(s\) (usually called the \textit{source}) to the other terminal \(t\) (usually called the \textit{sink}) is a series parallel graph. If \(G_1\) and \(G_2\) are series parallel graphs with respective source sink pairs \(s_1, t_1\) and \(s_2, t_2\), their parallel composition is the graph obtained by identifying \(s_1\) and \(s_2\), and also identifying \(t_1\) and \(t_2\). Their series composition \((G_1\) followed by \(G_2)\) is the graph obtained by identifying \(t_1\) and \(s_2\).

Given a graph \(G\), we associate with each \(e \in G\) a linear program \((e)\) of the form of \(I\). Denote the data of the individual problem \((e)\) by \(A^{(e)}, a^{(e)}, c^{(e)}\), where the number of columns is \(n^{(e)}\) and the number of rows is \(m^{(e)}\). Assume that all \(c_{ij}^{(e)}\) are contained in some convex subset \(C\) of \(R\) such that \(F : C \times C \to C\) is associative. If we let \(F(u, v)\) be written as \(u \circ v\) then we can define the \textit{G-composition} of all the \((e)_{e \in E(G)}\) problems. The number of columns of the combined problem is

\[\sum_{p \in P} \prod_{e \in p} n^{(e)}\]

where \(P\) is the set of directed \(s-t\) paths in \(G\).

The variables are

\[z_{p, j_1, j_2, \ldots, j_k} \geq 0,\]
where e_1, e_2, \ldots, e_k are the edges in p and $1 \leq i_1 \leq n^{(e_1)}, \ldots, 1 \leq i_k \leq n^{(e_k)}$. The corresponding cost coefficient is

$$c_{i_1} \circ c_{i_2} \circ \cdots \circ c_{i_k}.$$

For edge $e \in p$ let p have the form $e_1, e_2, \ldots, e_{r-1}, e, e_{r+1}, \ldots, e_k$; i.e. r is the position of e in p. Then the inequalities of the G-composition are

$$\sum_{p \subseteq e} \sum_{1 \leq i_1 \leq n^{(e_1)}} \cdots \sum_{1 \leq i_k \leq n^{(e_k)}} z_{p,i_1,i_2,\ldots,i_k} A_{i_r}^{(e)} \leq a^{(e)} \quad \forall e \in E(G).$$

Thus iterating Theorems 1.1 and 1.2 we have the following result:

Theorem 1.3. If G is a series parallel graph, and if $F : C \times C \to C$ is associative and satisfies properties (1.9) - (1.11), then the G-composition of (scpg) linear programs is a (scp) linear program.

2. **Proof of Theorems.** We will now discuss the validity of the Theorems 1.1 and 1.2. It is clear that the series composition is the interesting one, whereas the parallel case is straightforward. All one has to do for the parallel case is to convince oneself that an optimal solution for the composed problem can be obtained by merging the two original optimal greedy solutions.

We therefore concentrate on the series composition. For the proof of Theorem 1.2 we need the following majorization lemma:

Lemma 2.1. Assume

(2.1) \[a_1 \geq \ldots \geq a_n, \quad b_1 \geq \ldots \geq b_n; \]

(2.2) \[f_1, f_2, \ldots, f_n \text{ are nondecreasing convex functions on a real interval } C \text{ containing all } a_i \text{ and all } b_i; \]

(2.3) \[i < j \text{ and } u > v \text{ imply } f_i(u) + f_j(v) \geq f_i(v) + f_j(u) \]
then if

\[z = (z_1, \ldots, z_n) \text{ is a nonnegative vector such that } \sum_{i=1}^{k} z_i a_i \leq \sum_{i=1}^{k} z_i b_i, \quad k = 1, \ldots, n \]

we have

\[\sum_{i=1}^{n} z_i f_i(a_i) \leq \sum_{i=1}^{n} z_i f_i(b_i) \]

Proof. It is clear that it is sufficient to assume all \(z_i > 0 \), which we do. We shall prove the lemma by induction on \(n \). It clearly holds for \(n = 1 \), where the only property of \(f_1 \) used is that it is nondecreasing.

For the inductive step we first consider the case where in addition to (2.1) - (2.4) we assume

\[\sum_{i=1}^{n} z_i a_i = \sum_{i=1}^{n} z_i b_i \]

and

\[\text{every } z_i \text{ is rational.} \]

From (2.7), there is a \(\delta > 0 \) such that

\[z_i = n_i \delta, \quad n_i \in N^+, \quad i = 1, \ldots, n. \]

Let \(N = \sum n_i \). Consider the sequences

\[a'_1 \geq a'_2 \geq \cdots \geq a'_N, \quad \text{and } b'_1 \geq b'_2 \geq \cdots \geq b'_N, \]

where the sequence \(a'_1, a'_2, \ldots, a'_N \) consists of \(n_1 \) a_1's, \(n_2 \) a_2's, \ldots, in descending order, and similarly for the sequence \(b'_1, b'_2, \ldots, b'_N \).

From (2.1), (2.4) and (2.8), we have

\[a'_1 \leq b'_2 \]

\[a'_1 + a'_2 \leq b'_1 + b'_2 \]

\[\cdots \]

\[a'_1 + \cdots + a'_N = b'_1 + \cdots + b'_N \]
It is well known (see [HLP34]) that (2.9) and (2.10) imply that the vector \(a' = (a'_1, \ldots, a'_{n'}) \) is in the polytope of all convex combinations of the vector \(b' = (b'_1, \ldots, b'_{n'}) \) and its permutations. Since each \(f_i \) is convex, the function

\[
 f_1(a'_1) + \cdots + f_1(a'_{n_1}) + f_2(a'_{n_1+1}) + \cdots + f_2(a'_{n_1+n_2}) + \cdots f_n(a'_{n'})
\]

is a convex function on this polytope, so its maximum occurs at a vertex of the polytope, namely at one of the permutations of \(b' \). But (2.3) implies that a maximizing vertex is \(b' \) itself. So

\[
 \sum n_i f_i(a_i) \leq \sum n_i f_i(b_i).
\]

Multiply both sides by \(\delta \), use (2.8) and infer (2.5).

Now we must prove (2.5) without assuming (2.6) and (2.7). When \(a_i = b_i \) it is easy to see that the lemma follows from the induction hypothesis. So assume \(a_i < b_i \). It follows that, for any \(\epsilon > 0 \), there exist \(z'_1, \ldots, z'_n > 0 \)

\[
 z'_i \text{ is rational, } i = 1, \ldots, n, \tag{2.11}
\]

\[
 |z'_i - z_i| < \epsilon \quad i = 1, \ldots, n, \tag{2.12}
\]

and

\[
 \sum_{i=1}^{k} z'_i a_i < \sum_{i=1}^{k} z'_i b_i \quad k = 1, \ldots, n. \tag{2.13}
\]

Define \(\alpha > 0 \) using (2.13) by

\[
 \alpha z'_i = \min_k \sum_{i=1}^{k} z'_i (b_i - a_i).
\]

Then letting \(a^* = (a^*_1, \ldots, a^*_n) \) with

\[
 a^*_1 = a_1 + \alpha, a^*_2 = a_2, \ldots, a^*_n = a_n
\]

we have \(a^*_1 \geq \ldots \geq a^*_n \), and

\[
 \sum_{i=1}^{k} z'_i a^*_i \leq \sum_{i=1}^{k} z'_i b_i \quad k = 1, \ldots, n.
\]
with equality for some \(k = k^* \).

If \(k^* = n \), then, from our discussion of (2.6) and (2.7), we have, from (2.11)

\[
(2.14) \quad \sum_{i=1}^{n} y_i f(a_i^+) \leq \sum_{i=1}^{n} y_i f(b_i).
\]

If \(k^* < n \), we have for the same reason

\[
(2.15) \quad \sum_{i=1}^{k^*} y_i f(a_i^+) \leq \sum_{i=1}^{k^*} y_i f(b_i)
\]

On the other hand, the induction hypothesis gives

\[
(2.16) \quad \sum_{i=k^*+1}^{n} y_i f(a_i^+) \leq \sum_{i=k^*+1}^{n} y_i f(b_i)
\]

But (2.12) and (2.14), or (2.12), (2.15) and (2.16) imply

\[
(2.17) \quad \sum_{i=1}^{n} y_i f(a_i^+) \leq \sum_{i=1}^{n} y_i f(b_i)
\]

But the definition of \(a^* \), together with the fact that \(f_1 \) is nondecreasing (2.2), shows that (2.17) implies (2.5). \(\square \)

Before we prove Theorem 1.2 we will first rewrite problem IV'.

The parametric problem IV'

\[
(2.18) \quad IV': \quad \max \sum_{i,j} F(c_i, d_j) z_{ij} \quad \text{subject to:}
\]

\[
\begin{align*}
\sum_{i,j} z_{ij} \left(\begin{array}{c} A_i \\ B_j \end{array} \right) &\leq \left(\begin{array}{c} a \\ b \end{array} \right) \\
\sum_{i,j} z_{ij} &= n \\
z_{ij} &\geq 0
\end{align*}
\]

can be rewritten as

\[
(3.19) \quad IV'': \quad R \quad \left\{ \begin{array}{l}
\max \sum_{i,j} F(c_i, d_j) z_{ij} \\
\sum_{j} z_{ij} = x_i \\
\sum_{i} z_{ij} = y_j \\
z_{ij} \geq 0 \\
\sum_{i} x_i A_i \leq a \\
\sum_{j} y_j B_j \leq b \\
\sum_{i} x_i = \sum_{j} y_j = u \\
x_i, y_j \geq 0
\end{array} \right\}
\]

As indicated we call the top part of problem (2.19) (including the objective function) \(T(x, y) \) and the remaining constraints (\(R \)). Notice that \(T(x, y) \) is a transportation problem with right side \(x \) and \(y \).
Hoffman [Hof61] has shown that an optimal solution for \(T(x, y) \) is given by the northwest corner rule. Formally this solution can be represented in the following way \(^2\): On the real axis starting at 0, plot successive closed intervals \(I_1, I_2, \ldots \) where

\[
|I_i| \equiv \text{length of } I_i \text{ is } x_i.
\]

The intervals \(I_i \) are referred to as \(x \)-intervals. Proceed in the same way with \(y_j \) to obtain \(y \)-intervals \(J_j \). Then we have:

Remark 2.1. An optimal solution to \(T(x, y) \) is given by

\[
z_{ij} = |I_i \cap J_j|
\]

Remark 2.2. Let \(x^* \) and \(y^* \) be greedy solutions to I' and II' with parameter value \(v \). Then \(z \) defined by (2.21) with respect to \(T(x^*, y^*) \) is a greedy solution of IV' (2.18).

Proof. The correctness of the remark follows from the monotonicity of \(F \) and the monotonicity of the coefficients (1.3). We leave the verification to the reader. \(^3\) \[\]

Using Remark 2.1, let \(G(x, y) \) be the value of an optimal solution \(z \) defined by (2.21) with respect to \(T(x, y) \). Then problem IV'' (2.19) can again be rewritten as

\[
\max G(x, y) \\
\sum_i x_i A_i \leq a \\
\sum_j y_j B_j \leq b \\
\sum_i x_i = \sum_j y_j = v \\
x_i, y_j \geq 0
\]

(2.22)

IV'':

We are now ready to prove the following lemma, from which Theorem 1.2 follows directly:

Lemma 2.2. Let \(x, y \) be a feasible solution to \(R \), and \(x^* \) be a greedy solution of I'.

Then

\[
G(x^*, y) \geq G(x, y).
\]

\(^2\) We are unable to recall when we encountered this representation.

\(^3\) Notice that ties are resolved in accordance with the northwest corner rule, not arbitrarily, c.f. [Hof88].

9
Proof. Consider (in the sense of (2.20)) the \(x\)-intervals \(I_i\) of \(x\) and \(y\)-intervals \(J_j\) of \(y\) and furthermore \(x^*\)-intervals \(I^*_i\). Now consider the common refinement of all these intervals to obtain intervals \(K_i\), numbered successively from the left. We want to invoke Lemma 2.1. To that end, we define numbers \(z_i\) as \(|K_i|\). Numbers \(a_i\) and \(b_i\) are defined as follows: Set \(a_i = c_i\) if \(K_i \subset I_i\) and \(b_i = c_i^*\) if \(K_i \subset I^*_i\). Functions \(f_i\) are given by the rule: If \(K_i \subset J_j\) then \(f_i(u) = F(u, d_j)\).

Since problem \(I\) is greedy we have verified (2.1). Further since problem \(I\) is \((scpg)\), we obtain (2.4) by setting the parameter \(u_i\) successively to \(\sum_k z_k\) for \(k = 1, \ldots, n\). As for \(f\) properties (1.9) and (1.10) of \(F\) imply (2.2) and (1.11) implies (2.3). So Lemma (2.1) implies (2.5), which is \(G(x^*, y^*) \geq G(x, y)\). \(\Box\)

In a similar way one shows \(G(x, y^*) \geq G(x, y)\) and thus \(G(x^*, y^*) \geq G(x, y)\). Therefore, by Remark 2.2, Theorem 1.2 is proved.

3. Earlier Results. We shall begin with netflows and the results in [Bei86, BBT85, BB86] and [Hof88]. They consider cost flow problems over a series parallel graph \(G\). Associated with each edge \(e \in E(G)\) are a nonnegative (usually integer) capacity \(b(e)\) as well as a nonnegative cost \(c(e)\). Then the program

\[
\begin{align*}
\max_{p \in P} & \quad \sum_{p \in E(G)} c(p)x(p) \\
\text{s.t. } & \quad \sum_{p \in E(G)} x(p) \leq b(e) \text{ for all } e \in E(G) \\
& \quad x(p) \geq 0 \text{ for all } p \in P
\end{align*}
\]

(3.1)

with \(c(p) = c(e_1) + \ldots + c(e_k)\) and path decision variables \(x(p)\), is the path-arc description of the cost flow problem on \(G\) (see [PS82] for a more detailed introduction to this formulation of flow problems).

Now define for each edge the trivial program

\[\max c(e)x(e) : 0 \leq x(e) \leq b(e)\]

which is \((scpg)\); then (3.1) is the \(G\)-composition of these programs, where \(F(u, v) = u + v\). Therefore it follows that the cost flow problem on series parallel graphs is indeed \((scpg)\). This gives the main result of [Bei86, BBT85, BB86]. More generally this result
holds for associative operations $F(u, v) = u \circ v$, when they satisfy (1.9) - (1.11). This implies some of the results in [Hof88] and [ACN85].

We now turn to the transportation problem. In [Hof61] Hoffman has shown that a greedy algorithm solves the transportation in certain cases.

Given the problem:

\[
\begin{align*}
\max & \sum_i \sum_j c_{ij} x_{ij} \\
\text{TP} : & \sum_j x_{ij} \leq a_i \\
& \sum_i x_{ij} \leq b_j \\
& x_{ij} \geq 0
\end{align*}
\] (3.2)

with $\sum_i a_i = \sum_j b_j$ and $c_{ij}, a_i, b_j \geq 0$. Then the parametric problem with parameter value $\nu = \sum_i a_i$ is the transportation problem (TP).

If the array $(c_{ij})_{n \times m}$ has the properties

\[
(3.3) \quad c_i \text{ and } c_j \text{ are nondecreasing in } i \text{ and } j
\]

\[
(3.4) \quad (c_{ij}) \text{ is a Monge array, i.e. } c_{i_1 j_1} + c_{i_2 j_2} \geq c_{i_1 j_2} + c_{i_2 j_1} \text{ for all } i_1 < i_2, j_1 < j_2
\]

the problem (3.2) is greedy (and in fact (scp)).

We will now derive this result in the framework of Theorem 1.2. Although this result is used in proving Theorem 1.2, it is amusing to derive it as a corollary of Theorem 1.2. To this end, the following lemma on Monge arrays is needed; we postpone the proof of the lemma to the end of this section.

Lemma 3.1. Given an $n \times m$ array (c_{ij}) satisfying (3.3) and (3.4) then there exist

\[c_1 < c_2 < \cdots < c_n, \quad d_1 < d_2 < \cdots < d_m,\]

and a function

\[F : [c_1, c_n] \times [d_1, d_n] \to R^+\]

satisfying (1.9), (1.10) and (1.11) such that

\[F(c_i, d_j) = c_{ij} \text{ for } i = 1, \ldots, n \text{ and } j = 1, \ldots, m.\]
Consider then the linear programs

\begin{align}
(3.5) & \quad \max \sum c_i x_i \\
& \quad 0 \leq x_i \leq a_i
\end{align}

and

\begin{align}
(3.6) & \quad \max \sum_j d_j y_j \\
& \quad 0 \leq y_j \leq b_j
\end{align}

which are clearly (scpg) as the parallel composition of trivial linear programs, where

the c_i and d_j are as in Lemma 3.1. Now the transportation problem (3.2) is the series

composition of (3.5) and (3.6), using the F of Lemma 3.1, which shows that (3.2) is

indeed (scpg).

In fact, Hoffman [Hofb1] did not make any monotonicity assumptions on c_{ij} and

showed that given the Monge property, the northwest corner algorithm solves the transpor-

tation problem optimally. Hoffman's result however can also be put into our framework by observing that (c_{ij}) can be transformed into a monotone array (c'_{ij}) in such a

way that $\sum c_{ij} z_{ij} - \sum c'_{ij} z_{ij}$ is a constant. To derive (c'_{ij}) from (c_{ij}) we subtract the first

column from all columns and then subtract the first row from all rows. The validity of

this transformation is easily verified.

Finally, we turn to the proof of Lemma 3.1:

Proof. Given $c_1 < c_2 < \cdots < c_n$, $d_1 < d_2 < \cdots < d_m$, we define function

$F : [c_1, c_n] \times [d_1, d_m] \to R^+$ by

\begin{equation}
(3.7) \quad F(x, y) = \sum_{\mu, \nu=0}^1 \alpha_\mu \beta_\nu c_{i+\mu, j+\nu}
\end{equation}

where $\alpha_0, \alpha_1, \beta_0, \beta_1$ are the coefficients of the unique representation of $(x, y) \in [c_i, c_{i+1}] \times

[d_j, d_{j+1}]$ of the form

\begin{equation}
(3.8) \quad x = \alpha_0 c_i + \alpha_1 c_{i+1} \quad \alpha_0 + \alpha_1 = 1 \quad \alpha_0, \alpha_1 \geq 0 \\
y = \beta_0 d_j + \beta_1 d_{j+1} \quad \beta_0 + \beta_1 = 1 \quad \beta_0, \beta_1 \geq 0
\end{equation}

Due to (3.3) the functions $F(c_i, \cdot)$ and $F(\cdot, d_j)$ are nondecreasing. Furthermore $c_1 <

c_2 < \cdots < c_n$, $d_1 < d_2 < \cdots < d_m$, can be chosen in such a way that all functions
$d_{j+1} = y_2$

$P_2 \quad P_3$

$Q_2 \quad Q_3$

$P_1 \quad P_4$

$Q_1 \quad Q_4$

$c_i \quad x_1 \quad x_2 \quad c_{i+1}$

\[d_j = y_1 \]

Fig. 1.

$F(c_i, \cdot)$ and $F(\cdot, d_j)$ are also convex. We have to show that F satisfies properties (1.9), (1.10) and (1.11).

First (1.9), (1.10): Let $x \in [c_i, c_{i+1}]$. Then there exists an $0 \leq \alpha \leq 1$ such that

\[F(x, \cdot) = \alpha F(c_i, \cdot) + (1 - \alpha)F(c_{i+1}, \cdot). \]

As a convex combination of nondecreasing and convex functions $F(c_i, \cdot)$ and $F(c_{i+1}, \cdot)$ the function $F(x, \cdot)$ is nondecreasing and convex. Repeat the arguments for $F(\cdot, y)$.

Now for (1.11): We first prove that

\[F(x_1, y_1) + F(x_2, y_2) \geq F(x_1, y_2) + F(x_2, y_1) \]

holds for points $P_1 = (x_1, y_1), P_2 = (x_1, y_2), P_3 = (x_2, y_2), P_4 = (x_2, y_1)$ with

\[x_1 = \alpha_0 c_i + \alpha_1 c_{i+1}, \quad \alpha_0 + \alpha_1 = 1, \quad \alpha_0, \alpha_1 \geq 0 \]

\[x_2 = \beta_0 c_i + \beta_1 c_{i+1}, \quad \beta_0 + \beta_1 = 1, \quad \beta_0, \beta_1 \geq 0 \]

\[y_1 = d_j, \quad y_2 = d_{j+1} \]

(see Figure 1). Now (3.9) may be written in the form

\[\alpha_0 c_{i,j+1} + \alpha_1 c_{i+1,j+1} + \beta_0 c_{i,j} + \beta_1 c_{i+1,j} \leq \alpha_0 c_{i,j} + \alpha_1 c_{i+1,j} + \beta_0 c_{i,j+1} + \beta_1 c_{i+1,j+1} \]

which is equivalent to

\[\alpha_0 (c_{i,j+1} + c_{i+1,j+1} - c_{i,j}) \leq \beta_0 (c_{i,j+1} + c_{i+1,j} - c_{i+1,j+1} - c_{i,j}). \]
However the last inequality holds because \(c_0 > \beta_0 \) and

\[c_{i,j+1} + c_{i+1,j} - c_{i+1,j+1} - c_{i,j} \leq 0 \]

due to (3.4).

Using the fact that (3.9) holds for the rectangle \(P_1, P_2, P_3, P_4 \) we derive in a similar way that (3.9) holds for the inner rectangle \(Q_1, Q_2, Q_3, Q_4 \). Next it is easy to show (see e.g. [GLS85]) that property (3.9) is transitive in the sense that if (3.9) holds for \(P_1, P_2, P_3, P_4 \) and \(P_4, P_5, P_6 \) it also holds for \(P_1, P_2, P_5, P_6 \); see Figure 2 (a) and (b).

Using this transitivity and the previous result the argument can be repeated to show that (3.9) holds for arbitrary rectangles. \(\square \)

4. Remarks. We first note that the results of Section 1 can also be formulated for minimization problems. The corresponding results require \(F \) to be concave rather than convex and in the Monge property "\(\geq \)" has to be replaced by "\(\leq \)".

The convexity assumption for Theorem 1.2 is indeed necessary. To see this, consider as program (I)

\[
\begin{align*}
\text{max} & \quad 12x + 2y \\
& \quad x + y + z \leq 1 \\
& \quad 2x + y \leq 1 \\
& \quad x, y, z \geq 0
\end{align*}
\]

and as program (II) the dummy program

\[
\begin{align*}
\text{max} & \quad 3x \\
& \quad x \leq 1 \\
& \quad x \geq 0
\end{align*}
\]
Both programs (I) and (II) are (scpg), but for $F(\cdot, \cdot) = \min(\cdot, \cdot)$ the series composition is not.

If we weaken the notion of greedy by replacing $\sum_i x_i = u$ by $\sum_i x_i \leq u$ (now called \textit{weakly greedy}) the result on parallel compositions is still true but the result for series compositions does not hold any longer. The series composition result can be carried over if in Theorem 1.2 we require F to have the additional property that

\begin{equation}
F(u, 0) = F(0, u) = 0 \text{ for all } u \in K, v \in L.
\end{equation}

As an example, a function satisfying those properties is $F(u, v) = u \cdot v$.

It would be interesting to characterize those F that satisfy (1.9) - (1.11) (and property (4.1) for the weak case). If F is assumed associative then there are severe restrictions. Several years ago, Jeremy Kahn \cite{Kab88} made significant inroads into the case where F is defined over the reals and has a fixed point $F(u, u) = u$.

Finally, what does it mean algebraically for a linear program to be (scpg). Is it possible to characterize those triples (A, a, c) such that the corresponding linear program I is (scpg)?

\textbf{Acknowledgements.} We thank Michael Shub, Don Coppersmith and Shaiy Pilpel for their help on various aspects of this paper. We also thank Gene Lawler for having initiated the contacts between authors.

\footnote{Dummy programs are not only useful for counterexamples: If the objective function $\sum_i c_i x_i$ of a (scpg) is changed to $\sum_i f(c_i) x_i$ for a monotone and convex function f, the program remains (scpg). To see this, all we have to do is consider the series composition with a dummy program and $F(\cdot, 1) := f(\cdot)$.}
REFERENCES

