Introduction to
Programming

using
Fortran 95/2003/2008

Ed Jorgensen

March 2018
Version 3.0.51



Cover Diagram
The cover image is the plotted output from the chaos game program from chapter 11.
The image was plotted with GNUplot.

Copyright
Ed Jorgensen 2013, 2014, 2015, 2016, 2017, 2018

050

You are free:
to Share — to copy, distribute and transmit the work
to Remix — to adapt the work
Under the following conditions:
Attribution. You must attribute the work to “Introduction to Programming using Fortran
95/2003/2008” (but not in any way that suggests that the author endorses you or your
use of the work).
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.
For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to
http://creativecommons.org/licenses/by-sa/3.0/
Any of the above conditions can be waived if you get permission from the copyright holder.
Nothing in this license impairs or restricts the author's moral rights.

il



Table of Contents

1 INEEOAUCHON.....ccceiiinieniicnieneissniessnssstessissssessssssstssssssssssssssssstssssssssssssssssssssssssssssssssssssesssssssssssssssnss 1
1.1 Why Learn Programiming............ccceeueerueeseersieenieeeieeseesseesseessessseesssessseesssessseesssesssesssssessssssees 1
1.2 FOTTTAN. c..ceteiit ittt ettt e sttt e et a e e e e aba e e s e abb e e e s e mbaeeesennbaeeeeeeeeennnnnnnssnnns 1
1.3 Complete Fortran 95/2003/2008 DOCUMENLAtION. ......cccverrerrrerieeriienieesieesieesreessessseesseessnesas 1
1.4 WHat IS A PIOZIaAIL.....cccuiiiiritiiieieniteieeteeit ettt ettt e ebe et st sbe st s st be et e ssae e saeesmaeeeaseeeanees 2
1.5 OPeratiNg SYSLOIML......utiiieeiiteeieiiieeeeeiiteee ettt e ettt eesrrteeesssreeessssteeesssssseeessssstaeesessessssssssssnnnes 2

2 Computer OrGanIZatiOn........ccueiecueesreesssicssensssnessensssiesssssssssssssssssessssssssessssssssessssssssessssssssessssssssessases 3
2.1 ATCHItECTUIE OVEIVIBW.....viiuiieieeriieeteeniteeieeste et e stteesteessteeseesssesseesssasseessseesnssseeesssessnsssesennes 3
A ©00) 1131 01 (<) RSP 4
2.3 Information RePreSentation.........ccceceerierieriieenieeieenieesieeseeesteesteeteesseeesseesaeessseessaesnsessnsseessnns 4

2.3.1 Decimal INUIMIDETS. .....cocutiriiiitieteeite ettt ettt ettt s b e e bt e sate s bt e s nbeeessbeeeeane 4
2.3.2 BiNary NUMDETS......cceiciiiiieiierieeie ettt ettt s e et e sbeesseessbe e st essseensnesnsaessnaesnns 5
2.3.3 Character RepPreSentation.........cccceieecueeeeiieeeiieeeiieeesseeesreeessseeesseeessseessssesesssesssseessssesssssnns 5
2.4 EXOTICISES. . uuuvtieieeuteeeeeiitteeeeeitt et eettteeessuateeessareeesssassteeesaasteeesanssaeesansaaeessassaeeessnnneeesennsneesesnnnnneee 5
2.4.1 QUIZ QUESTIONS. ...ceeeeieieieieieeeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeereeereeeeereeereeeseserereresereseseseseseseeererereseeeseseees 5

3 GettiNg StATTed......cocvieeueiirrinseissnncsnnssanssssssssssssssssnssssssssssssssssssssssssssssssssssssssssssssssssssssasssssassssssnsssssss 7
3.1 ReqUITEd SKillS......uiiiiiiieiiiieiieieiee ettt et et e e ste e et e e st eesbaeessaeesaaeesssaeesesssnssneassennnn 7
3.2 Program FOITNALS.......ccooeiiteeiiiiiieeeeiiteeeeeitee e ettt e s e sireeeeesaseeeesssaeeesenraeesssanrteesssnseneeeeeeeseeasennns 7

3.2.1 Program STAtEIMENL........ueeerrrrureerrrirreeernitteeeessrteeeessseeeesssseeesssssseeessssseesssssseesssssssessssssseees 7
3.2.2 COIMITIIILS. ...eeiurieiitieeitee ettt ettt b e e et e st e e s sbbe e sbb e e sbaeesbaeesbaeesnaeeennnaeeessnnnnns 8
3.2.3  SiMPIE OULPUL.....vieieiiieiiiieieieeeetee et e esteeesteeestteessaeessaeessaeessseeesssaeessseesssseesssseesssseeesessnns 8
3.2.4 Example — First PrOGIram..........cccciiriirriiinieiiitiniesiieesteeieestessteesieesaeessaesseesssesssessnsssessnnns 8
3.3 TEXE EIOT . cneteieieteeee ettt ettt ettt sttt e et e s st e s bt et e e bt e ae e e e aneeeenanee 8
34 COMPIIING...utiiiiiiiiiieeieeeee ettt ettt st et e st e s sbe e st e e beessbessaesasaesseesssesssaesnsessnssaesnnns 9
3.4.1 Advanced Compiler OPLiONS. .......ccccueeerieeeriieeerieeerreessteeesteesreeessseeesseeesseessssesssseesssseenns 9
3.5 EXOCULIIIB. . eeuiiieeeeiiieeeeeitee e ettt et ee e s ettt e e ettt e e s s et e e e seaseeesesasseeesensaaeesansaeeeesnnseeessnsnneaaaeeees 9
3.6 EXOICISES. .ceuuiiiiitieiittee ittt ettt e bt e et e st e s bt e e s ba e e et e e bt e s e bt e s na e s nb e e senraee s 10
3.6.1 QUIZ QUESTIOMIS. ...uueiiiieeieitieeeeeeeeeeeeeteeeeeeeeeeersraeeeeeeeererssanaaseeesersrssssannseesessssssssnnnseeeseserns 10
3.6.2  SUZGESTEA PrOJECES. . ccicuviieiiieeeiieecteeecte e et e eite e e te e e staeesaaeesbaeessveeesssaeessseesnsssseaasssnnssnes 11

4 Fortran 95/2003/2008 — Basic ElemeNts...........ccouieverrecsuecsensecsuicsensecssecsassnsssecsssssesssessssssssssseses 13

4.1 VATIADLES. ...ttt ettt st e b e e e e e e e anee 13
4.1.1 Variable INAIMES.......cc.ooiiiiiiieiteieeeee ettt ettt et sb st sat et et saeesseeseneeeene 13
.12 KOYWOTTS. ..eeieuteeieiieeiieeeiteeeciteeesteeeseteesstteesteeessteaesssaeesssaeessseesssseeessseesssseesssseessssesesssssnes 14

4.2 DaALA TYPES...ueetiiieiiitetieitte e ettt e eette e s ettt e e e s rte e e s e bat e e s e abt e e e e e bt e e s e bbe e e s e nraeeeeenraeeeeeeeeeeeeaanns 14
B.2.1  IDEOBT.cceiiiiieeeeeiteee ettt e e ettt e e ettt e e e et e e e ssaabe e e e s abaeeessaabaeeessasbaeesssarbaeesasaaeeessssaaaaaaaeeeeens 14
4.2.2 RNttt st a et a et sat e bt et e e bt e sbeesneesenneeane 15
4.2.3  COMMIPIOX..iiiitieirrieieiieirieeeetteesiteeeereeesteessateeessaeeessteessstesasaeeasseeesseaesssaeensseeensssesnsseeenssees 15
4.2.4  CRATACET....ccuveeutereeeteeteeteete et sttt e et e st e st e s bt st e sat e bt ebesaeessesabesstesseensesaeesesasesseesesnneenas 15
4.2.5 LOZICAL..ciiiiiiiiieeieecee ettt e et e s be e e b e e e abe e e rae e e taaaeeeeennnraaeas 15
4.2.6 Historical Data TYPING......ccceevterruiirieriiienieeieeste st este et esitessteestesbeessaesbeessaessessssesennes 15

4.3 DECLATATIONS. .. .eeuuteeiieeieeeieete ettt ettt et e st e bt e et e e bt e sa et e bt e st e e bt e e ab e e bt e e ae e e bt e eateeneeeeanees 16

ii



4.3.1 Declaring Variables..........ccceerierriienienieeiieeiieeree st eseeste et e saessseesteesseesssessssesnsassseesnnnns 16

4.3.2  Variable RANGES.......coccuiiiiiiiiiiieteete ettt ettt sttt et e e e e s 16
4.3.3 TYPE CRECKING......eiiiiiiiiieiieeieeieeeieett ettt et e st e st e sseesbeesatessseesssessseesseassnssaesssseens 16
/G s VI 1 B2 U o) o OO UURRRRR 17
.35 COMSTANLS. ..uuuuuuururrurersrernsnnsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnnsesssssssnnesessssssnnnnns 17
4.4 COIMITIEIILS. ....eevvrertieeeeeeeereertnieeeeeeeerrerastnaeeeeesssssantnnaesesssssssssnnaeseessssssssnnnsssesssssssssnnneeseessssssnnnees 17
4.5 CoNtiNUALION LLINES......uuuuuiiiriiiiiiiiiiiiiiiriiirrererernrerarernrarnrernrare—.————.————a—.rnrarnrnrsrsrsssessssssssnnsesssses 18
I T B 25211 0 (3SR 18
4.6 Declarations, Extended Size Variables.......cocuuvvieviiiioiiiiiiiiiieeeeeeeeiiiieeeeeeeesesesianeeeeeeeeesesessssesnes 18
4.6.1  INLEGETS....eeiiiiiiiieeieitee ettt ettt ettt e st e e et e e s e mbae e s e snbaeesesasate e e e ssrbabeaaeeeeeeeeeseans 19
6.2 RBAL..uueiiiieiieie et e e e e e e e e e e e e e tb e e e e e aaaeeeeebaaaararaaaeens 19
.7 B XEICISES....ccceeeeretteeeeeeeeerettieeeeeeeeerrerastnaaeeeeesssersntsnaesesssssssssnnnasseessssssssnnnasseessssssssnnneesessessssnnnnes 19
4.7.1 QUIZ QUESTIONS. ....cceevvreteeeeeieiieeeteieeeeeeeeeeeteatereeeeeeeerersaaaeeeeesesssssaaneeessersssrannnseeseesssssnnns 19
4.7.2 SUGGESLEA PIOJECES. ..c.ueeiiieeiiiiieeieeete ettt ettt sttt e et e st e st e e bt e et e ssae s abeeesneees 20
EXPIOSSIONS...cuveiiruiesersssisssenssansssesssssssssssssssssssssssssssssssssssssssassssssssassssssssssssssossassssssssasssssssssssssassssssass 21
ST R N 1<) v | TR 21
5.1.1  INEEGET LItEIalS....ueeeieeeiiieieeiieiieeiteste et eete ettt e et e et e e saeessbeesbeessaessaessseesaesssesnsaesnsseens 21
ST R R =T | 5 1<) =1 TR 21
S B R O\ (0] 7: L1 (o) s DO PSRRI 21
5.1.3 COMPIEX LItEralS....cccuueieiuiieeiieieiieesitteeeiee et e esteeesaeeeseaeesseaeesssaeesssaeessssssaeesssssssseneessnnnns 22
5.1.4 CharacCter LIteTalS..........oceeeiuviiiieiiiieeeeiiiee ettt ceetee e eeettee e e e areeeeeeaaaeeeeesaseeeeesseeeeennnneees 22
5.1.5 LOZICAl CONSIANLS....cccurieeiieeeiieeiieeeeieeeeteeesteeesaeessseeessseeessaeessseessseessssseessssssssseeessnsnns 23
5.2 ArithmetiC OPETatiOnS.......ceecveeruieriieeriieeiteeriteeteeseesteesseestessseesssessseesssesssessssesssssessssssesssssseesns 23
5.2.1  ASSIGIIMIENL.. . ceeiiiiiieeieiiteeeeeiiteeeesitteeeesitteeeesssreeeessssaeeessssseeesssssseesssssssaseeeeesssssssssssssssnnns 23
5.2.2 AdAItION.....ccoiiuiiiiieiirieeeeeieee ettt ettt eeeteeeeeetteeeeeeaeeeeeesssareeeesssseeeeeaaeeeeeeeeeeeeaaennnnnnnes 23
SIRC TS o] r=Tod o ) s FEURURU TR 24
5.2.4 MUltiPIICAtION. ..c.utiiiiiiiieiteteecie ettt ettt e e te st esbeesseessbaesaseessssaeesssseessnsseasnnns 24
SIS T B ) V4 13 (o) s RO USRS 24
5.2.6 EXPONENUALION. ...ceiiiiiiiieieiiieeeeeiiteeeeertteeeeeitteeessrteeeessareeeeessseeeessnsreeesassseeessssseeesssssssnnns 25
5.3 Order Of OPEIatiOnsS.......c.cccvieiuieeieeirieeieeiteeeteeireesteesseesaeesseesteesseassseesseesssessseesssessseesssessssseens 25
5.4 INrinsiC FUNCHOMNS.......cciiiiiiiieieceeeeeeeeeeeeeeeeeeeeeeeeeeeeee et e e e e e e e e e e e e e e e e e e e e e e e e e e e eab s 26
5.4.1 Mathematical INtrinsic FUNCHIONS......ccovuvviiiiiiiiiiiiiitieeeee et 26
5.4.2 CoOnVerSiOn FUNCIONS. .......uuvuvuureruiiririririrrrerririsrsrerrssssrsrsrrrr.....r.r......................o.sr-nn. 26
5.4.3  SUMMIATY ....uuutiiiiiiiiiieeeeiireeeeeriteeeesiteeeeseeteeeessaraeeessssaeessssssaeesssssaeesssssseessssssseesssssseeesssesns 27
5.5 MIXOA IMOAE.......ccuvrieieetreieeeeiteee ettt ettt eeetae e e eeetteeeeeeaaeeeeeersaaeeeeessseeeeessssseeeeeeenssssssssssneees 27
ST ST - 1111 0] (SRR 28
ST T (=) ol <L T RRRINt 28
5.7.1 QUIZ QUESTIONS.....cceiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeee et e e e e e e e e e e e e e e e e e e e e e e eeeaeeees 28
5.7.2  SUZGESIEA PrOJOCES. .. .eeeuiieiieeiieeiieeieertee et et e et et eeste et e saeesaeesbeesstessseesssesssaessseesssssaenns 29
Simple INPUt aNd OUIPUL.....cccvreieerreresssercssserosssnsossssssssasssssasssssasssssassssssssssssssssasssssssssssssssssssssasssssss 31
6.1 OULPUL — WIILE.....eeieeieeteee ettt et e ettt e e e ettt e e e sttt e e s s asreeesensbeeeesanrneessennraeesessnsnnnnnnnnes 31
6.1.1  OULPUL — PIiNuceiiiiiiiiieiiiiiieeieiteeeeett et e et e s s sare e e s s sibe e e s ssataeessssssssaaaaeeeaeesessssssnnnns 32
6.2 INPUL — REAM.....ceoiiiiiiiiieiieeieet ettt ettt e st e st e e ssa e st e e sbaessbaeesnssaessnssaesnnsseens 32
LS T ¢ 111131 (-3 O TR RP 33
.4 B XOICISES. ciiiiiiiiiiiieieie e eeeeeeteeeeeee e e e e eeeeeeseseeeseseeeeeeeeeseeesesasesessesesessssasseseseesesassesesenaeens 34

iv



6.4.1 QUIZ QUESTIONIS. ...uueiiiiieeieiteeeeeeeeeeeeeteee e e eeeeeeeer e eeeeereessasaeeeeeersrssssansseeseersssssnnnnesesensres 34

6.4.2  SUZEESIEA PrOJECLS. ....eeitiieieiiteeieeriteetee ettt ettt ettt et e et e st e e bt e saaeebeesabaeeeneeeeas 34

7 Program DevelOPIMENL.........cuiceicniessersssnsssssssssssssnssssssssssssssssassssssssassssssssassssssssassssssssassssassssssasssss 37
7.1 Understand the ProbIEM.........c..coecuiiieiiiiiiiiecee ettt e e s te e e saeessae e s e s eaaeeeeeennes 37
7.2 Create the AIGOTItNIM......cccuiiiiiiiiieieceeeeee ettt s te st e e abe e s sssteesesnnaesans 38
7.3 Implement the PrOGIaml.........ccccueieriiieeiieeeiieeeiieeeieeeseieeesteeesseeesseeessseesssseesssseesssseesesssssseesenns 38
7.4 Test/Debug the PrOZIaI.......cocciiiiiiiiiieiieeieeieerteeit et ste et s steesteesaessseesseesseesssessssaessnssaeennns 39
7.4.1 EITOT TeIMINOIOZY ...cccutiiiiiieieiieeeiee ettt ettt et e e e eee e e etee e e teeesbeeesveessssaaaeesesssssaaeesannns 40
7.4.1.1 COMPILET EITOT.....coiiiiiiiiieiiieeiecteete sttt sae st e e st e s be et e e e nnsaeeennne 40
7.4.1.2 RUN-TIME EITOT...ccciitiiiiiiiiieiieiiieeeeriiteeessteeessiireesesereeesssabaeesssssraessssssneesesessssssnnnnes 40

74 1.3 LOZBIC EITOT...ciiiiiiiiiieeieeeteetee ettt ettt e s ettt e e s st e e e s eae e e ssasteeessanneeeesessnnnn 41

7.5 EXEICISES. . vteeieiireeeieiteeeeecttee e e te e e s sette e e e s bt eeeastaaeesesasaeeeessssaaeeesssaaesassssaeeesnsssaeesnssseeesanssnnnnes 42
7.5.1 QUIZ QUESTIONS. ...uuuuneeiiiiiieieetieeeeeeeeeeeetiieeeeeeeeeeeeraaeeeeeeeeersrasaaeeeeeeeressrrnnnseeeeersrsnrnnnneens 42
7.5.2  SUGEESIEA PrOJECLS. ... viiieiieeeiieecieeeeiee et e erteeesteeeeteeesteeesseeessseeessseesssseessseessssnaassennnses 42

8 Selection StAteIMENLS........ccouceveierensuecseissensaecssnssesssesssnssesssessssssssssssssssssssssssssssssssssessssssssssssssssssssssssss 43
8.1 Conditional EXPIreSSIONS. .......cccvueeriieieiieieiieeeiieeeiteeesiteeesaeeesseeesseesssseesssseesssseessseesssseesssnsssees 43
8.2 LLOGICAl OPEIALOTS. .. eeeveerureerieriieriteesteesttestesteesteesseesssessseesssessseesssessessssesssessssesssessnsseessnsseens 44
8.3 IF SHALOIMENLS. ..ceeiiruirietieiiieeeeriiteeeesiteeeesitteeeestteeeessuraeeessssaeesssssaeesssssseessssssaesssssseeessssnssssnnes 44
8.3.1 IF THEN StateIMeNL.....ccceeruerueruierreeriertenterteetesteessesutessessesaeesseessessessesssesssessseessseessnsesns 45
8.3.1.1 IF THEN Statement, Simple FOIML........c.cccceerviiiriiiiniieeeieeeeeereeee e eerree e e 45

8.3.2 IF THEN ELSE StateImMent........ccceesterteruerrierienieeteetenieeseestesseeseetesseessesasesseessesssesseesenas 45
8.3.3 IF THEN ELSE IF StateImMeNL......cccceecutteieriireeeeniireeeeniireeeesiireeeesssseesssssseesssssseseesesssssssns 46
8.4 EXAMPIE ON....uiiiiiiiiiiiieeieiiteee ettt ettt et e s te et esbessaeesbe e aeessbeessaesasaenseesssaessnsseesnnsseees 47
8.4.1 Understand the ProDIeIM..........ccoccuiiiiiieiiieeeiieeeiieceiteesiee et e esaeeesaeeesessaaeeesssssaaeeesennnes 47
8.4.2 Create the AlGOTItM........coeiiiiiiiirieiieeieeeee ettt s e e e s saeeaeas 48
8.4.3 Implement the PrOGram..........cccieiiiieiieeeiieeiieeeeiteeste e et e eereeesteeeeseeeesseaeeeessnnsnaaeessnnnns 49
8.4.4 Test/Debug the PrOGram.........cccecierieriiieniieeiiienieeritesiteesieestessieessteesitessaesssaseeessnsaeessnsaeeas 50
8.5 SELECT CASE StateIMeNt...ccccuvteeiiiireeeieiirteeieiiteeeesieeeessssreessssssseesssssseesssssaeesssssssssssssssnnes 50
8.6 EXAMPIE TWO..couiiiiieiieiiieeieeitee ettt sttt ettt e st e e sae e st e e st e ssbeesatesssae st essseesnsesnsaeesnnses 53
8.6.1 Understand the ProbIeIM..........ccicvuiiiiiieiiieeeiieeeteeeiteestee et e esaeeesaeesseseeeeeesssaanaeesennnns 53
8.6.2 Create the AlGOTItM........coeiiiiiiiieieiiteeieeeee ettt e s it e e e e b eaeas 53
8.6.3 Implement the PrOgram..........ccceeiiiiiiieeiiieerieeesieeeeteeeeteeeeteessaeeeeseaeesseeeeeessnsaaaaeessnnnns 53
8.6.4 Test/Debug the PrOGram.........cccecierieiriieniieeiienieeriteeieesieestessieessteestesaesssasaeessnsneessnseeeas 54
8.7 EXBICISES. c.uuuetieiieiiieeeeeiteeeeette e e ee st e e e e st e e s sttt e e e s aaateeessasbaee s e sbaeeeesabaeeesaasbaeeeesaraaeeenaraaeeennnnns 55
8.7.1 QUIZ QUESTIOMS. ...uuiiiiieeiiitieeeeeeeeeeeetreeeeeeeeerertraaaeeeeeeererssasnaseeesersrssssannseesessssssssnnnseseseserns 55
8.7.2  SUZGESIEA PrOJECES. . ccccuviieieieeeiieeeiieeeite e ettt ee it e eeteeesteeessbeeesaaeeessseessteesssaeesssaeesssssneeasanns 56

9 LOOPING.cuciueirriiriirnsuiisnissesssecssicesssnssssssesssessssssssssessssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssassssases 59
9.1 Counter Controlled LOOPING.......ccccvueiriiiiiiiieriiieniieeeiteesreessieessreeeseeesseeessssssseeesssssssseeesenns 59
9.2 EXIT and CYCLE StatemeNntS......cccceeeeuereeruerreerieenrertenseenseseessesssesseessessseseessesssesseessessseseenne 61
9.3 Counter Controlled EXamPIe........ccceiriiiiriiiiiiieiniieesieeesie et see e sveeesveeesre e ssasaaes 61
9.3.1 Understand the Problemi..........couiiiriiriiniiiieieieneteeeerte ettt 62
9.3.2 Create the AlGOTItNML.......ccicciiiiiiiiiiieceeee e et e e sbe e e ar e e saaeesaaees 62
9.3.3 Implement the PrOZIamml........cccciirieriiiinieiiierieeiteete ettt et et sae e st essabaeessaeaee s 62
9.3.4 Test/Debug the PrOZIami.........c.cciiiuieiiiiiiiiieeiieeeiieeeiteeeieeesteeesveeesaeeesaseeeeesssansneaessnsnnns 63



9.4 Conditional Controlled LOOPING.......c.cccviriiriieriiieiienieeieesieeste et eseesteesteeessebeesssbeesssnseeens 63

9.5 Conditionally Controlled Loop EXample.........ccccoeouiiiiiiniiriiiienieenieeteeeeeiee et 65
9.5.1 Understand the Problem..........ccccuiriiieriiriiieiieeieeteeieee ettt ee e e e ere e e s areeesnenee s 65
9.5.2 Create the AIGOTIM........cooiiiiiiiiieeeee ettt ettt 65
9.5.3 Implement the PrOZIam........ccccueriiriiiirieiiieesieeciteeie et ere et e s aeesaeesteesaeeessaeeesnsaeeennsaeeas 66
9.5.4 Test/Debug the PrOGram.........c.cecierieriiiirieeiieeie ettt ettt et te e st e e e sabeeeesareeeas 67

9.6 EXOICISES...uueeteiieeiiteeeeeitee ettt eett e e et e e s ettt e e e s st e e e s saabteesesnsbeeeesaseeeeesasbaeesasnsateeesansaaeesnanns 67
9.6.1 QUIZ QQUESTIOMS. ...uueieeeeriiitieeeeeeeeererttieeeeeeeeerereraneeeeeeeserssanneseeessssssssnnnesessssssssssnnnnseeessserns 67
0.6.2  SUZGESIEA PrOJECES....uveieuieeieeiieeieeiteeie et e ete et e s teesteessteeseesssesseesssessseesssessseessseessssseeens 69

10 Formatted INPUY/OULPUL.....ccccruierrreresssercssseressnsessssssssssssssssssssssssssssssssssssssasssssasssssssssassssssssssassssss 71

TO.1 FOITNAL e eietieieiitee ettt ettt ettt e ettt e e ettt e e s e bt e e s e st e e e e s nseeeessassaeesesanaeaeeeeeesssssssssnnnsnnnnnee 71

10.2 FOIAt SPECITIETS. ...eecutiieiieeiieieeete ettt et et te e te e e teesbeeste e beeesseesee e ssaeeenssaeessseeennssens 71

10.3 Integer FOrmat SPECITIOT......ccuieiuiiriieieerieeiteee ettt ettt s ste e st e e e e ssaessaesnsaesaes 72

10.4 Real FOrmat SPECITIOT........ciciieiieeiiccieecieceeete ettt e e et steeeveeeaeesvaesbe e saessseesaesnsaennns 73

10.5 Horizontal Positioning SPeCIfiers.........ccceeeuiiriiriiienieiieerieeieete et 73

10.6 Logical FOImMat SPECIfier.......ccciiiieiiiiiiieeieeieeiteeee ettt ettt eteesee e e e saeeaeessaeebeenssaaennns 74

10.7 Character FOrmat SPECITIer........cccuiiiiiriiiiiieeieecieeieee ettt et e s ee e s ae e e s esnes 74

10.8 AdVANCE ClAUSE......eeiuiieiiiiiieeieeete ettt ettt s et e st e bt e st e e st e sabe e bt e s abe e aseeeeenseeeeanns 75

109 EXAIMPIO....tiiiiieiiieieeieeeteete ettt ettt e e et e st e et e st e e saaessbeessteesbeestesnsaensteenseensnaeeann 76
10.9.1 Understand the Problem..........ccc.ooiiiiiiiiiniieieeeeteee ettt st 76
10.9.2 Create the AIGOTItRIML........cooiiiiiiieeieeieeeeeee et see et e e eesbeesbaesseessaesnseens 76
10.9.3 Implement the PrOZIam..........ccceeeiieeeiieeeiiieeeieeesieeceteeesteesereeesaeeesseeessseseeaesssssseeeaeens 77
10.9.4 Test/Debug the PrOgram.........cccccvercieiriienieeiiienieerieestesieesteeseesesesseessseessssseessssseessnsees 79

10.10  EXOTCISES.cecuuetiieiteieiieeeiteeette ettt e bt e ettt e e ate e ettt e s bt e e sbeeesaste e e bt e e eabeeseastesenbeesenseesanseesenns 79
10.10.1 QUIZ QUESTIONS. ...vvuuueeeeiieiieeeetiieeeeeeeeeerreteeeeeeeeerersraaaeeeeeeererssssaseeesersrssssnnnaesesesersssnnnns 79
10.10.2  SUGEESLEA PIrOJECES. .. .uveeeeeieeeiieeeitieeeieeeeiteeeteeesteeesaeeesseeesseeeessseeessseessssesssseesessssssneens 80

11 Characters and STEINES........ccoerveesuecserssenssicseissesssncssnssssssesssissssssssssssssssssssssssssssesssssssssssssssssssssasess 83

11.1 Character and String CONSLANLS. .......cceuerreeriieerriereeerteerteesrtesteesreeseeesseesatessseeeesseeessnseeeenanes 83

11.2 Character Variable Declaration..........c..ceceevererrieriienierienieneniertesreetesee st st e e saee e 84

11.3 Character Variable INitialiZation............coieiriiiiiirieeieeeece ettt 84

11.4  Character CONSIANLS. ......cccuertterterrerreeteetesteertestesseeseestesseessesseesseesesseessessesseensesnsesseenseesnseenns 84

11.5 Character ASSIGIIMENL.......ccccuterriueeerrrerireeaireesireeesseeessseeessseeesseessseessseessssesssssesssseesssseesssnnns 85

11.6  CharacCter OPEIAtOLS. .....cc.eeeverrurerrieerireriteesteeteeseessseesseessseesssesssessseessseesssesssessssesssessssessssessnns 85

11.7  Character SUDSIIINES. ....cueiiiiieeiiieeiieeeeteeeiteesteeeteeesveeesaeessaseeesaaeesssseesssseessseesssseessseessnnnns 85

11.8 Character COMPATISOMS. ....c.ceecvtrruierrieeritenreesieesireesseessessseessseesseesssesssaesssessssssesssssseesssssessssees 86

11.9 Intrinsic Character OPEIratiOns.........ccceeeveerrveeriiieerireeesireeesireeesseeessseessseesssesssseesssseesssseesesnnns 86

1110 EXAIMPIE....utiiiiieiieieeieeete ettt ettt et e st e et e e st e e beessbe e saesabaesseesssesssaesnsaensaeesssaesnnns 87
11.10.1 Understand the Problem..............cooiiiiiiiiiiieeeee et 87
11.10.2 Create the AIGOTItNIML......ccciiiiiiiiiiieeieeee ettt saeesaeae e 87
11.10.3 Implement the Programl.........ccccueercuieiriieeiriieeeiieeesreeesteeesieeeseseesseeesssssssseeesssssnseseaeens 88
11.10.4 Test/Debug the PrOgraml..........cccecierieriiiinieeieerieeieeete et et e steesaeessaeeesssaeesssnaeessnneas 89

1111 EX@ICISES. ceeiueieieiiieetteeteeeeit ettt e ettt ettt e et eeeibt e e e bt e s e bt e s embeesesa e e s bt e e ssaeeesaeeeasaeeennsaeeessennnes 89
I I R 0 L A @ 1 1= 1 o) 1TSS 89
11.11.2  SUGEESIEA PrOJECLS. ..c.uvvieeiieeeiieeeiteeeieeeeteeeeteeerre e s eteeesbeeesbeessaseesssseeensssseeeesesssseneaenns 90

vi



12 File OPerationS......cccceeereierensecsaicsenssesssissesssessssssssssesssnssssssssssssssssssssssssssssssssssssssssssssssssssssasssssssses 91

0 B 1 (I @] T o PSPPSR 91
12,2 FIlE WITLR. ..ttt ettt et e b et st e b et e s st e bt et e satenbesabesnbeesaseenas 92
12,3 SEOP STALEITIEIL. ...eieuiiiiiiiieeeeieeeeiiiteeeeeeseeettteeeeeesesseaarrreeaeesssessssnsraaaeessessssssssessaeesssensnsssnnses 92
12,4 File REAM.....cuiiieeieeteeeeeeee ettt sttt ettt ettt et e bbb sat e bt e s st e be e e s 93
12,5 REWINA...eiiiiiiieieeieeeeeeeet ettt et ettt e st et e s st e s e et e e st e saeentesseenseensesaeenseensesanans 93
12,6 BACKSPACE......ccciieeiiieiieeiieeieerte et e st e et esteeteesabesbeessbeessaesssessseesssesssaesssaeseesssesssesssessnsseeennns 93
12,7 CLOSE FiLe....oneiieeeeeeee ettt ettt et sat e st e b e st e e bt e st e e beesabeenee e e 94
12,8 EXAIMPI....uiiiiieiieeieeiteeieet ettt et s et e et e e ae e s te e st e st e e ssaeesbeessteesbeesaeensaensteensaenssaeennns 94
12.8.1 Understand the Problem..........ccc.eoviiiiiiiiiniieieeieeteee ettt 94
12.8.2 Create the AIGOTItRIML........cooiiiiiiiiieeieerieeeeeeeerte et eee et e e e e e beesbee s b e esaessseens 94
12.8.3 Implement the PrOZraml.......cccceiiiiiiiiiiiiieeieete ettt ettt et e st e s e e 95
12.8.4 Test/Debug the Program.........c.cccieeiiiriierieriiienieesieestesteeseeeaeesseeesseessseesssseessssseesssnees 96
12,9 EXEICISES....uuuiiiiiiiiiieiieitte ettt ettt ettt e ettt e s s ebbe e e s eabb e e e e e mabeeseessbaeeseensateesenbaeeesenraeeeeeas 96
12.9.1 QUIZ QUESHIONS. c.cevveeeeeeeeeieiieeeeieeeeeeeeeeeeti e e eeeeerersaaaeeeeseerrssssaaaseeessrssssssnnnssesesersssnnnns 97
12.9.2  SUZEESLEA PrOJECES. ....eeeuiiiiieeieeiteeie ettt ettt ettt ettt e e e st e et e st e e bt e saae s nsaeeesanes 97
13 Single DiMeNSION ATTAYS...cccceereresnessersssrsssassssssssssssssssssssssssssassssssssssssssssssssssssssassssassssssassssssassssss 99
13.1  ATTAY DeCIaration....ccccuieieiieeeiieeiieeecteeeete e seeeesite e et eesvee e aeeessaeeessaeesseeessaneessensssneesannnns 100
13.1.1  Static DeClaration..........cecveeruieeierniienieerieesieeseesteesteesreeteesaaeeseesseessseesssesssaesseesssesnseas 100
13.1.2  Static Array Declaration..........ccccvveeeeieeiiieeeiieeeiee et e esieeesreeesreeesvre e e e e s ssraaeeeesnnneaeas 100
13.1.3 Dynamic Array DeClaration..........cceeceerierriernieniieeniesiieesiesseeeseesseeseeesseesseessesssnseeens 101
13.1.3.1 Dynamic Array AllOCatiON........ccceueerciieeiiiieieiieeeite et e esieeesteeesaeeesaaeeeeeeseseeeeas 101

13.2  Accessing Array EIBMENLS.........cccviriirriiinieeiiierieeieesteesieesteesteeseressseesssesseesssessessssesssssesas 102
13.2.1 AITAY BOUNAS.....cociiieiiiieeieecteeeteeeee ettt e estee s aeeesaaeessaae e s saaeessaeessseeesnsaneasssnsnnns 102
13.3 IMPLied DO-L00P....ccttieiieeiiiiieeieeite ettt ettt e e et esbessseesbeesbeesssessaesasaesseesssesssaesssnseeens 103
13.4 INtrinSiC FUNCHIONS. ..c.uuiiiiiiiiiteiieeeteeete ettt sttt ettt e st e e s aee e s ssaeee e e e 103
13.5 INItHAlIZING ATTAYS....ccctiieieeiierieesieerte et este st et e st e st e e steesatesbeesssessaessseessessssesnseesssesssseeenn 104
IS ST € 111151 (-3 OO SSRPSP 104
13.6.1 Understand the Problem...........ccciiriiriiiinieriiieieeieerteeiee et eesare e e sane e eeeaee s 104
13.6.2 Create the AlGOTIthML........ccccuiiiiiiiieieecee et er e e e eaa e e e ae e ssae e e 105
13.6.3 Implement the Program.........cccceeeuierieriiienieeieesie ettt st see et e e e e e stae e eneaee s 106
13.6.4 Test/Debug the PrOZrammi.........c.cciccuiiiiiieeiiieecieeeieeeeieeeeteeesaeessveeesaaeesessnsaeaeeessnsenens 108
13.7  ATTAYS Of SITNES...ciiuiieiieiieeiteteee ettt ettt e s ae e st e s bt e saaessbe e st e esbeesssessseesssassseesssesnsses 109
13.8  EXEICISES. ..ceeeueteieiieeeiteeeite ettt et e ettt e ettt e et e e e bt e s bt e e e bt e e e bt e e e bt e s eabee s nstesenbeesenbeesnneeees 109
13.8.1 QUIZ QUESTIONS. ..cvvvreeeeeeeieieeeeettieeeeeeeeeeettieeeeeeeereraaaaaeeeeeeeserssssanneeserrssssssnnnseeseerssnsnnns 109
13.8.2  SUZGESLEA PrOJECES. . .cccuvieecirieeeiieeiieeectee ettt e steeertaeesstaeesseeesssaeesseeessseessssnaeesessnssneeesan 110
14 Multidimensional ATTAYS......cccceeveiesressencssnssssnsssssssssssssssssssssssssssssssssssssssssssasssssssssssssssssassssssasssss 113
14.1  AITay DeClaration.......ccocueeiuieeieeieeieeiteetee sttt e st s bt e st e et e e s e s eaneeeseaneeeeenneas 113
14.1.1  Static DeClaration.........c.cevuerueerierierieteeterteet sttt ettt sat ettt s e ae et esae e s eesaeees 114
14.1.2 DynamiC DeClaration............ccecueeerieeeriieeeiieesiieeeireessieeessseeesseeessseessseessssseeessssnnsneeesas 114
14.1.3 Dynamic Array AllOCAtiON.........cceecveerieriiienieeiierieesieerte et esteeseeesreesaeesaessaneessnsneesnes 114
14.2  Accessing AITay EIEIMENLS. ......cuuiiiiiieiiiieeiiieeiiteesteeeeeeesieeesteeesveeesaeessabeeessaeesssneeessnnnsneeas 115
14.3  EXAIMPIE....ciiiiieiiiieeeeeeee ettt sttt s bttt e st e e b e st e et e st e et e e e ate e beesate e nnaeeennees 116
14.3.1 Understand the Problem..........c.cooiuiiiiiiiniieee ettt 116
14.3.2 Create the AIGOTItRM.........cocciiiiiiiiieiiiee ettt e saeessaesaeeeaes 117

vii



14.3.3 Implement the Program........cccceeciirrieriiiiieeieereeeieeree e et ere e e ssaeeesssreeesssveeesnneas 118

14.3.4 Test/Debug the PrOGram..........ccceerieriiinieriiinieeieeete ettt ettt et e e et e s e saeee s aeee s 119
14,4 EXOICISES...cevverrrereiereeereeeererreererreeererseeesrsssressessssssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssmnnns 119
14.4.1 QUIZ QUESTIONS. ...ccevvverieeeeeeereeetiiiieeeeeeerertttteeeeeeeerrrrsrrnaeeeeessssssrnnaaseessssssssnnneeseessesssnnns 119
14.4.2  SUGGESIEA PrOJECES...cuvieiietieeieeriieeieenteete et e steesteesteesseesssesseessseesseesssesssaesssaesassseenns 120
15 SUDPIOGIAINS.....coouiiiuiiiiiisuiisnisssiessissiisssnsssissssiosssesssssssssssssosssssssssssssssssssssssssssssssssssssssssssssnsssss 123
15.1  SUDPIOZIAIM TYPES...ccuvieiuieeiieiieeiieerieeieeete et e stesseessseesteesstesbessssesssaesssessseesssessessssesssseens 123
15.2 Program LayOUL......ccueeieeiiiieeiiiieeieeiteeeessiteeessiieeessssteeeessasaeesssssaeesssssseeessssseessnsssseseeeeees 123
15.2.1 Internal ROUINES......cc.eiviirrieeieeiierteeieeet ettt et e e steesseessbessseessseesseesssesssaesssessseens 124
15.2.2 EXternal ROULINES.......cccciiiiiiieiiiiiccieecciee et eece e e etee s teeesveeessaeeessaeesssseesnseesssneessaeenns 124
15.3  ATGUITIOITS. coenuuiieeeeeiiiteeeeeitteeeeeiteeeeeeteessearteeeesunteeeesnseeeseesnsteeessnsaaeeasssseeesanseeesssnnseeesennsees 124
15.3.1 ATgUMENt INTENL..cccuuiiiiiiiiiieeeeiiieeeeriee e eeetee e st e e e ssree e s ssabeeeeessaeeeessssseessnssnsssnsnneaeens 124
154 Variable SCOPE......ciiciieiiieiteteeteerte ettt ettt e st e st e st e et e sbe e s st e ssseessesnsaennssessnnseeean 124
15.5 Using Functions and SUDTOULINES...........cccciiieiiieeiiiieeeieeesieeesieeeceeeesieeesseeeeeaeeesveeesssneeeeens 124
15.5.1 Argument PaSSINE.......ccceeuuieiiriiiieeieiieeeerieeeeeesiteeeeesrteeeesnreeesessreeesssnnneeeeeeeesassssssnnns 125
IS S I 21 1 (el 40 ) 1 TP O SUPPPPPPT 125
15.6.1 INLrinSIiC FUNCHONS. ...cciiiiiiiiiieitieeeeiteeeeeeee et e et e e e e e s e eareeesssareeeeeeeeesessnsnnnns 126
15.6.2 User-Defined FUNCHOMNS. ........ccctiiieeiiienieeieesteeieeeteecteeseeeveeseeereesssessssessseeseesnsaeens 126
15.6.2.1  Side EffeCtS...uueeiieiiiiiierieeetete ettt sttt sttt e 126

15.7  SUDIOULINES. .....vieieiieeeieeeeieeeete ettt e ettt e et e e e ette e s tee e s bt essabeeessseesssbeeessseessseasssaeesnssnneeeanns 127
15.8  EXAIMPI....ciiiiiiiiiieeeee ettt ettt ettt ettt e s e st e e at e e be e ntesbeenateenntaeean 128
15.8.1 Understand the ProbIemM..........ccceuiiiiiieiiieieiieeeiie e esieeesaeeesreeeseereee e e s snraeeeeeennneneas 129
15.8.2 Create the AIGOTItRIML........cocuiiriiiiiieeieeeeeeeee ettt e st saeesaeeenes 130
15.8.3 Implement the PrOGram..........ccceeciiieiieieiieeeieeecieeesteeesteeesieeeesaeeesreeeessasreaeeessnsenens 131
15.8.4 Test/Debug the Program..........cceccveeeiierieriienieeriieeieeseeseeesieeseeesseesresesssnesessssesssnseeens 132
15,9 EXOICISES.ceiuuiiieiieiiieeiesiiteeeeeite e e e ettt e e sstteeeessateeeseastaeesssssaeeesssssaaesasssseeeessssaessnsssaeesenssnnnnes 132
15.9.1 QUIZ QUESTIONS. ..cvvvueeeeeeeeeeeetetceeeeeeeeeeeeteeeeeeeeresaaaaa e eeeeeessrssssaaneeserrrsssssnnnseeseerssnsnnns 132
15.9.2  SUZGESIEA PrOJECES. . cccuvieeiieeeiieeeiieeeteeeteeeeteeesteeesteeesaaeeesaaeeesaseesssseessaeessaneasssnnnes 134
16 Derived Data TYPeS.....ccccieerersrercsseessarsssessssnssssssssssssssssssossssssssssssssssssssssssasssssssssssssssssassssssssssssnssss 137
16.1  DOfIMItION...cutiiiiieiieeieeieeete ettt ettt et e et e e tee e steesaeeebeessaeebeesseeessaesssassseesaeesseensaennsens 137
16.2 DECLATAtION. ...c.vtieieiteeiieteeteeteet ettt ettt ettt et s e sa et s st e b e e b e sae e bt eabeesabeeeabeeeneesneens 138
16.3 AcCCeSSING COMPONENLS. .....ettiiriurreereririeeerrirreeeessrreeeesssrreeessssseeessssseessssssseessssssseesssssseessssssees 138
16.4 EXAMPIE ONE.....uiiiiiiiiiiiiiiieeieeit ettt ettt s e e s bt e satessbeesabessbeesasesssaesssesssssaesanseeesnns 139
16.4.1 Understand the ProbIemM..........ccieuiiiiiieiiiiieiieeeiteceieeesieeesteeesreeesvre e e e e s seneeeeeessnnneans 139
16.4.2 Create the AIGOTItRML........coouiiiiiiiiieiieeeeeeeeee et st anes 140
16.4.3 Implement the PrOgram..........ccceeciiieiieiiiiieerieeesteeeeteeesveeeseeeseaeeesaee e e s s eaveeaeesennenens 140
16.4.4 Test/Debug the Program...........ccecueeriieriieiniienieeieeeieeseeste et e seeesieessesssaneessssnesssaseeeas 142
16.5 Arrays Of Derived Data.........ccveeueeiieeiiieiieeieeeeeeiteesteeeteeseeeesteesaeesaeessaesbeesseesseessaesnseenses 143
16.6  EXAMPIE TWO..ccuuiiiiiiiiiiiecieeete ettt ettt ettt sat e s te e st e s beesaaesba e s st e esseesssesnsaenasesnnsseenn 144
16.6.1 Understand the ProbIemM..........ccieuiiiiiieriiiieiieeeite et e esiee e e esreeesvre e e e e sssreeeeessnnneneas 144
16.6.2 Create the AIGOTItRML........coouiiriiiiieeieeeeeeeee et 144
16.6.3 Implement the PrOgram..........cccceeciiieiieeriieeiieeesieeeeteeeeveeeseeessaeeesaee e e s s eseeeaeesennenens 145
16.6.4 Test/Debug the Program...........ccoceeviieriieiniieniieeiteeieesieesie st e seeesieestesssaneesssaeessnsaeeas 148
16.7  EXOICISES.ceiuutiieiieiiieeieeiitee e et e e e ettt eeestteeeessabeeeseastaeeessssaeeesssssaeessssssaeeesssssaessnsssaeesensssnnees 148
16.7.1 QUIZ QUESTIONS. ...evvueeeeeeeeieeieeiieeeeeeeererttreeeeeeeererarsreeeeeeessrssssaneeeesesrrsssssneseessessssnnnns 148



16.7.2  SUGGESIEA PrOJECES. ..cuvvieiierieeieeiieeieeiteete et e steesteesteesseessbessseessseeseesssesnsaenssaessssseenns 149

17 MOAUIES....ccuueieirericseressenessenosssnsossssssssasssssasssssasssssassssssssssssssssasssssasssssasssssasesssssesssssessssssssssssssassss 151
17.1 Module DeClaration...........cceeeverruerrieriieenieeieeseeesieestessessseesseesseesssessssessaesseesssessssesssssseens 151
17.2 USE SEALEIMEIL.....eeeiieiiieeeeeirteeeerireeeeeetteeeesaaeeeesssaeeessssaeessssssseesssssseesssssseessssssseesssssseseeeees 152
17.3 Updated Compilation COMMANGS.........ccecuerruirrieririeriieeiieenieeieeseesseeseesseessseeesssseessssseesnns 152
17.4 Module EXample Programl.........ccccceeeeueeeiiieieiieeeiieeesieeesiteeesseeessseessseessssesssssesssssessssssesssees 153

17.4.1 Understand the Problem..........cccciiriiriiiinieiiieieeieesteeieeste ettt eesare e e aneeesneaee s 153
17.4.2 Create the AlGOTIthML........ccouiiiiiiieiee et e e sa e e rae e s rae e e 153
17.4.3 Implement the Program.........cccceeeuiirieriiienieeitecie ettt et see et e saae e esbaeeensaee s 154
17.4.3.1 Main PrOGIAIM.....cciiiiiiiieeieiiiieeiniiieeeeeirteeessireeeesareeesssssneessssssneeeesesssssssssssssnsnnns 154
17.4.3.2 MOdule ROULINES.......cceeeuiiriiiiieiieeieeete ettt site st saeseeesaeesseesasesnsaesnsnaaesnns 155
17.4.4 Compile the PrOZIam.........ccceieiiieieiiieieiieesieeeeiee et e este e s seeeesseeeesteeessaeeesaeeessseeesensnnns 156
17.4.5 Test/Debug the Program..........cceccveeriierieinienieeiienieesteeeessieeseeeseesnesesnsnesssnsnessnnseeens 156
17.5 B XOICISES.ceiuuuiieiieiiieeieeiitee e ettt e e ettt eeestee e e s s abeee s e aseaeeesssseeesssssaeesasssseeeesssssaessnsssaeesenssnnnens 156
17.5.1 QUIZ QUESHIONS. ...evuuueeeeiiiieieietceeeeeeeeeeetteeeeeeeereearaat e eeeeeeserssssanneeserrsssssanneseeeserssnrnnns 156
17.5.2  SUZGESIEA PrOJECES. . cecuvieeiieeeiieeeiieeeieeeetteeeteeesteeeeteeesaeeesaaeeessseesssseesseeesssneassannnes 157

18  RECUISION...uuccuuicriireirniceiseissiessnsesssnssssssssssissssssesssessssssessssssssssesssessssssssssessssssessssssssssssssssssssssssnss 159
18.1 ReCUISIVE SUDTOULINES........ciiiiieiiiiecieecte ettt ste e s saae e s saae e s ssae e s ssanaaeeens 159
18.2 Recursive Print Binary EXamPIe........cccceeoierriiiriieriiienieeieenieeieesee s este e seessvneesesnnee e 160

18.2.1 Understand the Problem..........ccccvuieiiiieriiiieiieeeiteeeieeesieeesreeesreeesveeeeeesseneaeeeessnnseans 160
18.2.2 Create the AIGOTItRML........cocuiiriiiiieeieeeeeee ettt et e e 160
18.2.3 Implement the PrOGram..........cccceeciiieiiiiniiieeeieeecieeeeteeesveeeseeessaeeesaee e e ssenreeaeessnsenens 161
18.2.4 Test/Debug the Program...........ccccueeriieriieiniienieeiteeieesieeeiessieesteesieessesssaneessssnesssnsaeeas 162
18.3 ReCUISIVE FUNCHIOMNS. ..ciiiiiiiiiiiiieeieieeeeeite ettt e e e srte e s s saae e e s s saeae e e s sasaaasaaeeeeeeeessssnns 162
18.4 Recursive Factorial EXamPIe.........ccceevieriieriiiinienieeiieeieesitesie et sreesesesreesieessesssnesseesaes 162
18.4.1 Understand the Problem..........ccicvuiiiiiieiiiiieiieeeiteeeiee et e esteeesreeesare e e s e ssesraeeeessnanenens 162
18.4.2 Create the AIGOTItRML........cocuiiiiiiiieiieeeeeeeee ettt st aees 163
18.4.3 Implement the PrOgram..........ccceeciiieiieeniiieeiieeecieeesteeeereeeseeeeieeesaee e e s s asreeeeesennneneas 163
18.4.4 Test/Debug the Program...........ccccueeviieriieiniienieiiteeieesieesee st e saeesieestesssnanesssnsnesssasaeeas 164
18.5 Recursive Factorial Function Call TTee.........ccccueiriiiiiriieieiiieeiieeecieeereeseeesveeesveeesvaeeeeeas 165
18.6  EXEICISES....ciiuiiiiiiiiiiieiiiectt ettt ettt et ettt s ab e e s ab e e s enb e e s nb e e saanee s 166
18.6.1 QUIZ QUESLIONS. ...uvuvvverererererererererererererererrrrrererarareaarera——.————————————ersrrserersrererersrrressrereresere 166
18.6.2  SUGEGESIEA PrOJECES...cuviieiieiieeieeiieeieeite et et e st et esteesteesbesbeesstesbeessaesnsaenssaesennsaeens 166

19 Character String / NUMeTriC CONVEISIONS......ccccccveerrurcseessrrcseisssnsssessssncssnssssssssssssssssssssssssssnes 169
19.1 Character String t0 NUMeTriC CONVEISION. .......ccterterrrerienreriereeniereentesseessesseesseessseeesnneennnes 169
19.2 Numeric to Character String CONVEISION......c.ccueiriuieiriiierriiieenieereieeesreeesseeesseeesssssssseeesenns 171
19.3  EXEICISES...ceiiuiiiiiiiiiiiiiiiieett ettt ettt et be e e be e s bt e s ab e e s sb e e s bt e senbeesnnaeeas 172

19.3.1 QUIZ QUESTIONS. . .ueeeeeieieeeieeeieieieeeeeeeseseeeeeseeeeeseseseseseseseessesesesesssesesesesnsssnsssnsssnsnsnsnsnnnnnnen 172
19.3.2  SUGEESIEA PrOJECES. .ccuuieruiieiieeiieiteeieeit ettt ste et te et e st e e beesate s beesaaesbaesssaeessssaeeas 172

20 SYSLEII SEIVICES..ccerrrressarresssressssresssaresssasesssesssssassssssssssssssssasssssssssssasssssasssssassssssssansssssssssssssssssssns 175

20.1 Date and T, ...cc.ceouieiirierieiieeteeeterte ettt sttt sa e b st sbeesbesbeesbe e e bt e snaeseneeeene 175
20.1.1 Date and Time OPLiONS.......ccceeeevueerrireerriieeeiieesiteenieeessseeessseeessseesssseesssseesssseessssssseeees 175
20.1.2 Date and Time EXample Program...........ccccceeviiriieiiiiniieeniienieesite et esee e sieee e 176

ix



20.2 Command LiNe ATGUIMIENLS. .....ccc.eerueerirerrreerieerieestessseesseessseessseesseesseesssessssesssessseesssessssesssaens 178

20.2.1 ATGUMENE COUNL.....eeiiiieriiiieriiteiitee et e ettt e et e e et e esrteeebeeesabeessaseeessseesssbeesseeesnseessnsees 179
20.2.2 GOt ATGUITIEIILS. ¢ uueveeeeeiireeeeeirteeeenrteeeeeeiteeeseurteeeessaeeeesssseeessssssteessssseeessssssseeeeeeeesesenns 179
20.2.3 Command Line Arguments, Example Program...........cccccceevtervieinieniieeniienieenienieeeene 180

20,3 EXEICISES..ccuutiiiitiiiiiieeiteeette ettt ettt ettt s bt ettt e e bte e s be e e bee s e bt e s bt e s nb e e s et e senaeeeeas 182
20.3.1 QUIZ QUESTIONS. c..ceeeeieeeieieieieeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeereeereeeeerereseeesererereresereserereseserereseseeeees 183
20.3.2  SUGEESLEA PrOJECLS. .. ceeuveeiieeieiiieeieeieeeie et e eteesteesteeseeessaeesseessseesssesssaesssasssesssnsseeennes 183

21 AppendixX A — ASCII TabIe.......ccovveieirseicssnicssaniossanesssasesssasesssasesssasesssassssssssssssssssssssssssssssasssssassss 185
22 Appendix B — Start-Up INStIUCHONS. . ....cccienuienreicsiessersssnesssnssssssssssssssssssssssssssssssssssssssssssssssssses 187
22.1 WOTKING FIlES.....ciiouiiieiiiieiieeeiieeette ettt e tte st e e e ste e e s te e e s ata e e saeeesaaaeesesssnsaeaessnsnssnees 187
22.2  Obtaining The COmMPILET........cceiciiriiriierieeiterte ettt este st e seesteesatesbeessaessaesseessseeesans 187
22.2.1 Windows Download and Install............ccoeiiiriiiiiiniiiiieeeteeeeeeeeeeee e 187
22.2.2 MacOS Download and Install...........coceeeererieriinenienieeniesceeetese et 188

22.3 'WiIindows COMPIlAtion.........ccueeieiuieiiieeiiieeriieeeiieeeceesesieeesteees e e ssseeessteesssseessssesssssseeessnnnns 188
22.3.1 Command Prompt WINAOW.........cccuerruiiriernienieeiienieesieesieesitesressesessseesssseesssnseesssnns 188
22.3.2 Device and DITBCLOTY......cccvueieirieeeiriereirieieiteeesreeesreeessteeessaeesssseessssessssseessseesssseessssnsesees 189
22.3.3 Compiler Installation Verification...........cceceeeuirrieriieiniienieinieeieeneesiee e e 189
22.3.4 COMPILAtION.....iiiiiiiiiiieeeiee et este et e et e et e e steeesbeeesaaeesssaeesbeeessaeessnssaaaeessnssssaaeenns 189
22.3.5 EXECULNG....ccouiiiiriiiiieteeitertee ettt ettt ettt et et s et st s st e sb e et e sbe e be st e sabeesaseesneens 190
P20 N S 25 111151 [OOSR SRR 190

22.4 MacOS COmMPIlAtiOn......cieiiriiiiriiriierieeitesie ettt ste et e stesseeesatessbeesssesseesseessseessseesnnns 190
22.4.1 Terminal WINAOW........cooiiiiiiiiieiieteeteee ettt ettt et e e 191
22.4.2 Device and DIrBCLOTY......covciirriiirieeiieeniesrieesteesieestessseestessseesssessseesssessseesssessseessssessnnns 191
22.4.3 Compiler Installation VerifiCation.........ccccecueeeuierieeiiienieeieecieesie et eeiee e evee e e 192
22.4.4 COMPILAtION....ttiiitiiiiiieiieiieeieeit ettt et e ete et e sbeeseeesate e st e ssbessssessseesasssaessssseesnssees 192
22.4.5 EXECULINEG.....uviieiiiiieeeieiiteeeeeiiteeeesiteeeesstteesesarteesssssseeesssssaaessssssaeessssseesssssssssssssaseeeees 193
22.4.6 EXAIMPLE...cuiiiiiiiiiieieeeete ettt ettt ettt b et be ettt eeneeenee s 193

23 Appendix C — Random Number Generation........cc.cceceiecsseressssnsssssssssanssssasssssassssssssssssssssssns 195
23.1  INEtIAlIZATION. .ecueeeuietieeeeteetet ettt ettt et sttt b e b st sbe et e bt e r e et aeeee 195
23.2 Generating Random INUMDET.........cccciiiiiiiiiieeeiieeeieeeteeeite et e esaeeesaeeesaeesssaeessaaeessnaeens 195
23.3  EXAIMPLE...cc ittt ettt ettt sttt et st e et e e b e e abe st e e s ateebeenabaeeenns 196
234 EXAINPIE.... ittt ettt ettt e s e e e st e e et e e e be e et be e e tae e s taeeeaaeenabaeennbaaeeennnes 197
24 Appendix D — INtrinsic FUNCHONS. . ....cucoiiiiniinseinnniniseissncsssisssissssisssssssssssssssssssssssssssssssssssssssses 199
24.1 CONVETSION FUNCLIOMNS. .. ..uvtiiiiiiiieeeeiieeeeeiteeeeset e e e sttt e e ssarteeesssteeesssarreeesssnsaeeesssnsaeesssssnnns 199
24.2 INEEZET FUNCHIONS. ...coiiiiiiiiiieieeeieettee ettt et e et eee e e seee e e sesraeesenraeeesesnsneeeeeeessnnnns 199
24.3 Real FUNCHOMS. .. .uiiiiiiiiiiieeciteette et et et e e et e e st e s s teessatae s sbeessasaeessseessseesnssassssseesssnnnns 200
24.4 Character FUNCLOMS. ......cocuertiriieierienieeteeteettete ettt et ettt et e sae e e st e sae et e s aeesseesaesmeesneeas 200
24.5 ComPleX FUNCHOMS.....cccoiitiiiiieeiieieiieeeiteeeite st e esteeesteeesareesssaeesssseesssseesssaeessssesssseesnsseennns 201
24.6 ATITAY FUNCHIONS. ... eeiiiiiiiiiieeeittee ettt eee e e et e s et e e seseeeessennrteeeeeesssnnnnnnnes 201
24.7 System INformation FUNCHONS. .......cccuieiiiiiiiiieciiecieeeeeee ettt e e e aae e e eaaaeeeees 202
25 Appendix E — Visualization with GNUPIOL........c..ccuviivriiiviinsinnsiinsinsseissnissssssssissssssssssssssssanns 203
25.1 ODbtaining GINUDPIOt......ciiiiiiiiieiieieieeete ettt e s ar e e s e e e staeessbaessaneaaeesssansnens 203



25.2 Formatting PlOt FileS........coooiieiiiiiiiiieiieeieeeteeie ettt steeste et eeste e st e saeesnseeesssnaeesnns 203

S N 5 (=T Ua (<) RSP 204
25.2.2 T OO .ccuuvuveeeeririeereeeeeeeeteeeeeeereeeeeeeeeeserreesssssssrsssssssssssssssrsssrssssssssssssssssssesesessssssssssrsssnnnnnns 204

25.3  PlOtHNE FIlBS....eiiiiiiiiieeteete ettt ettt st ettt et st et e st sa e s beesaeeean 204
25,4 EXAIMNPLE....cctiiiiiiiieiieeiteet et ste et e ste et e st e sbeessbeste e st e esbe e e st e s beesnteesbeeasteenbeensteenbaennreeeane 204
25.4.1 PlOt PrOZTAIM...cueiiiiiiiieeiieeiteete ettt ettt et e bt st e bt e st s bt e st e e bt e sabesbbeeeabaeeeans 205
25.4.2 POt FIlB.ueiiiiiiiieeeeieeee ettt et e e et e e e et e e e et e e e eeaaae e e e earaaaeeenraeeas 206
S T G T o (oY @ 1111 511 SRR 206

26 Appendix F — Quiz QUESHION ANSWETS.....ccoreirruresserssssossssssasssssssssssssssssassssssssssossssssassssassssssassssss 207
26.1 Quiz Question ANSWerS, ChaPLer L.....c..ciccieieiiiieiieeerieeesieeerteeereeesreeessaeee e e esareeeeeessnnnneeas 207
26.2 Quiz Question ANSWeETS, ChapLer 2........ccccueiiiiiriiieiieeieeieenieesieesteesreesteeaseeessseesssseesssnees 207
26.3 Quiz Question ANSWETS, ChaPLEr 3........ciccieieiirieiieeeriieesieeesteeesreeesreeessaeeeeeesnrseeesessssseees 207
26.4 Quiz Question ANSWeETS, ChapLer 4.......ccccueiiuiiriiiiiienieeieenieesieesteeseeseteeareesssreesssseesnsnees 208
26.5 Quiz Question ANSWETS, ChAPLEI S........ciecieieiiieieieeeriieesireesieeesaeeeseeeessaeeeesesnrseeeeessnssees 208
26.6 Quiz Question ANSWeTS, ChapLer B.........cccuereuieriiiiiiirieeieenieeriee e eseeeteeaaeeseareessaneessnnes 209
26.7 Quiz Question ANSWETS, CHAPLET 7.....cueiecieieiiieeeieeesieeesieeesteeesreessreeessseeeesssssaeeessssnssees 209
26.8 Quiz Question ANSWers, Chapter 8..........ccceeviiriiiiriiiieiieenie ettt ereeeereessaneesssnes 209
26.9 Quiz Question ANSWers, ChapPter O........ccccieieiiiiieiiieerieeesieeerteeerreeeseeeesaeee e e e seraeeeeessnsneeas 210
26.10 Quiz Question Answers, Chapter 10.........cccceerierrieerieriieerienieerte e e ereeeeireeseaeeessaeeeens 211
26.11 Quiz Question ANSWeTS, Chaper 11.......cccciieiiiiriieieiieeeieeesiteeereeeereeeseeeeereeeesaeeessaeeeens 212
26.12 Quiz Question ANswers, Chapter 12.........ccccuerciiiiiirieiiienieereeeeeeeeeteesteeeereessaeeesssees 212
26.13 Quiz Question Answers, Chapter 13..........cooiiiieiiieiiiieecieeecteeeee e eeraee e e e e svreeeeessaeaeeas 212
26.14 Quiz Question ANswers, Chapter 14.........cociiriiiriieiieiierieereeeee et e e eree s saeeeseeees 213
26.15 Quiz Question ANSWers, Chapter 15.......ccciiiiiiriiieeiiieecieeerie e e eseeeesreee e e e erreeeeesseanneeas 214
26.16 Quiz Question Answers, Chapter 16.........ccccuivciirriiiriieriienieeeenre et e eree s saeeeseeees 215
26.17 Quiz Question ANSWeTS, ChaPLer 17......cccviieiiiiiiieeiiieecieeeste e e e e seeeesae e e e s e sevaeeeeessnnaeeas 216
26.18 Quiz Question Answers, Chapter 18..........cccuiviiiriiiiieiiierieeeeee et e e 216
26.19 Quiz Question Answers, Chapter 19..........coeciiiiiiiiiiieecireecieeeee e e e e saae e e e s eaeeeees 217
26.20 Quiz Question Answers, Chapter 20..........cccueeeueeriiriieriienieeeesreeeeeteesteeeereessaneesssnees 218
27 Appendix G — Fortran 95/2003/2008 KeyWOrds.........cccceeseressrercsssnscssssssssasssssasssssassssssssssssssssss 219
INA@X.c.ceeeeeeeereneeeecrsnneeecssneeeccsnseecesssnseeesssnssecssssnsasesssnssssssssassssssssssssssssnsasessssassessssnssessssssssssssssnnnnnnnsases 223

lHlustration Index

[lustration 1: COMPULET ATCRITECIUTE. .......eeeviirierrierieeitteeteestte e st e steesteesstesteesssesseesseeesssseesssssessnsseeeas 3
Mlustration 2: Fortran 95/2003/2008 COMPIle PrOCESS.......ccccvieriieiriiieeiieeerreeesieeseeeesreeesreesessevveeesesnnns 4
[ustration 3: Factorial ReCUrSION TTEE.........cccueiiiiiiriirieriieienieetertestt ettt ettt e e s e s 165

xi



xii



1 Introduction

Computers are everywhere in our daily lives. Between the desktop, laptop, phone, bank, and vehicle, it
is difficult to completely get away from computers. It only makes sense to learn a little about how a
computer really works.

This text provides an introduction to programming and problem solving using the Fortran
95/2003/2008 programming language. This introduction is geared for non-computer science majors.
The primary focus is on an introduction to problem solving and algorithm development. As such,
many details of the Fortran 95/2003/2008 language are omitted.

1.1 Why Learn Programming

For science and technical majors, computers are used extensively in all aspects of every discipline.
Learning the basics of how computers work and how programs are created is useful and directly
applicable.

Programming a computer is basically applied problem solving. You are given a problem, the problem
is analyzed, a solution is developed, and then that solution is implemented and tested. Enhanced
problem solving skills can be applied to any endeavor. These basic skills, once developed, can be
applied to other programming languages, MATLAB, or even spreadsheet macros.

Unfortunately, learning programing and how a computer really works may ruin some B movies.

1.2 Fortran

Fortran is a programming language often used by the scientific community. Its name is a contraction of
FORmula TRANslation. FORTRAN is one of the earliest programming languages and was designed
specifically for solving scientific and engineering computational problems.

This text utilizes the Fortran 95/2003/2008 standard. Older versions of Fortran, like Fortran 77, are not
referenced. The older Fortran versions have less features and require additional, often burdensome,
formatting requirements.

1.3 Complete Fortran 95/2003/2008 Documentation

This text it is not a comprehensive or complete reference to the Fortran 95/2003/2008 language. The
entire GNU Fortran compiler documentation is available on-line at the following location:

http://gcc.gnu.org/onlinedocs/gcc-5.3.0/gfortran/

If this location changes, a web search will be able to find the new location.



Chapter 1 » Introduction

1.4 What Is A Program

A computer program is a series of instructions which enables the computer to perform a designated
task. As this text will demonstrate, a computer must be told what to do in precise, step-by-step detail.
These steps might include obtaining data, arithmetic operations (addition, subtraction, multiplication,
division, etc.), data storage, and information output. The computer will perform these tasks as
instructed, even if they don't always make sense. Consequently, it is the programmer who must
develop a solution to the problem.

1.5 Operating System

The Operating System, or OS, is an interface between the user and the hardware (CPU, memory,
screen, disk drive, etc.). The OS is responsible for the management of the hardware, coordination of
activities, and the sharing of the resources of the computer that acts as a host for computing
applications run on the machine. The common operating systems include various versions of
Windows, MAC OS X, and UNIX/Linux. Programs written in Fortran will work on these operating
systems.



2 Computer Organization

Before writing programs, it is useful to understand some basics about how a computer is organized.
This section provides a brief, high-level overview of the basic components of a computer and how they
interact.

2.1 Architecture Overview

The basic components of a computer include a Central Processing Unit (CPU), Primary Storage or
Random Access Memory (RAM), Secondary Storage, and Input/Output devices (i.e., screen, keyboard,
and mouse), and an interconnection referred to as BUS. The secondary storage may be a Solid-State
Drive (SSD), disk drive, or other type of secondary storage media.

A very basic diagram of a computer architecture is as follows:

Primary Storage

CPU Random Access
% Memory (RAM)
BUS

> (‘Q//
Screen / Keyboard / Secondary Storage
Mouse (i.e., SSD/ Disk Drive /

Other Storage Media)

Illustration 1: Computer Architecture

Programs and data are typically stored on the disk drive. When a program is executed, it must be
copied from the disk drive into the RAM memory. The CPU executes the program from RAM. This is
similar to storing a term paper on the disk drive, and when writing/editing the term paper, it is copied
from the disk drive into memory. When done, the updated version is stored back to the disk drive.



Chapter 2 » Computer Organization

2.2 Compiler

Programs can be written in the Fortran programming language. However, the CPU does not read
Fortran directly. Instead, the Fortran program that we create will be converted into binary (1's and 0's)
by the compiler. These 1's and 0's are typically referred to as machine language. The CPU will read
the instructions and information, represented in binary as machine language, and perform the
commands from the program.

& »

Fortran Compiler Executable
95/2003/2008 File
Program

Illustration 2: Fortran 95/2003/2008 Compile Process

The compiler is a program itself and is required in order to create the files needed to execute programs
written in Fortran 95/2003/2008.

2.3 Information Representation

All information, including numbers, characters, and instructions are represented in the computer in
binary (1's and 0's). The information, numbers in this example, is converted into binary representation
(1's and 0's) for storage in the computer. Fortunately, this is generally done transparently.

2.3.1 Decimal Numbers

Before discussing binary numbers, a brief review of the decimal system is presented. The number
"1234" as,

Which means,

Thousands Hundreds Tens Ones
10° 10° 10' 10°
1000 100 10 1
1 2 3 4

1X1000 + 2X100 + 3X10 + 4x1
= 1x10° + 2x10° + 3x10" + 4x10°

The decimal system is base 10 using the digits O through 9.



Chapter 2 <« Computer Organization

2.3.2 Binary Numbers

A bit is the basic unit of information in computing and digital communications. A bit can have only
one of two values, 0 or 1. The term bit is a contraction of binary digit.

The binary system, as well as its math, operates in base 2, using two symbols, 0 and 1.

27 28 25 24 28 22 2t 2
128 64 | 32 | 16 | 8 4 | 2 1
0 0 0 0 1 1 0 1

In base 2, we put the digits 0 or 1 in columns 2°, 2%, 2°, and so on. For example,
1101, = 1x2° + 1x2° 4+ 0x2' + 1x2° = 8+4+1
Which in decimal is 134,.
A set of 8 bits is a referred to as a byte. Computer data is typically allocated in bytes or sets of bytes.

2.3.3 Character Representation

Characters are represented using the American Standard Code for Information Interchange (ASCII).
Refer to Appendix A.

2.4 Exercises

Below are some quiz questions based on this chapter.

24.1 Quiz Questions
Below are some quiz questions.

1) How is information represented in the computer?
2) What does the Fortran compiler do?
3) What architecture component connects the memory to the CPU?

4) What are the following binary values in decimal?
a) 0000101,
b) 0001001,
c) 0001101,
d) 0010101,

5) How are characters represented in the computer?



Chapter 2 » Computer Organization

6) Where are programs stored when the computer is turned off?

7) Where must programs be located when they are executing?



3 Getting Started

This section provides a brief overview of how to get started. This includes the general process for
creating a very simple program, compiling, and executing the program. Some detailed steps regarding
working with files, obtaining the compiler, and compiling a program are included in Appendix B,
Windows Start-up Instructions.

3.1 Required Skills

Before starting, you should have some basic computer skills, including the following:

Ability to use a web browser

Basic understanding of hierarchical computer directory structure

File manipulation (create, delete, rename, move, etc.)

Usage of the command prompt (Windows) or terminal interface (Unix, MAC)

Ability to edit a text file

o Includes selecting and learning a text editor (i.e., Notepad, Notepad++, emacs, etc.)

If you are unsure about any of these requirements you will need to learn them before continuing.
Fortunately, they are not difficult. Additionally, there are numerous tutorials available on the Web.

The following sections assume that the Fortran 95/2003/2008 compiler is installed and available. For
additional information regarding obtaining and installing the compiler, refer to Appendix B. The
Fortran 95/2003/2008 compiler is available for download at no cost.

3.2 Program Formats

Fortran 95/2003/2008 programs must be written and formatted in a specific manner. The following
sections summarize the basic program elements followed by a simple example.

3.2.1 Program Statement

A Fortran 95/2003/2008 program is started with a program statement, 'program <name>', and ended
with an end program statement, 'end program <name>'. Refer to the example first program to see
an example of these statements. The program name for <name> is chosen by the program author and
would typically reflect something related to what the program does.

The name used may not be used again for other program elements (such as variables described in the
next chapter). The program name must start with a letter, followed by letters, numbers, or an
underscore (“_") and may not be longer than 32 characters. Capital letters are treated the same way as
lower-case letters. Refer to the sample program in the following sections for an example.



Chapter 3 » Getting Started

3.2.2 Comments

Comments are information for the programmer and are not read by the computer. For example,
comments typically include information about the program. For programming assignments, the
comments should include the programmer name, assignment number, and a brief description of the
program. In Fortran, the exclamation mark (!) denotes a comment. Any characters after the
exclamation mark (!) are ignored by the compiler and thus are comments as shown in following
example.

3.2.3 Simple Output

A program can display a simple message to the screen by using the write statement. For example:

write (*,*) "Hello World"

Will display the message Hello World to the screen. Additional information regarding the write
statement and outputting information is provided in later chapters.

3.24 Example - First Program

The following trivial program illustrates the initial formatting requirements.

! Simple Example Program
program first

write (*,*) "Hello World."
end program first

In this example, the program is named 'first'. This file, provided as input to the compiler, is typically
referred to as the source file.

3.3 Text Editor

The first step is to create a text file named hw.£95 using a text editor. It is useful to place programs
and various files into a working directory. This way the files can be easily found and not confused with
other, unrelated files and data. The hw.£95 file should be created and placed in a user created
working directory. For this example, a working directory named 'fortran' was created and the file is
then created and edited in that location.

A file name is typically comprised of two parts; a name and an extension. In this example, the file
name is hw and the extension is . £95. The usual extension for this and future programs will be .£95
which indicates that the file is a Fortran 95/2003/2008 source file.

The following examples will use the hw.£95 file name. If desired, a different file name may be used.
However, the name will need to be adjusted for the compiler and execute steps in the following
sections.



Chapter 3 <« Getting Started

3.4 Compiling

Once the program is typed into a file, the file must be compiled. Compiling will convert the human-
readable Fortran program, or source file, into a machine-readable version (in binary).

In order to compile, the command prompt (Windows) or terminal interface (Unix, MAC) is required.
This interface will allow commands to be typed directly into the computer (instead of using a mouse).
Once started, it is typically necessary to change directories (from the default location) to the location of
where the hw.£95 source file was located (from the previous steps). Changing directories is typically
done with a cd <directoryName> command. For example, ed fortran (which is the name of the
directory used in this example). The prompt typically changes to include the current directory location.

In the example below, the commands typed by the user are displayed in bold. The regular (non-bolded)
text refers to prompts or other information displayed by the computer (which need not be typed).

To compile the example program, the following command would be entered:

C:\fortran> gfortran -o hw hw.£f95

This command will tell the 'gfortran' compiler to read the file hw.£95 and, if there are no errors,
create an output file referred to as an executable file. On Windows based machines the executable file
is named hw.exe. And on Unix or Mac based machines, the executable is named hw (no extension).
If there is an error, the compiler will generate an error message, sometimes cryptic, and provide a line
number. Such errors are usually the result of mistyping one of the instructions. Any errors must be
resolved before continuing.

3.4.1 Advanced Compiler Options

In addition, to the basic compilation options, sometimes additional instructions, or options, may be
required. For example, when using arrays (chapter 9), an option for bounds checking is typically
desired.

For example, to compile with bounds checking, the following command might be entered:
C:\fortran> gfortran -fcheck=bounds -o hw hw.f95

This command will tell the 'gfortran’ compiler to include bounds checking. More information
regarding arrays and bounds checking is addressed in chapters 13 and 14.

3.5 Executing

To execute or run a program on a Windows based machine, type the name of the executable file. For
example, to execute or run the hw.exe program:

C:\fortran> hw
Hello World.
C:\fortran>

Which will execute the example program and display the “Hello World.” message to the screen.



Chapter 3 » Getting Started

A more complete example is as follows:

28 Command Prompt

C:fortran?
C:“fortranrgfortran —o huw hu.f95

C:“fortranrhu
Hello World.

C:~fortran>
C:sfortranr

It is not necessary to type the extension (i.e., “.exe”) portion of the file name. It should be noted that
the space prior to the “H” is not produced by the program, but is how the system displays output.

To execute or run a program on a Unix or MAC based machine, type “./” and the name of the
executable file. For example, to execute or run the hw program:

c:\fortran> ./hw
Hello Wworld.
c:\fortran>

The output ("Hello World.' as displayed on the screen) will be the same for Windows, Unix, or MAC
based machines.

3.6 Exercises

Below are some quiz questions and project suggestions based on this chapter.

3.6.1 Quiz Questions

Below are some quiz questions.

1) What is the typical name of the input file for the compiler?
2) What is the typical name of the output file from the compiler?
3) Fortran program must start with and end with what statement?

4) How are Fortran comments marked?

10



Chapter 3 <« Getting Started

5) What is the typical Fortran 95/2003/2008 source file extension?
6) What is the typical Fortran 95/2003/2008 compiler output file, or executable file, extension

(after the program is compiled)?

3.6.2 Suggested Projects
Below are some suggested projects.

1) Create a working directory for the storage of program files (on the computer being used).

2) Obtain and install the GNU Fortran 95/2003/2008 compiler on a suitable computer. Refer to
Appendix B as needed.

3) Type in the hello world program, compile, and execute the program.

4) Update the example program to display your name in addition to the Hello World message.

11



Chapter 3 » Getting Started

12



4 Fortran 95/2003/2008 — Basic Elements

Before beginning to writing programs, it is necessary to know some of the basic elements of the
Fortran language. This section describes some of the basic elements of Fortran. Additional
information will be added in later sections.

4.1 Variables

The basic concept in a program is the concept of a variable. Variables in a program are like variables in
an algebraic expression. They are used to hold values and then write mathematical expressions using
them. Fortran allows us to have variables of different types.

A variable can hold one value at a time. If another value is placed in the variable, the previous value is
over-written and lost.

Variable Name - 42

Variables must be declared at the start of the program.

4.1.1 Variable Names

Each variable must be named. The variable name is how variables, which are memory locations, are
referred to by the program. A variable name must start with a letter, followed by letters, numbers, or an
underscore (“_") and may not be longer than 32 characters. Capital letters are treated the same way as
lower-case letters, (i.e., “AAA” is the same variable as “aaa”).

For example, some valid variable names are as follows:

X
today
next_month
summationlO

Some invalid examples include:

ltoday

this is_a variable name with way way too _many characters_in it
next@month

next month

today!

Note that the space (between next and month) or the special character, @, is not allowed. Additionally,
each variable must have a type associated as explained in the following sections.

13



Chapter 4 » Fortran 95/2003/2008 — Basic Elements

4.1.2 Keywords

In programming, a keyword is a word or identifier that has a special meaning in a programming
language. For example, in the “hello world” Fortran program from the previous chapter, the word
program has a special meaning in that it is used to note the start or beginning of a program.
Additionally, the word write has a special meaning to note an output action (e.g., writing some
information to an output device, like the screen).

Such keywords are reserved in that they cannot be used for anything else such as variable names. That
is, a variable name of program or write is not allowed.

As additional Fortran 95/2003/2008 statements and language constructs are explained, more keywords
will be identified. In general, words used for Fortran language statements, attributes, and constructs
will likely be keywords. A complete list of keywords or reserved words is located in Appendix G.

4.2 Data Types

Fortran, like many other high level programming languages, supports several different data types to
make data manipulation easier. The most frequently used data types are integer and floating-point.
Other data types are complex numbers, characters and logical data.

In a Fortran statement, data can appear either as a literal (e.g., an actual value such as 3.14159, 16,
-5.4e-4) or as a variable name which identifies a location in memory to store the data.

The five basic Fortran 95/2003/2008 data types are as follows:

Type Description

integer Variable that is an integer or whole number (not a
fraction) that can be positive, negative, or zero.

real Variable that can be set to a real number.

complex Variable that can be set to a complex number.

character Variable that is a character or sequence of
characters.

logical Variable that can only be set to .true. or .false.

It is also possible to have derived types and pointers. Both of these can be useful for more advanced
programs and are described in later chapters.

4.2.1 Integer

An integer' is a whole number (not a fraction) that can be positive, negative, or zero. Examples include
the numbers 10, 0, -25, and 5,148. Integers are the numbers people are most familiar with, and they
serve a crucial role in mathematics and computers. All integers are whole numbers, so operations like
one divided by two (1/2) is 0 since the result must be a whole number. For integer division, no
rounding will occur as the fractional part is truncated.

1 For more information regarding integers, refer to: http://en.wikipedia.org/wiki/Integer

14



Chapter 4 <« Fortran 95/2003/2008 — Basic Elements

4.2.2 Real

A real number? includes the fractional part, even if the fractional part is 0. Real numbers, also referred
to as floating-point numbers, include both rational numbers and irrational numbers. Examples of
irrational numbers or numbers with repeating decimals include r, V2 and e. Additional examples
include 1.5, 5.0, and 3.14159. Fortran 95/2003/2008 will accept 5. as 5.0. All examples in this text
will include the “.0” to ensure clarity.

4.2.3 Complex

A complex number?, in mathematics, is a number comprising a real number and an imaginary number. It
can be written in the form of a + bi, where a and b are real numbers, and the i is the standard imaginary
unit with the property that i = —1.0. The complex numbers contain the ordinary real numbers, but
extend them by adding in extra numbers like an extra dimension. This data type is not used
extensively, but can be useful when needed.

4.2.4 Character

A character” is a symbol like a letter, numerical digit, or punctuation. A string® is a sequence or set of
characters. Characters and strings are typically enclosed in quotes. For example, the upper case letter
“Z” is a character and “Hello World” is a string. The characters are represented in a standardized
format referred to as ASCII.

4.2.5 Logical

A logical® is only allowed to have two values, true or false. A logical can also be referred to as a
boolean. In Fortran, the true and false values are formally expressed as .true. or .false. which are also
called logical constants. The leading and trailing . (period) are required for the true and false constants.

4.2.6 Historical Data Typing

Unless a variable was explicitly typed, older versions of Fortran implicitly assumed a type for a
variable depending on the first letter of its name. Thus, if not explicitly declared, a variable whose
name started with one of the letters I through N was assumed to be an integer; otherwise it was
assumed to be real. To allow older code to run, Fortran 95/2003/2008 permits implicit typing.
However, this is poor practice, can be confusing, and often leads to errors. So, we will include the
IMPLICIT NONE statement at the start of all programs. This turns off implicit typing and the compiler
will identify and flag any variable not defined. This will help make some errors, such as misspelling a
variable name, significantly easier to locate.

For more information regarding real numbers, refer to: http://en.wikipedia.org/wiki/Real_numbers

For more information regarding complex numbers, refer to: http://en.wikipedia.org/wiki/Complex_number
For more information regarding characters, refer to: http://en.wikipedia.org/wiki/Character_(computing)
For more information regarding strings, refer to: http://en.wikipedia.org/wiki/String_(computer_science)
For more information regarding logicals, refer to: http://en.wikipedia.org/wiki/Boolean_data_type

DU R WN

15



Chapter 4 » Fortran 95/2003/2008 — Basic Elements

4.3 Declarations

Fortran variables must be declared before executable statements.
This section provides an introduction to how variables are
declared.

4.3.1 Declaring Variables

Declaring variables formally defines the data type of each variable and sets aside a memory location.
This is performed by a type declaration statement in the form of:

<type> :: <list of variable names>

The type must be one of the predefined data types (integer, real, complex, character, logical) as outlined
in the previous section. Declarations are placed in the beginning of the program (after the program
statement).

For example, to define an integer variable today,

integer :: today

Additional examples include:

integer :: today, tomorrow, yesterday
real :: ans2

complex :: z

logical :: answer

character :: myletter

The declarations can be entered in any order.

Additional information regarding character variables is provided in chapter 11.

4.3.2 Variable Ranges

The computer has a predefined amount of space that can be used for each variable. This directly
impacts the size, or range, of the number that can be represented.

For example, an integer value can range between —2,147,483,648 and +2,147,483,647. Fortunately, this is
large enough for most purposes.

The range for real values is more complex. The range is approximately +1.7x10**

digits of precision.

supporting about 7

4.3.3 Type Checking

The variable type declaration is enforced by the compiler. For example, if a variable is declared as an
integer, only an integer value (a whole number) is allowed to be assigned to that variable. Attempting
to assign a value of 1.75 to an integer variable could cause problems related to loss of precision. This
restriction is related to the fact that the internal representations for various types are very different and
not directly compatible. The compiler can sometimes recognize a type mismatch and implicitly
(automatically) perform a conversion. If this is done automatically, it is not always clear and could
lead to errors. As such, it is generally considered poor programming practice.

16



Chapter 4 <« Fortran 95/2003/2008 — Basic Elements

Conversions between types should be performed explicitly. Later chapters provide specific examples
of how this can be accomplished.

When initially learning to program, this may seem quite annoying. However, this type mismatch can
cause subtle errors that are difficult to find.

4.3.4 Initialization

It is possible to declare a variable and set its initial value at the same time. This initialization is not
required, but can sometimes be convenient.

For example, to define an integer variable todaysdate and set it to the 15" of the month:

integer :: todaysdate=15

Additional examples include:

integer :: todaysday=15, tomorrow=16, yesterday=14
real :: ave = 5.5

Spaces or no spaces are allowed between the variable name. The variable declaration may or may not
include an equal signs (for initialization). Commas are used to separate multiple variable declarations
on the same line. Variables initialized at declaration can be changed later in the program as needed.

4.3.5 Constants

A constant is a variable that cannot be changed during program execution. For example, a program
might declare a variable for m and set it to 3.14159. It is unlikely that a program would need to change
the value for m. The parameter qualifier will declare the variable as a constant, set the initial value, and
not allow that initial value to be altered during the program execution.

For example, the declarations:

real, parameter :: pi = 3.14159
integer, parameter :: width = 1280

will set the variable pi to 3.14159 and width to 1280 and ensure that they cannot be changed while the
program is executing.

4.4 Comments

As previously noted, comments are information for the programmer and ignored by the compiler. The
exclamation mark (!) denotes a comment. Any information after the exclamation mark (!) is ignored by
the compiler. In general, comments typically include information about the program. For example, a
comment might include the last modification date, programmer name, and details about the update. For
programming assignments, the comments might include the programmer name, assignment number,
and a description of the program. The comments might include information about the approach being
used, source of formulas (if applicable), or maybe data requirements such as using positive values for
some geometric formulas. Commenting such reference information is strongly encouraged and will be
addressed in future sections.

17



Chapter 4 » Fortran 95/2003/2008 — Basic Elements

4.5 Continuation Lines

A statement must start on a new line. If a statement is too long to fit on a line, it can be continued on
the next line with an ampersand ('&'). Even shorter lines can be split and continued on multiple lines

for more readable formatting.
For example,

A = 174.5 * year &
+ count / 100.0

Is equivalent to the following
A = 174.5 * year + count / 100.0

Note that the '&’ is not part of the statement.

4.5.1 Example

The following trivial program illustrates the program formatting requirements and variable
declarations.

! Example Program
program examplel

implicit none

integer :: radius, diameter

integer :: height=100, width=150

real :: area, perimeter

real :: length = 123.5, distance=413.761
real, parameter :: pi = 3.14159
character(11l) :: msg = "Hello World"

write (*,*) "Greeting: ", msg
end program examplel

In this example, a series of variables are defined (as examples) with most not used. The program will
display Greeting: Hello World when executed. The following chapters will address how to use
the variables to perform calculations and display results. Additional information regarding character
variables is provided in chapter 11.

4.6 Declarations, Extended Size Variables

The size or range of a number that can be held in a Fortran variable is limited. Special declarations can
be used to provide variables with extended or larger ranges. Only integer and real variables are
addressed here.

18



Chapter 4 <« Fortran 95/2003/2008 — Basic Elements

4.6.1 Integers

As previously noted, the range of an integer value can range between —2,147,483,648 and
+2,147,483,647. In the unlikely event that a larger range is required, a special declaration can be used
to extend the range. The kind specifier is used with the integer declaration.

For example, to declare a variable bignum with an extended range, the integer declaration would be as
follows:

integer*8 :: bignum
or

integer(kind=8) :: bignum

Both of these equivalent declarations use more space for the variables (8 bytes instead of the normal 4)
in order to provide a larger range. The extended range of integer variables declared with the *8 or
kind=8 is —-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

4.6.2 Real

As previously noted, the range is approximately +1.7x10*® supporting about 7 digits of precision.
If more precision is required, the kind specifier can be used.

For example, to declare a real variable rnum with an extended range, the declaration would be as
follows:

real*8 :: rnum
or

real(kind=8) :: rnum

Both of these equivalent declarations use more space for the variables (8 bytes instead of the normal 4)
in order to provide a larger range. The extended precision of real variables declared with the *8 or
kind=8 is approximately —2.2x107°* to +1.8x10"* which supports a much larger range with
about 15 digits of precision.

4.7 Exercises

Below are some quiz questions and project suggestions based on this chapter.

4.7.1 Quiz Questions
Below are some quiz questions.
1) What are the five Fortran 95/2003/2008 data types?

2) What should a Fortran variable name start with?

19



Chapter 4 » Fortran 95/2003/2008 — Basic Elements

3) What data type are each of the following numbers (integer or real)?

475
19.25
19123
5.0
123.456

4) Write the statements required to declare value as an integer and count as a real.
5) Write the statements required to declare rate as a real variable initialized to 7.5.

6) Write the statements required to declare e as a real constant initialized to 2.71828183.

4.7.2 Suggested Projects

Below are some suggested projects.

1) Type in the examplel example program, compile, and execute the program.

2) Update the example program (from 1) to display your name (instead of the 'Hello World'
message).

20



5 Expressions

This section describes how to form basic Fortran 95/2003/2008 expressions and perform arithmetic
operations (i.e., add, subtract, multiple, divide, etc.). Expressions are formed using literals (actual
values), variables, and operators (i.e., +, -, *, /, etc.). The previous chapter provides an explanation of
what variables are and a summary of the five Fortran data types.

5.1 Literals

The simplest expression is a direct value, referred to as a literal. Since literals are actual values, not
variables, they cannot be changed. There are various types of literal constants described in the
following sections that correspond to the Fortran data types.

5.1.1 Integer Literals

The following are some examples of integer constants:

1

0
=100
32767
+42

An integer must be a whole number (with no fractional component).

5.1.2 Real Literals

The following are some examples of real constants:

1.0
-0.25
3.14159

({3824

The real number should include the decimal point (i.e., the “.”). A real number includes the fractional

part, even if the fraction is 0. Fortran will accept a number with the “.” and no further digits. For example,
5. is the same as 5.0. All examples in this text will include the “.0” to ensure clarity.

5.1.2.1 E-Notation

For larger real numbers, e-notation may be useful. The e-notation means that you should multiply the
constant by 10 raised to the power following the "E". This is sometimes referred to as scientific
notation.

21



Chapter 5 » Expressions

The following are some real constants using e-notation:

2.75E5
3.3333E-1

Hence, 2.75E5 is 2.75%10° or 275,000 and 3.333E-1is 3.333x10" or 0.3333 or approximately
one third.

5.1.3 Complex Literals

A complex constant is designated by a pair of constants (integer or real), separated by a comma and
enclosed in parentheses. Examples are:

(3.2, -4.1)
(1.0, 9.9E-1)

The first number denotes the real part and the second the imaginary part. Although a complex number
always consists of two elements, it is considered a single value.

5.14 Character Literals

A character constant is either a single character or a set of characters, called a string. A character is a
single character enclosed in quotes. A string consists of an arbitrary sequence of characters also
enclosed in quotes. Some examples include:

lell

"Hello World"

"Goodbye cruel world!"
"Have a nice day"

Character and string constants (enclosed with quotes) are case sensitive. So, character “X” (upper-
case) is not the same as “x” (lower-case).

A problem arises if you want to have a quote in the string itself. A double quote will be interpreted as a
single within a string. The two quotes must be together (no spaces between). For example, the string:

"He said ""wow"" when he heard"

Would be displayed as

"He said "wow" when he heard"

The double-quote is sometimes referred to as an escape character. Strings and characters must be
associated with the character data type.

22



Chapter 5 <« Expressions

5.1.5 Logical Constants

The fifth type is the logical constant. These can only have one of two values:

.true.
.false.

The dots enclosing the true and false are required.

5.2 Arithmetic Operations

This section summarizes the basic arithmetic operations.

5.2.1 Assignment

In programming, assignment is the term for setting a variable equal to some value. Assignment is
performed with an equal (=) sign. The general form is:

variable = expression

The expression may be a literal, variable, an arithmetic formula, or combination of each. Only one
assignment to a single variable can be made per line.

For example, to declare the variable answerl as a real value,

real :: answerl

and to set it equal to 2.71828183, it would be:
answerl = 2.71828183

The value for answerl can be changed as often as needed. However, it can only hold one value at a
time.

5.2.2 Addition

The Fortran addition operation is specified with a plus sign (+). For example, to declare the variables,
mysum, numberl, number2, and number3,

integer :: mysum, numberl=4, number2=5, number3=3

and calculate the sum,

mysum = numberl + number2

which will set the variable mysum to 9 in this example. The data types of the variables, integer in this
example, should be the same. Multiple variables can be added on one line. The line can also include
literal values. For example,

mysum = numberl + number2 + number3 + 2

which will set the variable mysum variable to 14. Additionally, it will write over the previous value of
9.

23



Chapter 5 » Expressions

5.2.3 Subtraction

The Fortran subtraction operation is specified with a minus sign (-). For example, to declare the
variables, ans, valuel, value2, and value3,

real :: ans, valuel=4.5, value2=2.5, value3=1.0

and calculate the difference,

ans = valuel — value2

which will set the variable ans to 2.0. The data types of the variables, real in this example, should be
the same. Multiple variables can be subtracted on one line. The line can also include literal values.
For example,

ans = valuel - value2 — value3

which will set the variable ans to 1.0. Additionally, it will over-write the previous value of 2.0.

5.24 Multiplication

The Fortran multiplication operation is specified with an asterisk (*). For example, to declare the
variables, ans, valuel, value2, and value3,

real :: ans, valuel=4.5, value2=2.0, value3=1l.5

and calculate the product,

ans = valuel * value2

which will set the variable ans to 9.0. The data types of the variables, real in this example, should be
the same. Multiple variables can be multiplied on one line. The line can also include literal values.
For example,

ans = valuel * value2 * 2.0 * value3
which will set the variable ans to 27.0. Additionally, it will over-write the previous value of 9.0.

5.2.5 Division

The Fortran division operation is specified with a slash symbol (/). For example, to declare the
variables, ans, valuel, value2, and value3,

real :: ans, valuel=10.0, value2=2.5, value3=2.0

and calculate the quotient,

ans = valuel / value2

which will set the variable ans to 4.0. The data types of the variables, real in this example, should be
the same. Multiple variables can be divided on one line.

24



Chapter 5 <« Expressions

For example,

ans = valuel / value2 / value3

which will set the variable ans to 2.0. Additionally, it will over-write the previous value of 4.0.

5.2.6 Exponentiation

Exponentiation means “raise to the power of”. For example, 2 to the power of 3, or 2°is (2 * 2 * 2)
which is 8. The Fortran exponentiation operation is specified with a double asterisks (**).

For example, to declare the variables, ans and valuel,

real :: ans, valuel=2.0

and calculate the exponentiation,

ans = valuel ** 3

which will set the variable ans to 8.0. When using exponentiation, pay close attention to the data types.
For example, raising an integer variable to the power 0.5 would produce a truncated integer result.

5.3 Order of Operations

Fortran follows the standard mathematical order of operations or precedence of operations. That is,
multiplication and division are performed before addition and subtraction. Further, in accordance with
mathematical standards, the exponentiation operation is performed before multiplication and division.

The following table provides a partial summary of the basic Fortran 95/2003/2008 precedence levels:

Precedence Operator Operation
Level
1% - unary -
2n sk exponentiation
3 * multiplication and division
4" + - addition and subtraction

For operations of the same precedence level, the expression is evaluated left to right. Parentheses may
be used to change the order of evaluation as necessary. For example, declaring the variables ans1,
ans2, numl, num2, and num3.

integer :: ansl, ans2, numl=20, num2=50, num3=10

and calculating the ans1 and ans2, as follows:

ansl = numl + num2 * num3
ans2 = (numl + num2) * num3

will set to ans1 to 520 and ans2 to 700 (both integers).

25



Chapter 5 » Expressions

5.4 Intrinsic Functions

Intrinsic functions are standard built-in functions that are provided by Fortran. These include a rich set
of standard functions, including the typical mathematical standard functions. Intrinsic functions can be
used in expressions as needed. Most intrinsic functions accept one or more arguments as input and
return a single value.

54.1 Mathematical Intrinsic Functions

The intrinsic or built-in functions include the standard mathematical functions such as sine, cosine,
tangent, and square root.

For example, the cosine of m is -1.0. Declaring and initializing the variables z and pi as follows,

real :: z
real, parameter :: pi = 3.14159

and then performing the calculation of the cosine the variable pi as follows,

z = cos(pi)
which will set z to -1.0. The variable pi is the input argument.

5.4.2 Conversion Functions

Other intrinsic functions include functions to change the type of variables or values. The basic
conversion functions are as follows:

Function Explanation

real(<integer argument>) Convert the <integer argument> to a real
value

int(<real argument>) Convert the <real argument> to an integer,

truncates the fractional portion

nint(<real argument>) Convert the <real argument> to an integer,
rounds the fractional portion

For example, given the following variable declarations,

integer :: inuml=10, inum2, inum3
real :: rnuml, rnum2 = 4.8, rnum3 = 5.8

and calculate the rnum1, inum2, and inum3,

rnuml = real(inuml)
inum2 int (rnum2)
inum3 = nint(rnum3)

which will set to rnum1 to 10.0, inum2 to 4, and inum3 to 6.

26



Chapter 5 <« Expressions

5.4.3 Summary

A summary of some of the more common intrinsic functions include:

Function Description
COS(W) Returns real cosine of real argument W in radians.
INT(A) Converts real argument A to integer, truncating (real part)

towards zero.

MOD(R1,R2) Returns remainder after division of R1 on division by R2.
Result, R1 and R2 should be all integer or all real types.

NINT(X) Returns the nearest integer to real value X (thus rounding
up or down as appropriate).

REAL(A) Converts integer argument A to real.

SIN(W) Returns real sine of real argument W in radians.

SQRT(W) Returns the real square root of real argument W; W must be
positive.

TAN(X) Returns the real tangent of real argument X in radians.

A more complete list of intrinsic functions in located in Appendix D.

5.5 Mixed Mode

In general, mathematical operations should be performed on variables of the same type. When both
integer and real values or variables are used in the same statement, it is called mixed mode.

Real and integer operations:

1/2 =0

1.0 + 1/4 = 1.0
1.0 + 1.0/4 = 1.25

Any integers values are converted to real only when mixed-mode is encountered on the same operation
type. Conversion may also occur on assignment.

Unexpected conversions can cause problems when calculating values. In order to avoid such problems,
it is strongly recommended to not use mixed-mode. There are a series of rules associated with mixed
mode operations. In some circumstances, these rules can be confusing. For simplicity, those rules are
not covered in this text.

If it is necessary to perform calculations with different data types, such as integers and reals, the
intrinsic or built-in conversion functions should be used to ensure correct and predictable results. This
also allows the programming greater control of when types are converted. In very complex
calculations, this would help ensure clarity and address precision issues. Further recommendations to
address highly precise calculations are not addressed in this text.

27



Chapter 5 » Expressions

5.6 Examples

Below is an example program that calculates velocity based on acceleration and time. The program
declares the appropriate variables and calculate the velocity.

program findvelocity

! Program to calculate the velocity from the

! acceleration and time

! Declare variables

implicit none

real :: velocity, acceleration = 128.0

real :: time = 8.0

! Display initial header
write (*,*) "Velocity Calculation Program"
write (*,*)

! Calculate the velocity
velocity = acceleration * time

write (*,*) "Velocity = ", velocity

end program findvelocity

Additional information regarding how to perform input and output in the next chapter. The comments
are not required, but help make the program easier to read and understand.

5.7 Exercises

Below are some quiz questions and project suggestion based on this chapter.

5.7.1 Quiz Questions
Below are some quiz questions.

1) What is the assignment operator?

2) What is the exponentiation operator?

3) How can an integer variable be converted to a real value?
4) How can a real variable be converted to a integer value?
5) What are the two logical constants?

6) List three intrinsic functions.

28



Chapter 5 <« Expressions

7) Write the single Fortran statement for each of the following formulas. You may assume all
variables are already declared as real values. Additionally, you may assume the variable PI is
set as a parameter and initialized to 3.14159.

x1= (%) (3a*+3b°+c?)

x2 = — Zc_a cos(b) sin(b)

—b+ \/(b2—4ac)
2a

x3 =

5.7.2 Suggested Projects
Below are some suggested projects.

1) Type in the velocity program, compile, and execute the program. Change the declared values,
compile, and execute the modified program. Verify the results of both executions with a
calculator.

2) Write a program to calculate and display the difference between time as read from a sundial and
a clock (which is due to the irregular movement of the Sun). The difference can be calculated
with the Equation of Time’ which is as follows:

b=2n(n-81)/365
e = 9.87 sin(2b) — 7.53 cos(b) — 1.5 sin(b)

Where, n is the day number. For example, n = 1 for January 1, n = 2 for January 2, and so on.
The program should read the value for n (1-365) from the user as an integer. The program
should perform the appropriate type conversions, perform the required calculations, and display
the original n value, the calculated b (for reference), and final e value which represents the time
difference in minutes. Test the program on a series of different values. The formulas provided
are an approximation. For more accurate results, refer to the referenced Wikipedia entry for the
complete formula.

7 For more information, refer to: http://en.wikipedia.org/wiki/Equation_of_time

29



Chapter 5 » Expressions

30



6 Simple Input and Output

Simple, unstructured, input and output can be performed with the write and read statements as
explained in the following sections. In a later chapter, a more structured approach will be presented in
later sections.

6.1 Output — Write

As noted from the first program, simple output can be performed by using the write statement. For
example:

write (*,*) "Hello World"

Which will send the message, referred to as a string, Hello World to the screen. The first “*” means
the default output device, which is the screen or monitor. The second “*” refers to the 'free format'.
Thus, the “(*, *)” means to send it to the screen in 'free format'.

The free format allows the Fortran compiler to determine the appropriate format for the information
being displayed. This is easy, especially when first getting started, but does not allow the program
much control over how the output will be formatted or displayed on the screen.

Additionally, the value held by declared variables can be displayed. For example, to declare the
variables numi1, num2, and num3.

integer :: numl=20, num2=50, num3=10

the write statement to display num1 would be,

write (*,*) numl
The free format allows the Fortran compiler to determine the appropriate output format for the
information being displayed.

A write statement with no strings or variables,

write (*,*)

will display a blank line.

Multiple variables and strings can be displayed with one write statement. For example, using the
previous declarations;

write (*,*) “"Number 1 = ", numl, "Number 2 = ", num2

The information inside the quotes is displayed as is, including capitalization and any spelling errors.
When the quotes are not used, it is interpreted as a variable. If the variable is not declared, a compiler
error will be generated. The value assigned to each variable will be displayed. A value must have been
assigned to the variable prior to attempting to display.

31



Chapter 6 » Simple Input and Output

6.1.1 Output - Print

In addition to the write statement, a print statement can be used. The print statement will send output
only to the screen. Thus, it is a more restrictive form of the write statement.

As with the write statement, multiple variables and strings can be displayed with one print statement.
For example, using the previous declarations,

print *,"Number 1 = ", numl, "Number 2 = ", num2

The information inside the quotes is displayed as is, including capitalization and any spelling errors.
When the quotes are not used, it is interpreted as a variable. If the variable is not declared, an error will
be generated. If the variable is defined, the value assigned to that variable will be displayed.

In general, all examples will use the write statement.

6.2 Input — Read

To obtain information from the user, a read statement is used. For example, to declare the variables
numl, num2,

integer :: ansl, ans2

then read a value for ans1 from the user,

read (*,*) ansl

Which will read a number from the user entered on the keyboard into the variable ans1. The (*,*)
means to send it to read the information in 'free format'. The free format allows the Fortran compiler to
determine the appropriate format for the information being read.

Multiple variables can be read with one read statement. For example, using the previous declarations,

read (*,*) ansl, ans2

will read two values from the user into the variables ans1 and ans2.

Since the read is using free format, two numbers will be required. The numbers can be entered on the
same line with one or more spaces between them or on separate lines. The read will wait until two
numbers are entered.

When reading information from the user, it is usually necessary to provide a prompt in order to ensure
that the user understands that input is being requested by the program. A suitable write statement with
an appropriate string, followed by a read statement will ensure that the user is notified that input is
being requested.

For example, to read a date, a program might request month, day, and year as three separate variables.
Given the following declarations,

integer :: month, day, year

the program might prompt for and read the data in the following manner,

write (*,*) "Enter date (month, day, and year)"
read (*,*) month, day, year

32



Chapter 6 <« Simple Input and Output

Since the program is requesting three integers, three integers must be entered before the program
continues. The three numbers may be entered on one line with a single space between them, with
multiple spaces or tab between them, or even on three different lines as in the following examples:

Enter date (month, day, and year)
10 17 2009

Enter date (month, day, and year)
10

17

2009

Enter date (month, day, and year)
10 17 2009

The type of number requested here is an integer, so integers should be entered. Providing a real
number or character (e.g., letter) would generate an error. Later chapters will address how to deal with
such errors.

6.3 Example

Below is an example program that calculates the area of a circle. The program will declare the
appropriate variables, read the radius, calculate the circle area, and display the result.

program circle
! Program to calculate the area of a circle

! Declare variables

implicit none

real :: radius, area

real, parameter :: pi = 3.14159

! Display initial header and blank line
write (*,*) "Circle Area Calculation Program"
write (*,*)

! Prompt for and read the radius
write (*,*) "Enter Circle Radius"

read (*,*) radius

! Calculate the circle area
area = pi * radius**2

! Display result
write (*,*) "Circle Area: ", area

end program circle

The comments are not required, but help make the program easier to read and understand. If the
program does not work at first, the comments can aid in determining the problem.

33



Chapter 6 » Simple Input and Output

6.4 Exercises

Below are some quiz questions and project suggestions based on this chapter.

6.4.1 Quiz Questions

Below are some quiz questions.

1) What does the (*,*) mean?
2) Provide the statement to output a message “Programming is Fun!”

3) What are the statements to declare and read the value for a person's age in years?

6.4.2 Suggested Projects
Below are some suggested projects.
1) Type in the circle area program, compile and execute the program. Test the program on several

sets of input.

2) Modify the circle area program to request a circle diameter. The formula for circle area must be
adjusted accordingly. Recall that radius = diameter divided by two. Test the program on
several sets of input.

3) Type in the velocity program from the previous chapter and update to prompt for and request
input for the acceleration and time, and then display the results. Test the program on several
sets of input.

4) Write a Fortran program to read the length of the a and b sides of a right triangle and compute
the perimeter length. The program should prompt for input and display the values for sides a, b,
¢, and the perimeter with appropriate headings.

The formulas for the ¢ side and perimeter are: 4

c = Va*+b? €4

perimeter = a+b+c 4

Test the program on several sets of input.

34



Chapter 6 <« Simple Input and Output

5) Write a Fortran program to compute geometric information for a kite. The program should read
the a, c and p lengths and compute the q length. The program should display
an appropriate prompt, read the values, compute the answer, and display the
original input and the final result.

C

The formula for the q length is as follow:

q=Ja2—LZ +Jc2—Lz
4 4

Test the program on several sets of input.

35



Chapter 6 » Simple Input and Output

36



7 Program Development

Writing or developing programs is easier when following a clear methodology. The main steps in the
methodology are:

e Understand the Problem
e Create the Algorithm

e Implement the Program
e Test/Debug the Program

To help demonstrate this process in detail, these steps will be applied to a simple problem to calculate
and display the period of a pendulum.

As additional examples are presented in later chapters, they will be explained and presented using this
methodology.

7.1 Understand the Problem

Before attempting to create a solution, it is important to understand the problem. Ensuring a complete
understanding of the problem can help reduce errors. The first step is to understand what input is
required and what information the program is expected to produce. In this example, the formula for the
period of a pendulum is:

*
Period = 2 1 J L (1 + 1 sinz( g) )
g 4 2 SN

Where:

Il
<]
0]
o
N
8
)
[g°)
(@]

N
—

9

m =3 /

L = Pendulum length (cm) e
a = Angle of displacement (degree)

Both g (gravity) and m should be declared as a constants. The formula is a simplified version of the
more general case. As such, for very large, very small, or zero angle values the formula will not
provide accurate results. For this example, that is acceptable.

As shown, the pendulum is attached to a fixed point, and set into motion by displacing the pendulum
by an angle, a, as shown in the diagram. The program must define the constants for g and m, declare
the variables, display appropriate prompts, read the values for L and a, then calculate and display the
original input and the period of the pendulum with the given length and angle of displacement.

37



Chapter 7 » Program Development

7.2 Create the Algorithm

The algorithm is the name for the ordered sequence of steps involved in solving the problem. That
sounds good, but it is a fancy way of saying that an algorithm is just a step-by-step procedure to solve a
problem. Once the program is understood, the steps can be developed to solve that specific problem.
There can be multiple correct solutions to a given problem.

The process for creating an algorithm can be different for different people. In general, some time
should be devoted to thinking about a possible solution. This may involve working on some possible
solution on a scratch piece of paper. Once a possible solution is selected, that solution can be
developed into an algorithm. The algorithm can be written down, reviewed, and refined. This
algorithm is the outline of the program.

For this problem, the variables and constants must be declared, the applicable headers and prompts
displayed, and the values for L and o read from the user. The degree entered by the user should be
converted to radians®, which is required by the sin function. The formula to convert degrees to radians
is as follows:
di =d * P

radians egrees 180
Then the period can be calculated based on the provided formula and the results displayed.
Formalizing this, the following steps can be developed and written down as follows:

! declare variables

! real constants -> gravity, pi

! reals -> angle, length, alpha

! display initial header

! prompt for and read the length and angle values
! convert degrees to radians

! calculate the period

! display the results

While this is a fairly straightforward algorithm, more complex problems would require more extensive
algorithms. Examples in later chapters will include more complex programs. For convenience, the
steps are written as program comments. This will allow the addition of the code to the basic algorithm.

7.3 Implement the Program
Based on the algorithm, the following program can be created.

program period
! Program to calculate the period of a pendulum

! declare variables

! real constants -> gravity, pi

! reals -> angle, length, alpha
implicit none

real :: angle, length, pperiod, alpha

8 For more information, refer to: https://en.wikipedia.org/wiki/Radian

38



Chapter 7 <« Program Development

real, parameter :: gravity=980.0, pi=3.14159

! display initial header
write (*,*) "Pendulum Period Calculation Program"
write (*,*)

! prompt for and read the length and angle values
write (*,*) "Enter Length and Angle values:"
read (*,*) length, angle

! convert degrees to radians
alpha = angle * pi / 180.0

! calculate the period
pperiod = 2.0 * pi * sqrt(length/gravity) * &
(1.0 + 1.0/4.0 * sin(alpha/2.0)**2 )

! display the results
write (*,*) "The period is:", pperiod

end program period

The indentation is not required, but helps make the program easier to read. Note that the “2”, “1”, and
“4” in the algorithm are entered as 2.0, 1.0, and 4.0 to ensure consistent data typing (i.e., all reals).

When 1 divided by 4 is entered as “1/4” instead of “1.0/4.0” the result will be 0 because that would be
integer division.

7.4 Test/Debug the Program

Once the program is written, testing should be performed to ensure that the program works. The
testing will be based on the specific parameters of the program. In this example, each of the three
possible values for the discriminant should be tested.

C:\mydir> period
Pendulum Period Calculation Program

Enter Length and Angle values:
120.0 15.0

The Period is: 2.20801973
C:\mydir>
For this program, the results can be verified with a calculator. A series of different values should be

used for testing. If the program does not work, the program comments provide a checklist of steps and
can be used to help debug the program.

39



Chapter 7 » Program Development

74.1 Error Terminology

In case the program does not work, it helps to understand some basic terminology about where or what
the error might be.

74.1.1 Compiler Error

Compiler errors are generated when the program is compiled. This means that the compiler does not
understand the instructions. The compiler will provide a list of errors with the line number of each
error. It is recommended to address the errors from the top down. Resolving an error at the top can
clear multiple errors further down.

Typical compiler errors include misspelling a statement and/or omitting a variable declaration. For
example, if the correct Fortran statement “write (*,*)” is entered incorrectly as “wrote (*,*)”,
an error will be generated.

In this case, the compiler error displayed will appear as follows:

c:\mydir> gfortran -o period period.f95
period.£95:13.1:

wrote (*,¥*)
1
Error: Unclassifiable statement at (1)

The first digit, 13 in this example, represents the line number where the error occurred. Using a text
editor that displays line numbers, the statement that caused the error can be quickly found and
corrected.

If the declaration for the variable length is omitted, the error would appear as follows:

c:\mydir> gfortran -o period period.f95
period.£95:17.18:

read (*,*) length, angle
1
Error: Symbol 'length' at (1) has no IMPLICIT type

€.

In this case, the error is shown on line 18 (first digit after the “:”). However, the actual error is that the
variable length is not declared. Each error should be reviewed and evaluated.

74.1.2 Run-time Error

A run-time error is something that causes the program to crash. For example, if a number is requested
and a letter is entered, it will cause a run-time error.

For example, the period program expects two real numbers to be entered. If the user enters letters, x
and y, in this example, an error will be generated during the execution of the program as follows:

40



Chapter 7 <« Program Development

c:\mydir> period
Pendulum Period Calculation Program

Enter Length and Angle values:

Xy

At line 17 of file period.f95 (unit = 5, file = 'stdin')
Fortran runtime error: Bad real number in item 1 of list input

The program was expecting numeric values and letters were provided. Since letters are not meaningful
in this context, it is an error and the program “crashes” or stops with an error message.

Later chapters will provide additional information on how to deal with such errors. Until then,
providing the correct data type will avoid this kind of error.

74.1.3 Logic Error

A logic error is when the program executes, but does not produce the correct result. For example,
coding a provided formula incorrectly or attempting to compute the average of a series of numbers
before calculating the sum would be considered a logic error.

For example, the correct formula for the period of a pendulum is as follows:
pperiod = 2.0 * pi * sqrt(length/gravity) * &
(1.0 + 1.0/4.0 * sin(alpha/2.0)**2 )
If the formula is typed incorrectly or incompletely as follows:
pperiod = 2.0 * pi * sqrt(length/gravity) * &
( 1.0 + 1/4 * sin(alpha/2.0)**2 )

The 1 over 4 is entered as “1/4” which are interpreted as integers. As integers, “1/4” results in 0. The
compiler will accept this, perform the calculations, and provide an incorrect result.

The program would compile and execute as follows.

c:\mydir> period
Pendulum Period Calculation Program

Enter Length and Angle values:
120.0 15.0
The period is: 2.19865513

However, an incorrect answer would be generated as shown. This is why testing the program is
required. Logic errors can be the most difficult to find.

One of the best ways to handle logic errors is to avoid them by careful development of the algorithm
and writing the code.

If the program has a logic error, one way to find the error is to display intermediate values. Further
information will be provided in later chapters regarding advice on finding logic errors.

41



Chapter 7 » Program Development

7.5 Exercises

Below are some quiz questions and project suggestions based on this chapter.

7.5.1

Quiz Questions

Below are some quiz questions.

1)
2)

3)

4)

7.5.2

What are the four program development steps?
What are the three types of errors?

If a program to compute the area of a rectangle uses a formula, height x height x width, what
type of error would this be?

Provide an example of that would generate a compiler error.

Suggested Projects

Below are some suggested projects.

1)

2)

3)

4)

Type in the pendulum period calculation program, compile, and execute the program. Test the
program using several different input values.

Create a program to prompt for and read the circle area from the user and calculate the
circumference of a circle using the following formula:

circumference = 2 V m CircleArea
Test the program using several different input values.

Create a program to prompt for and read the radius of a sphere from the user and calculate the
surface area of the sphere using the following formula:

sphere Surface Area = 4 r’
Test the program using several different input values.

Create a program to prompt for and read the radius of a sphere from the user and calculate the
sphere volume using the following formula:

sphere Volume = (4m/3)r’

Test the program using several different input values.

42



8 Selection Statements

When writing a program, it may be necessary to take some action based on the outcome of comparing
the values of some variables. All programming languages have some facility for decision-making.
That is, doing one thing if some condition is true and (optionally) doing something else if it is not.

Fortran IF statements and/or CASE statements are used to allow a program to make decisions.

8.1 Conditional Expressions

The first step is to compare two values. Values may be literals, variables, or expressions. These values
are compared with a relational operator and are referred to as operands. Relational operators are used
between variables or operands of matching types. That is real to real, integer to integer, logical to
logical, and character/string to character/string.

The basic relational operators are:

Relational Relational Operator | Relational Operator
Operation (normal) (alternate)
Greater than > .gt.
Greater than or >= .ge.
equal

Less than < At
Less than or equal <= Je.
Equal to == .eq.
Not equal to /= .ne.

The normal form will be used for examples in this text. However, the alternate form may be used at
any time. The alternate forms may be required to support older Fortran programs.

A relational operation is used to form a conditional expression. The result of a conditional expression
must always result in either a true or false result.

The “==" (two equal signs) is used to compare. The “=" (single equal) is used for assignment (setting
a variable). The “==" does not change any values, while the “=" does.

For example, given the declaration of,

integer :: gameLives

it might be useful to know if the current value of gameLives is greater than 0.

43



Chapter 8 » Selection Statements

In this case, the conditional expression would be,

(gamelives > 0)

Which will result in a true or false result based on the value of the variable gameLives.

8.2 Logical Operators

Logical operators are used between two logical variables or two conditional expressions. They are:

Logical Operator Explanation
.and. the result is true if both operands are true
.Or. the result is true if either operand is true
.not. logical negate (if true, makes false and if
false, makes true)

Logical operators are used to combine conditional expressions as needed to form a more complex
conditional expression. For example, given the declaration of,

integer :: gamelLives, extraLives

it might be useful to know if the current value of gameLives and extraLives are both 0 which would
indicate the game is over. In this case, the relational operator would be AND with the complete
conditional expression,

( (gameLives == 0) .and. (extraLives == 0) )
which will result in a true or false result. Since the AND logical operation is used, the final result will
be true only if both conditional expressions are true.

Another way of check the status to determine if the game should continue might be,

( (gameLives > 0) .or. (extraLives > 0) )
which still results in a true or false result. However, since the OR logical operation is used, the final
result will be true if either conditional expressions is true.

The relational operators (e.g., <, <=, >, >=, ==, /=) have higher precedence than logical operators
(AND, OR, NOT). This means each of the smaller conditional expressions will be completed before
the logical operation is applied.

A conditional expression can be a combination of multiple conditional expressions combined with
logical operators.

8.3 IF Statements

IF statements are used to perform different computations or actions based on the result of a conditional
expression (which evaluates to true or false). There are a series of different forms of the basic IF
statement. Each of the forms is explained in the following sections.

44



Chapter 8 <« Selection Statements

8.3.1 IF THEN Statement

The IF statement, using the conditional expression, is how programs make decisions. The general
format for an IF statement is as follows:

if ( <conditional expression> ) then
<fortran statement(s)>
end if

Where the <fortran statements> may include one or more valid Fortran statements.

For example, given the declaration of,

integer :: gameLives

based on the current value of gameLives, a reasonable IF statement might be;

if ( gameLives == 0 ) then

write (*,*) "Game Over."

write (*,*) "Please try again."
end if

which will display the message “Game Over.” and “Please try again.” on the next line if the value of
gameLives is equal to 0.

8.3.1.1 IF THEN Statement, Simple Form

Additionally, another form of the IF statement includes

if ( <conditional expression> ) <fortran statement>
In this form, only a single statement is executed if the conditional expression evaluates to true. The
previous example might be written as;

if ( gameLives == 0 ) write (*,*) "Game Over."

In this form, no “then” or “end if” are required. However, only one statement can be executed.

8.3.2 IF THEN ELSE Statement

The IF THEN ELSE statement expands the basic IF statement to also allow a series of statements to be
performed if the conditional expression evaluates to false.

The general format for an IF THEN ELSE statement is as follows:

if ( <conditional expression> ) then
<fortran statement(s)>

else
<fortran statement(s)>

end if

Where the <fortran statements> may include one or more valid Fortran statements.

45



Chapter 8 » Selection Statements

For example, given the declaration of,

integer :: gamelives

based on the current value of gameLives is, a reasonable IF THEN ELSE statement might be:

if ( gameLives > 0 ) then
write (*,*) "Still Alive, Keep Going!"

else
write (*,*) "Extra Life Granted."
gameLives = 1

end if

Which will display the message “Still Alive, Keep Going!” if the value of gameLives is greater than 0
and display the message “Extra Life Granted.” if the value of gameLives is less than or equal to 0.

8.3.3 IF THEN ELSE IF Statement

The IF THEN ELSE IF statement expands the basic IF statement to also allow a series of IF statements
to be performed in a series.

The general format for an IF THEN ELSE IF statement is as follows:

if ( <conditional expression> ) then
<fortran statement(s)>

else if ( <conditional expression> ) then
<fortran statement(s)>

else
<fortran statement(s)>

end if

Where the <fortran statements> may include one or more valid Fortran statements.

For example, given the declaration of,

integer :: gameLives

based on the current value of gameLives, a reasonable I[F THEN ELSE IF statement might be:

if ( gameLives > 0 ) then

write (*,*) "Still Alive, Keep Going!"
else if ( gameLives < 0 ) then

write (*,*) "Sorry, game over."

else
write (*,*) "Extra Life Granted."
gamesLives = 1

end if

Which will display the message “Still Alive, Keep Going!” if the value of gameLives is greater than 0,
display the message “Sorry, game over.” if the value of game lives is < 0, and display the message
“Extra Life Granted.” if the value of gameLives is equal to 0.

46



Chapter 8 <« Selection Statements

8.4 Example One

As previously described, writing or developing programs is easier when following a methodology. As
the program becomes more complex, using a clear methodology is even more important. The main
steps in the methodology are:

Understand the Problem
Create the Algorithm
Implement the Program

[ ]
[
[ ]
e Test/Debug the Program

To help demonstrate this process in detail, these steps will be applied to a familiar problem as an
example. The example problem is to calculate the solution of a quadratic equation in the form:

2
ax“+bx+c =0

Each of the steps, as applied to this problem, will be reviewed.

8.4.1 Understand the Problem

Before creating a solution, it is important to understand the problem. Ensuring a complete
understanding of the problem can help reduce errors.

It is known that the solution to the quadratic equation is as follows:

-b + \/(b2—4ac)
2a

In the quadratic equation, the term (b*’—4ac) is the discriminant of the equation. There are three
possible results for the discriminant as described below:

o If (bz— 4 ac) > 0 then there are two distinct real roots to the quadratic equation. These two

solutions represent the two possible answers. If the equation solution is graphed, the curve
representing the solution will cross the x-axis (i.e., representing x=0) in two locations.

o If (bz— 4 ac) = 0 then there is a single, repeated root to the equation. If the equation solution
is graphed, the curve representing the solution will cross the x-axis in one location.

o If (bz— 4 ac) < 0 then there are two complex roots to the equation. If the equation solution is
graphed, the curve representing the solution will not cross the x-axis and therefore there no real
number solution. However, mathematically the square root of a negative value will provide a
complex result. A complex number includes a real component and an imaginary component.

A correct solution must address each of these possibilities. For this problem, it is appropriate to use
real values.

47



Chapter 8 » Selection Statements

The relationship between the discriminant and the types of solutions (two different solutions, one
repeated solution, or no real solutions) is summarized in the below table:

Positive Discriminant Zero Discriminant | Negative Discriminant
Two real solutions One real solution Two complex solutions
Example: Example: Example:
3xX’+9x+3 = 0 2x*+4x+2 = 0 3x*+3x+3 = 0

X
Two distinct x-intercepts One x-intercept No x-intercept
Root 1 =-0.3819 Root1=-1.0 Root = -0.5 + 0.866i
Root 2 =-2.618 Root = -0.5 — 0.866i

The examples provided above are included in the example solution in the following sections.

8.4.2 Create the Algorithm

The algorithm is the name for the ordered sequence of steps involved in solving the problem. The
variables must be defined and an initial header displayed. For this problem, the a, b, and ¢ values will
need to be read from the user. Formalizing this, the following steps can be developed.

! declare variables

! reals -> a, b, ¢, discriminant, rootl, root2
! display initial header

! read the a, b, and ¢ values

Then, the discriminant can be calculated.

Based on the discriminant value, the appropriate set of calculations can be performed.

! calculate the discriminant
! if discriminant is O,
! calculate and display root

48



Chapter 8 <« Selection Statements

! if discriminant is >0,

! calculate and display rootl and root2

! if discriminant is <O,

! calculate and display complex rootl and root2

For convenience, the steps are written as program comments.

8.4.3 Implement the Program

Based on the algorithm, the following program can be created.

program quadratic
! Quadratic equation solver program

! declare variables

! reals -> a, b, ¢, discriminant, rootl, root2
implicit none

real :: a, b, ¢

real :: discriminant, rootl, root2

! display initial header

write (*,*) "Quadratic Equation Solver Program"
write (*,*) "Enter A, B, and C values"

! read the a, b, and c values
read (*,*) a, b, c

! calculate the discriminant
discriminant = b ** 2 — 4.0 * a * ¢

if discriminant is 0,
calculate and display root
if ( discriminant == 0 ) then
rootl = -b / (2.0 * a)
write (*,*) "This equation has one root:"
write (*,*) "root = ", rootl
end if

if discriminant is >0,

calculate and display rootl and root2
if ( discriminant > 0 ) then
rootl = (-b + sqrt(discriminant)) / (2.0 * a)
root2 = (-b - sqrt(discriminant)) / (2.0 * a)
write (*,*) "This equation has real roots:"

write (*,*) "root 1 = ", rootl
write (*,*) "root 2 = ", root2
end if

! if discriminant is <0,
! calculate and display complex rootl and root2

49



Chapter 8 » Selection Statements

if ( discriminant < 0 ) then
rootl = -b / (2.0 * a)
root2 = sqrt(abs(discriminant)) / (2.0 * a)
write (*,*) "This equation has complex roots:"

write (*,*) "root 1 = ", rootl, "+i", root2
write (*,*) "root 2 = ", rootl, "-i", root2
end if

end program quadratic

The indentation is not required, but does help make the program easier to read.

8.4.4 Test/Debug the Program

Once the program is written, testing should be performed to ensure that the program works. The
testing will be based on the specific parameters of the program. In this example, each of the three
possible values for the discriminant should be tested.

C:\mydir> quad
Quadratic Equation Solver Program
Enter A, B, and C values

2 4 2
This equation has one root:
root = -1.0000000

C:\mydir> quad
Quadratic Equation Solver Program

Enter A, B, and C values

393

This equation has has real roots:
root 1 = -0.38196602

root 2 = -2.6180339

C:\mydir> quad
Quadratic Equation Solver Program
Enter A, B, and C values

333

This equation has complex roots:

root 1 = -0.50000000 +i 0.86602539
root 2 = -=0.50000000 -i 0.86602539
C:\mydir>

Additionally, these results can be verified with a calculator.

8.5 SELECT CASE Statement

A SELECT CASE statement, often referred to as a CASE statement, is used to compare a given value
with preselected constants and take an action according to the first constant to match. A CASE

50



Chapter 8 <« Selection Statements

statement can be handy to select between a series of different possibilities or cases.

The select case variable or expression must be of type integer, character, or logical. A real type is not
allowed. Based on the selector, a set of one or more of Fortran statements can be executed.

The general format of the SELECT CASE statement is:

select case (variable)
case (selector-1)
<fortran statement(s)-1>
case (selector-2)
<fortran statement(s)-2>

case (selector-n)
<fortran statement(s)-n>
case default
<fortran statement(s)-default>
end select

where <fortran statement(s)-1>, <fortran statement(s)-2>, <fortran statement(s)-3>, ..., <fortran
statement(s)-n> and <fortran statement(s)-default> are sequences of one or more executable statements.
The selector-1, selector-2, selector-3, ..., and selector-n are called selector lists. Each CASE selector
list may contain a list and/or range of integers, character or logical constants, whose values may not
overlap within or between selectors. A selector-list is either a single or list of values, separated by
commas. Each selector list must be one of the following forms.

( value )
( value-1 : value-2 )
( value-1 : )
( ¢ value-2 )

where value, value-1, and value-2 are constants or literals. The type of these constants must be
identical to that of the selector.
+ The first form has only one value

« The second form means all values in the range of value-1 and value-2 (inclusive). In this form,
value-1 must be less than value-2

+ The third form means all values that are greater than or equal to value-1
+ The fourth form means all values that are less than or equal to value-2

In order, each selector expression is evaluated. If the variable value is the selector or in the selector
range, then the sequence of statements in <fortran statement(s)> are executed.

If the result is not in any one of the selectors, there are two possibilities:

- if CASE DEFAULT is there, then the sequence of statements in statements-DEFAULT are
executed, followed by the statement following END SELECT

- if the CASE DEFAULT is not there, the statement following END SELECT is executed

51



Chapter 8 » Selection Statements

The constants listed in selectors must be unique. The CASE DEFAULT is optional. But with a CASE
DEFAULT, you are guaranteed that whatever the selector value, one of the labels will be used. The
place for CASE DEFAULT can be anywhere within a SELECT CASE statement; however, putting it at
the end would be more natural.

For example, given the declarations,

integer :: hours24, hoursl2, year
logical :: isAM

the following case statement,

select case (hours24)
case (0)
hoursl2 = 12
isAM = .true.
case (1:11)
hoursl2 = hours24
isAM = .true.
case (12)
hoursl2 = hours24
isAM = .false.
case (13:23)
hoursl2 = hours24 - 12
isaM = .false.
end select

might be useful to convert 24-hour time into 12-hour time. In this example, a logical variable isAM is
used to indicate AM (true) or PM (false).

Additionally, the selectors can be combined and separated by commas. For example, given the
declarations,

integer :: monthnumber, daysinmonth

the following case statement,

select case (monthnumber)
case (1,3,5,7,8,10,12)
daysinmonth = 31
case (2)
if (mod(year,4)==0) then
daysinmonth = 29

else
daysinmonth = 28
end if
case (4,6,9,11)
daysinmonth = 30

case default
write (*,*) "Error, month number not valid."
end select

52



Chapter 8 <« Selection Statements

might be useful to determine the number of days in a given month. The leap-year calculation is not
complete, but is adequate if the range of the year is sufficiently limited.

8.6 Example Two
A typical problem is to assign grades based on a typical grading standard.

8.6.1 Understand the Problem

For this example, the program will assign grades using the following grade scale:

A B C D F
A>=90 80 -89 70-79 60 - 69 <=59

The program will read three test scores, compute the average, and display the appropriate grade based
on the average.

8.6.2 Create the Algorithm

The algorithm is the name for the ordered sequence of steps involved in solving the problem.

For this problem, the variables will be declared and an initial header displayed. Then, the test1, test2,
and test3 values will need to be read from the user.

! declare variables

! reals -> testl, test2, test3

! integer -> testave

! display initial header

! read the testl, test2, and test3 values

Next, the average can be calculated. The average will be converted to the nearest integer and, based on
that, the appropriate grade can be determined and displayed. Formalizing this, the following steps can
be developed.

! calculate the testave and convert to integer
! determine grade

! A - >= 90
! B - 80 to 89
! C -70 to 79
! D - 60 to 69
! F - <= 59

For convenience, the steps are written as program comments.

8.6.3 Implement the Program

Based on the algorithm, the following program can be created.

53



Chapter 8 » Selection Statements

program grades

! declare variables
implicit none

real :: testl, test2, test3
integer :: testave

! display initial header

write (*,*) "Grade Assignment Program"

write (*,*)

write (*,*) "Enter test 1, test 2 and test 3 values"

! read the testl, test2, and test3 values
read (*,*) testl, test2, test3

! calculate the average and convert to integer
testave = nint ((testl + test2 + test3)/3.0)

! determine grade

! A -» >= 90, B -» 80-89, C » 70-79,

select case (testave)
case(90:)
write (*,*) "Grade

case(80:89)

write (*,*) "Grade
case(70:79)

write (*,*) "Grade
case(60:69)

write (*,*) "Grade
case(:59)
write (*,*) "Grade
end select

end program grades

is:

is:

is:

is:

is:

D -» 60-69,

an
-
.
Do

FII

The indentation is not required, but does help make the program easier to read.

8.6.4 Test/Debug the Program

Once the program is written, testing should be performed to ensure that the program works.
testing will be based on the specific parameters of the program.

F =» <=

In this example, each of the three possible values for the discriminant should be tested.

C:\mydir> grade
Grade Assignment Program

Enter test 1, test 2 and test 3 values

70 80 90

54

59

The



Chapter 8 <« Selection Statements

Grade is: B
C:\mydir>

The program should be tested with a series of data items to ensure appropriate grade assignment for
each grade. Test values for each grade should be entered for the testing.

8.7 Exercises

Below are some quiz questions and project suggestions based on this chapter.

8.7.1 Quiz Questions
Below are some quiz questions.

1) List the six relational operators?
2) List the three basic logical operators?

3) For each of the following, answer .true. or .false. in the space provided.

logical :: bl = .true., b2=.false., b3=.true.
integer :: i=5, j=10

( bl .or. b2 )

( bl .or. b3 )

( bl .and. b2 )

( (bl .or. b2) .and. b3 )

( bl .or. (b2 .and. b3) )

( .not. (i<3j))

(3 <1i)

4) Write the Fortran IF THEN statements to display the message "Game Over" if the integer
variable lives is < to 0. You may assume the variable lives is already declared as an integer
and initialized.

5) Write the Fortran IF THEN statements to check the integer variable num and if the value is < 0,

take the absolute value of the number and display the message, "Variable num was made
positive". You may assume the variable num is already declared as an integer and initialized.

55



Chapter 8 » Selection Statements

6)

7)

8.7.2

. X . .
Write the Fortran statements to compute the formula z = ; assuming the values for integer

variables x, y, and z are previously set. However, if y = 0, do not compute the formula, set z =
0, and display an error message, "Z not calculated". You may assume the variables x, y, and z are
already declared as an integers and initialized.

Write the statements required to compute the following formula using real variables f, x, and y.
Use a single IF THEN ELSE IF statement. You may assume the values for f, x, and y have

already been declared as real values and initialized.

f(x)= xz*y l:fXS().O
X%y if x>0.0

Suggested Projects

Below are some suggested projects.

1)

2)

3)

4)

Type in the quadratic equation program, compile, and execute the program. Provide input
values that will check each of the possible outputs.

Write a Fortran program to prompt for and read the year that a person was born. The year must
be between 1900 and 2015 (inclusive). If an invalid entry is read, the program should display
the message, "Sorry, that is not a valid year." and re-prompt. If the correct value is not provided
after 3 attempts, the program should display the message "Sorry, you're having problems.
Program terminated.” and terminate. Once a valid year is read, the program should display the
year and a message "is a leap year" or "is not a leap year". Include appropriate declarations,
prompts, read statements, calculations, and write statements. Test the program on a series of
input values and verify that the output is correct.

Type in the grades program, compile, and execute the program. Test the program on a series of
input values that will check each grade.

Modify the grades program to handle the following grade assignment;

A A- B+ B B- C+ C C- D F

>94 | 93-90 | 89-87 | 86-84 | 83-80 | 79-77 | 76-74 | 73-70 | 69-60 | <59

Compile, and execute the program. Test the program on a series of input values that will check
each grade.

56



Chapter 8 <« Selection Statements

5) Write a Fortran program to prompt and read the Fahrenheit as an integer, convert to Celsius, and
display the result as a real. The formula to convert a Fahrenheit temperature to a Celsius
temperature is as follows:

celsius = (g) (fahrenheit — 32)

The Fahrenheit value must be between -50 and 150 (inclusive). If the Fahrenheit value is out of
range, the program should display an error message, "Temperature out of range", and terminate.
The calculations must be performed as real. Include program statements, appropriate
declarations, prompts, read statements, calculations, and write statements. Test the program on
a series of input values.

6) Write a Fortran program that reads an item cost (real numbers) and amount tendered (real
number) and compute the correct change. The correct change should be returned as the number
of twenties, tens, fives, ones, quarters, dimes, nickels, and pennies. The main program should
ensure that the amount paid exceeds the item cost and, if not, display an appropriate error
message. Test the program multiple times using a series of input values.

7) Write a Fortran to program that reads a number from the user that represents a television
channel and then uses a CASE construct to determine the call letters for that station.

Channel | Call Letters | Affiliation
3 KVBC NBC
5 KvVvU FOX
8 KLAS CBS
10 KLVX Public
13 KTNV ABC

The program should display an appropriate message if an invalid or unassigned channel is
entered. Test the program on a series of input values that will show each station.

57




Chapter 8 » Selection Statements

58



9 Looping

When a series of Fortran statements need to be repeated, it is referred to as a loop or do-loop. A
Fortran do-loop is a special control statement that allows a Fortran statement or set of statements to be
executed multiple times. This repetition can be based on a set number of times, referred to as counter
controlled, or based on a logical condition, referred to as conditionally controlled. Each of these
looping methods is explained in the following sections.

9.1 Counter Controlled Looping

A counter controlled loop repeats a series of one or more Fortran statements a set number of times.
The general format of the counting loop is:

do count_variable = start, stop, step
<fortran statement(s)>
end do

where the count variable must be an integer variable, start, stop, and step are integer variables or
integer expressions. The step value is optional. If it is omitted, the default value is 1. If used, the step
value cannot be zero. The <fortran statement(s)> is a sequence of statements and is referred to as the
body of the do-loop. You can use any executable statement within a do-loop, including IF-THEN-
ELSE-END IF and even another do-loop. Before the do-loop starts, the values of start, stop, and step
are computed exactly once. More precisely, during the course of executing the do-loop, these values
will not be re-computed.

The count variable receives the value of start variable or expression. If the value of control-var is less
than or equal to the value of stop-value, the <fortran statement(s)> part is executed. Then, the value of
step (1 if omitted) is added to the value of control-var. At the end, the loop goes back to the top and
compares the values of control-var and stop-value.

If the value of control-var is greater than the value of final-value, the do-loop completes and the
statement following end do is executed.

For example, with the declarations,

integer :: counter, init=1, final=10, sum=0

the following do-loop,

do counter = init, final
sum = sum + counter

end do

write (*,*) "Sum is: ", sum

will add the numbers between 1 and 10 which will result in 55. Since the step was not specified, it is
defaulted 1.

59



Chapter 9 » Looping

Another example, with the declarations,

integer :: counter, init=1, final=10, step=2

and the following do-loop,

do counter = init, final, step
write (*,*) counter
end do

will display the odd numbers between 1 and 10 (1, 3, 5, 7, 9).

Another example would be to read some numbers from the user and compute the sum and average of
those numbers. The example asks the user how many numbers, reads that many numbers, computes
the sum, computes the average, and displays the results.

program calcAverage

implicit none

integer count, number, sum, input
real average

write (*,*) "Enter count of numbers to read"
read (*,*) count

sum = 0

do number = 1, count
read (*,*) input
sum = sum + input

end do

average = real(sum) / real(count)
write (*,*) "Average = ", average

end program calcAverage

The use of the function real() converts the sum and count variables from integers to real values as
required for the average calculation. Without this conversion, sum/count division would be interpreted
as dividing an integer by an integer, yielding an integer result.

A final example of a counter controlled loop is to compute the factorial of a positive integer. The
factorial of an integer n, written as n!, is defined to be the product of 1, 2, 3, ..., n-1, and n. More
precisely, n! =1*2*3*  *n,

integer :: factorial, n, i
factorial =1
doi=1,n

factorial = factorial * i
end do

60



Chapter 9 <« Looping

The do-loop above iterates n times. The first iteration multiplies factorial with 1, the second iteration
multiplies factorial with 2, the third time with 3, ..., the i time with i and so on. Thus, the values that
are multiplied with the initial value of factorial are 1, 2, 3, ..., n. At the end of the do-loop, the value of
factorial is 1 * 2 * 3 * .., * n which is n!.

9.2 EXIT and CYCLE Statements

The exit and cycle statements are used to modify the execution of a do-loop. The exit statement is used
to exit a loop. The exit can be used alone, but it is typically used with a conditional statement to allow
exiting a loop based on a specific condition. The exit statement can be used in a counter controlled
loop or a conditionally controlled loop.

For example, given the following declarations,

integer :: i

the following loop,
doi=1, 10

if (i == 5) exit
write (*,*) i
end do

will display the numbers from 1 to 4 skipping the remaining iterations. Since the variable i is checked
before the write statement, the value is not displayed with i is 5 and the loop is exited without
completing the remaining iterations. While it is possible to have multiple exit statements, typically
only one is used. However, multiple exit statements may be required for more complex problems.

The cycle statement will skip the remaining portion of the do-loop and start back at the top. The cycle
statement can be used in a counter controlled loop or a conditionally controlled loop. If the cycle
statement is used within a counter controlled loop, the next index counter is updated to the next
iteration, which could terminate the loop.

For example, given the following declarations,

integer :: i

the following loop,

doi=1, 10
if (i == 5) cycle
write (*,*) i

end do

will display the numbers from 1 to 4 and 6 to 10.
9.3 Counter Controlled Example

In this example, we will write a Fortran program to find the difference between the sum of the squares
and the square of the sum of the first N natural numbers.

61



Chapter 9 » Looping

9.3.1 Understand the Problem

In order to find the difference between the sum of the squares and the square of the sum of the first N
natural numbers, we will need to find both the sum of the squares and the square of the sum. For
example, the sum of the squares of the first ten natural numbers is,

1?+2°+ .- +10° = 385

The square of the sum of the first ten natural numbers is,

(1+24 -4+ 10 = 55 = 3025

Hence the difference between the sum of the squares of the first ten natural numbers and the square of
the sum is 3025 - 385 = 2640.

The program will display the N value, the sum of the squares, the square of the sum, and the difference
for each number from 2 to a given N value. The program should prompt for and read the N value. The
program will display appropriate headers.

9.3.2 Create the Algorithm

For this problem, first we will need to read the N value. Then, we will loop from 1 to the N value and
find both the sum of the squares and the square of the sum.

declare variables
integer -> i, n, SumOfSqrs, SqrOfSums
display initial header
prompt for and read the n value
loop from 1 to n
compute sum of squares
compute sums
square the sums
compute difference between sum of squares and square of sums
display results

For convenience, the steps are written as program comments.

9.3.3 Implement the Program

Based on the algorithm, the program below could be created.
program SOSdifference
! declare variables
implicit none

integer :: i, n, SumOfSqrs=0, SqrOfSums=0, difference

! display initial header

62



Chapter 9 <« Looping

write (*,*) "Example Program"
write (*,*) " Difference between sum of squares "
write (*,*) " and square of sums"”

14

write (*

*)
! prompt for and read the n value
write (*,*) "Enter N value: "

read (*,*) n

! loop from 1 to n

doi=1,n
! compute sum of squares
SumOfSqrs = SumOfSqrs + i**2
! compute square of sums
SqrOfSums = SqrOfSums + i
end do

! square the sums
SqrofSums = SqrOfSums**2

! compute difference between sum of squares and square of sums
difference = SqrOfSums - SumOfSqrs

! display results
write (*,*) "Difference: ", difference

end program SOSdifference

The spacing and indentation are not required, but help to make the program more readable.

9.34 Test/Debug the Program

For this problem, the testing would be to ensure that the results match the expected values. Some
expected results can be determined with a calculator or a spreadsheet. If the program does not provide
the correct result, one or both of the intermediate results, SumOfSqrs or SqrOfSums, may be incorrect.
These values can be displayed with a temporary write statement to determine which might not be
correct. If the problem is still not found, the intermediate values calculated during the loop can also be
displayed with a write statement. The output can be reviewed to determine what the program is doing
(and what may be wrong).

9.4 Conditional Controlled Looping

A conditional controlled loop repeats a series of one or more Fortran statements based on a condition.
As such, the loop may execute an indeterminate number of times.

63



Chapter 9 » Looping

One form of the conditional loop is:

do while (conditional expression)
<fortran statement(s)>
end do

In this form, the conditional expression is re-checked at the top of the loop on each iteration.

A more general format of the conditional loop is:

do
<fortran statement(s)>
end do

As is, this loop will continue forever. Probably not so good. A selection statement, such as an IF
statement, and an exit statement would be used to provide a means to terminate the looping.

For example,

do
<fortran statement(s)>
if (conditional expression) exit
<fortran statement(s)>

end do

Would stop looping only when the conditional expression evaluates to true. The exit statement can be
used multiple times in different locations as needed. An IF statement, in any form, can be used for
either the exit or cycle statements.

For example, a conditional loop could be used to request input from the user and keep re-prompting
until the input is correct.

integer :: month

do
write (*,*) "Enter month (1-12): "
read (*,*) month
if (month >= 1 .and. month <= 12) exit
write (*,*) "Error, month must be between 1 and 12."
write (*,*) "Please re-enter."
end do

This will keep re-prompting an unlimited number of times until the correct input (a number between 1
and 12) is entered.

64



Chapter 9 <« Looping

Since a counter controlled DO loop requires an integer loop counter, another use of conditional loops
would be to simulate a real counter. For example, to display the values from 1.5 to 4.5 stepping by
0.25, the following conditional loop could be used.

real :: currValue = 1.5

do while (currValue <= 4.5)

write (*,*) "Value = ", currValue
currValue = currValue + 0.25
end do

The values of currValue and amount of the increment, set as 0.25, can be adjusted as needed.

9.5 Conditionally Controlled Loop Example

In this example, we will write a Fortran program that will read a valid date from the user. The date will
consist of three values, one for each of the month, day, and year. This example will use some of the
previous example fragments.

9.5.1 Understand the Problem

For this limited example, we will request a date where the year is between 1970 and 2020. The month
must be between 1 and 12. The date will depend on the month since some months have 30 or 31 days.
February has either 28 days or 29 days if it is a leap year. Due to the limited allowable range of the
year, the determination of a leap year can be performed by checking if the year is evenly divisible by 4
(which implies a leap year).

9.5.2 Create the Algorithm

For this problem, we will need to read the three values (month, day, and year). Then, we will check the
values to ensure that date is valid. Then, we will check the month first and then the year since it will be
used to check the date.

The months January, March, May, July, August, October, and December have 31 days. The months
April, June, September, and November have 30 days. February has 28 days unless the year is evenly
divisible by 4, in which case February has 29 days.

! declare variables; integer -> month, day, year
! display initial header

! loop

! request month, day, and year
! read month, day, and year
! check month (1-12)

! check year (1970-2020)
! check day

! 1,3,5,7,8,10,12 -» 31 days

! 4,6,9,11 » 30 days

! 2 -+ if modulo of year/4 is 0 = 29 days

65



Chapter 9 » Looping

2 -+ if modulo of year/4 is not 0 - 28 days
if invalid, display error and loop to try again

end loop
display results

For convenience, the steps are written as program comments.

9.5.3 Implement the Program

Based on the algorithm, the program below could be created.

program dateCheck

! declare variables
implicit none
integer :: month, day, year, dayMax

! display initial header
write (*,*) "Date Verification Example"

! loop
do

! request month, day, and year
write (*,*) "Enter month, day, and year"

! read month, day, and year
read (*,*) month, day, year

! check month (1-12)

if ( month < 1 .or. month > 12 ) then
write (*,*) "Error, invalid month"
cycle

end if

! check year (1970-2020)

if ( year < 1970 .or. year > 2020 ) then
write (*,*) "Error, invalid year"
cycle

end if

! check day

! 1,3,5,7,8,10,12 =» 31 days

! 4,6,9,11 » 30 days

! 2 =» if modulo of year/4 is 0 = 29 days

! 2 - if modulo of year/4 is not 0 - 28 days

66



Chapter 9 <« Looping

select case (month)
case (1,3,5,7,8,10,12)
dayMax = 31
case (2)
if (mod(year,4)==0) then
dayMax = 29
else
dayMax = 28
end if
case (4,6,9,11)
dayMax = 30
end select

! if invalid, display error and loop to try again
if ( day < 1 .or. day > dayMax ) then
write (*,*) "Error, invalid day."

cycle
end if
exit
! end loop
end do

! display results
write (*,*) "Valid Date is:"™, month, day, year

end program dateCheck

The spacing and indentation are not required, but help to make the program more readable.

9.5.4 Test/Debug the Program

For this problem, the testing would be to ensure that the results match the expected value. This will
require entering a series of different dates and verifying that the displayed output is correct for the
given input data.

9.6 Exercises

Below are some quiz questions and project suggestions based on this chapter.

9.6.1 Quiz Questions
Below are some quiz questions.

1) What will happen when an exit statement is executed?

2) How many exit statements can be included in a loop?

67



Chapter 9 » Looping

3) What will happen when a cycle statement is executed?
4) How many cycle statements can be included in a loop?
5) If there are multiple cycle statements in a loop, which one will be executed?

6) What is the output of the following Fortran statements. Assume sum and i are declared as

integers.
sum = 0
doi=1,5
sum = sum + i
end do

write (*,*) "The SUM is:", sum
7) What is the output of the following Fortran statements. Assume i and j are declared as integer.

write (*,*) "start"

doi=1, 3
do j =1, 2
write (*,*) i, " * ", j, " =", (i*])
end do
end do

write (*,*) "end"
8) Are the following Fortran statements valid or invalid? If valid, what will happen?
doi=3, 2

write (*,*) i
end do

9) Are the following Fortran statements valid or invalid? 1If valid, what will happen?

doi=3, 2
if ( i == 3 ) then
write (*,*) i
end do
end if

10) What is the limit of statements that can be included in a loop?

11) When IF statements (any form) are nested inside a loop, what must be done to ensure the
statements are valid?

68



9.6.2

Chapter 9 <« Looping

Suggested Projects

Below are some suggested projects.

1)

2)

3)

Type in the difference program, compile, and execute the program. Test the program on a series
of different input values.

Type in the date check program, compile, and execute the program. Test the program on a
series of different input values.

Write a program to calculate the range that a ball would travel when it is thrown with an initial
velocity v, and angle 6. Based on an initial velocity provided by the user, calculate the range
every 5 degrees for angles between 5 and 85 degrees. If we assume negligible air friction and
ignore the curvature of the earth, a ball that is thrown into the air from any point on the earth's
surface will follow a parabolic flight path.

Origin Impact

Time

The range (distance between the initial origin and final impact) is determined by the formula:
V2
range = — — cos 0 sin 0

where vj is the initial velocity of the ball, 0 is the angle of the throw, and g is the acceleration
due to the earth's gravity. The value for gravity should be defined as a constant and set to -9.81
meters per second.

Note, the intrinsic trigonometric functions work in radians, so the angle in degrees will need to
be converted to radians for the calculations. To convert degrees to radians:

L
180

Test the program on a series of different input values.

radians = degrees

69



Chapter 9 » Looping

70



10 Formatted Input/Output

Fortran uses a FORMAT statement to allow control of how data is displayed or read. This is useful
when very specific input or output is required. For example, displaying money figures typically require
exactly two decimal places. There are format specifiers for each data type; integer, real, character,
logical, and complex.

10.1 Format

The format specifiers, separated by commas, are contained in a pair of parenthesis as a string literal.
There are multiple possible ways to define a format. However, we will focus on the easiest, most direct
method. The format specifier will replace the second “*” in the read or write statements. For example:

read (*,'(<format specifiers>)') <variables>
write (*,'(<format specifiers>)') <variables/expressions>

The following sections explain the options for the format specifiers.

10.2 Format Specifiers

The format specifiers tell the system exactly how the input or output should be handled. Each value
being read or written requires some amount of space. For example, an integer of four digits requires at
least four spaces or positions to print. Therefore, the number of positions to be used is a key part of the
specifier.

The following convention of symbols:

w — the number of positions to be used

m — the minimum number of positions to be used

d - the number of digits to the right of the decimal point
n - the number or count

¢ —»  column number

r -  repeat count

The following is a summary of the most commonly used format specifiers:

Description Specifier
Integers rIw or riw.m
Real rFw.d
Logicals rLw
Characters rA or rAw

71



Chapter 10 » Formatted Input/Output

Horizontal Positioning (space) nX
Horizontal Positioning (column) Tc
Vertical Spacing n/

In addition, each specifier or group of specifiers can be repeated by preceding it with a repeat count.
Format specifiers for complex numbers will be addressed in later chapters.

10.3 Integer Format Specifier

The integer format specifier rIw or riw.m is used tell the system exactly how many positions should be
used to either read or write an integer variable. The w is the width or how many total places are used.
If the number is negative, the sign uses a place. The m is optional and can be used to set a minimum
number of digits to display, which will display leading zeros if needed in order to display the minimum
number of digits. The r is the number of times the format specifier should be repeated.

A format of ' (i6) ' would look like:

For example, given the declarations,

integer :: numl=42, num2=123, num3=4567

the following write statement can be used to display the value in variable num1 with no leading or
trailing spaces.

write (*,'(i2)') numl
Which will display “42”.

Multiple variables can be displayed. For example, to display the values in variables num1 and num2,
with no leading or trailing spaces.

write (*,'(i2,i3)') numl, num2

Which will display “42123” with no spaces between the two different values. However,

write (*,'(i2,i4)') numl, num2

will display “42 123” with one space between the values. Further,

write (*,'(i5,i5,1i5)') numl, num2, num3

will display “ 42 123 4567” where each variable uses 5 spaces. And, finally,

write (*,'(i6.4)') numl

will display “ 0042”.

72



Chapter 10 <« Formatted Input/Output

10.4 Real Format Specifier

The real format specifier rFw.d is used tell the system exactly how many positions should be used to
either read or write a real variable. The w is the width or how many total places are used, including the
decimal point. If the number is negative, the sign uses a place. The d is how digits are displayed after
the decimal point, which does not count the decimal point. The r is the number of times the format
specifier should be repeated.

A format of ' (f6.2) ' would look like:

X X X . X X
<—d—>

For example, given the declarations,
real :: varl=4.5, var2=12.0, var3=2145.5713

the following write statement can be used to display the value in variable varl with no leading or
trailing spaces.

write (*,'(£f3.1)') varl

Which will display “4.5” with no leading spaces. Multiple variables can be displayed. For example,
to display the values in variables varl and var2.

write (*,'(f5.2,£f8.3)') varl, var2

Which will display “ 4.50 12.000”. Another example with three variables, varl, var2, and var3, is
as follows:

write (*,'(£f10.4,£f10.4,£10.4)') varl, var2, var3

Which will display “ 4.5000 12.0000 2145.5713” where each variable uses 10 spaces
with each having exactly 4 digits after the decimal point.

Although we may print a number using as many positions as you want, this is only for input/output
formatting. The number of positions or size is not the precision (i.e., the number of significant digits)
of that number. The default precision of real numbers is about seven significant digits. This is the
precision of real numbers. However, we can print a real number using 50 positions in which 25
positions are for the fractional part. This is only a way of describing the appearance and does not
change the precision of real numbers.

10.5 Horizontal Positioning Specifiers

The horizontal positioning specifiers, nX and Tc, are used to provide specific horizontal spacing or
placement as needed. The nX specifier is used to insert n spaces. The Tc specifier is used to move
directly to the specified column c.

73



Chapter 10 » Formatted Input/Output

For example,

write (*,'(alzx’a,tzola)l) lell, "Y", ngn

will display the following.
X Y Z

The initial X and Y are separated by two spaces. The final Z is place in the 20 column.

10.6 Logical Format Specifier

The logical format specifier rLw is used tell the system exactly how many positions should be used to
either read or write an logical variable. The w is the width or how many total places are used. The r is
the number of times the format specifier should be repeated. Since a logical variable can only be set to
the logical constants .true. or .false. the width will specify how many of the characters logical
constants will be read or displayed.

For example, given the declarations,

logical :: dooropen=.true., windowopen=.false.

the following write statement can be used to display the value in the logical variables dooropen and
windowopen with no leading or trailing spaces. It should be noted that only a T or F will be displayed.
The following write statement,

write (*,'(1l1l,1x,11)') dooropen, windowopen

will display “T F”. Note, the 11 format is lower-case L. and number 1.

The size or width can be adjusted as needed. For example, the following write statement,

write (*,'(13,2x,13)') dooropen, windowopen

will display “ T F” , which will display a total of 8 characters; two spaces and a T from the right
justified L3 (__T), followed by 2 spaces from the 2X (__), and then two spaces followed by an F from
the L3 (__F).

10.7 Character Format Specifier

The character format specifier rAw is used tell the system exactly how many positions should be used
to either read or write a character variable. The w is the width or how many total places are used. If
the width is not specified, the existing length of the string is used. The r is the number of times the
format specifier should be repeated.

A format of ' (a6) ' would look like:

74



Chapter 10 <« Formatted Input/Output

For example, given the declarations,

character(len=11) :: msg = "Hello World"

the following write statement can be used to display the string in variable msg with no leading or
trailing spaces. The following write statement,

write (*,'(all)') msg

will display “Hello World”. The count is not required when using the character format specifier.
For example, the statement,

write (*,'(a)') msg

will display the same “Hello World” string. Multiple variables or strings can be displayed. Also, the
count can be used to display a portion of the string. For example, to display the string in variable msg
and the string “Goodbye cruel world”.

write (*,'(a9,2x,a)') msg, "Goodbye cruel world"

Which will display “Hello Wor Goodbye cruel world” to the screen. Note that for the first
string variable, msg, only the first 9 characters of the 11 total characters are displayed since the A9
format was used.

10.8 Advance Clause

The advance clause instructs the computer whether or not to advance the cursor to the next line. The
possible values are “yes” and “no”. If the advance clause is not included, the default value is “yes”.
This clause is useful when prompting for user input to allow the input to be entered on the same line as
the prompt. When using the advance clause, the free format (*) is not allowed. A format must be
included.

For example, the period program from the previous chapter included the statements:

! prompt for and read the n value
write (*,'(a)') "Enter count to sum: "
read (*,*) n

Which, when executed, the input is entered on the line following the prompt.

c:\mydir> sums

Example Program
Difference between sum of squares
and square of sums

Enter count to sum:

10
Difference: 2640

75



Chapter 10 » Formatted Input/Output

When the advance clause is used with the setting of “no”, as follows:

! prompt for and read the n value
write (*,'(a)', advance="no") "Enter count to sum: "
read (*,*) n

The resulting execution would be as follows:

c:\mydir> sums
Example Program
Difference between sum of squares
and square of sums

Enter count to sum: 10
Difference: 2640

Which allows the input to be entered on the same line as the prompt.

10.9 Example

This example will read a date from the user (month, day, and year, on the same line), determine the day
of week (for that month/day/year). Then, the program will display the original input date (numeric
form) and the formatted date. The original input date will be displayed with the applicable fields
including the leading 0's (i.e., 01/01/2010).

10.9.1 Understand the Problem

For this problem, we will read the three numbers for the date from the user. The verification of the date
information is left as an exercise.

To calculate the day on which a particular date falls, the following algorithm may be used (the divisions
are integer divisions):

a = (14 - month) / 12
y = year - a
m = month + 12*a - 2

daynum = [ date + y + y/4 - y/100 + y/400 + (31*m/12) ] mod 7

The value of daynum is 0 for a Sunday, 1 for a Monday, 2 for a Tuesday, etc.

10.9.2 Create the Algorithm

For this problem, first we will need to read the date. The verification of the date entered and error
checking is left as an exercise. Then, the original input date can be displayed, in numeric form,
formatted appropriately. For a date, this would mean two digits for the month, a “/”, two digits for the
day, a “/”, and four digits for the year. When the day is only one digit, for example 5, it is customary to
display a “05” so the program will ensure this occurs.

! declare variables

! integer -> month, day, year

! integer -> a, y, m, daynum (for calculations)

! display initial header

76



Chapter 10 <« Formatted Input/Output

! prompt for month, day, and year
! read month, day, and year
! display formatted numeric month/day/year

Then the program can calculate the day of the week (based on the formula) and convert the resulting
number (0-6) into a date string and display the result.

calculate day of week

convert day of week (0-6) to string

convert month (1-12) to string

display formatted string for day, month, and year

= e s o

For convenience, the steps are written as program comments.

10.9.3 Implement the Program

Based on the algorithm, the below program could be created.

program dateFormatter

! declare variables

implicit none

integer :: month, day, year

integer :: a, m, y, d

character(9) :: amonth, day_of_ week

! display initial header
write (*,*) "Date Formatting Example"

! prompt for month, day, and year
write (*,'(a)',advance="no") "Date (month, day, year):"

! read month, day, and year
read (*,*) month, day, year

! display formatted numeric month/day/year

write (*,*) "M———mm e "

write (*,*) "Input Date: "

write (*,'(5x, i2.2, a, i2.2, a, i4)') month, "/", &
day, "/", year

! calculate day of week
a = (14 - month) / 12

year - a
= month + 12 * a - 2

8~
I

77



Chapter 10 » Formatted Input/Output

d=mod ( (day + vy + y/4 - y/100 + y/400 + (31*m/12)), 7)

! convert day-of-week integer to day-of-week string

select case (d)

case (0)

day of week = "Sunday "
case (1)

day of week = "Monday "
case (2)

day of week = "Tuesday "
case (3)

day of week = "Wednesday"
case (4)

day of week = "Thursday "
case (5)

day of week = "Friday "
case (6)

day of week = "Saturday "
end select

! convert month (1-12) to string
select case (month)

case (1)

amonth = "January "
case (2)

amonth = "February "
case (3)

amonth = "March "
case (4)

amonth = "April "
case (5)

amonth = "May "
case (6)

amonth = "June "
case (7)

amonth = "July "
case (8)

amonth = "August "
case (9)

amonth = "September"
case (10)

amonth = "October "
case (11)

amonth = "November "
case (12)

amonth = "December "

78



Chapter 10 <« Formatted Input/Output

end select

! display formatted string for day, month, and year

write (*,'(/a)') "Formatted Date:"

write (*,'(5x, a, a, a, lx, i2.2, a, i4/)") &
trim(day_of week), ", ", trim(amonth), &
day, ", ", year

end program dateFormatter

The spacing and indentation is not required, but help to make the program more readable. The trim()
intrinsic function removes any trailing spaces from the input string. Additional information regarding
handling character data types is provided in the following section.

10.9.4 Test/Debug the Program

For this problem, the testing would be to ensure that the output formatting is correct. Since there is no
error checking on the input, only correct dates should be entered. Test the program on a series of
different input values and verify that the output is correct for those input values.

10.10 Exercises

Below are some quiz questions and project suggestions based on this chapter.

10.10.1 Quiz Questions

Below are some quiz questions.

1) What is the format specifier for each of the following:
a) integer values
b) real values
c) logical values
d) horizontal spacing (i.e., spaces)
e) anew line
f) characters/strings

2) Describe the output of the following code fragment (1 pts each):
Note, show blanks with an _ (underscore) character.
write (*,'(a5)') "Hello World"
write (*,'(a)') "Hello World"

3) Describe the output of the following code fragment (3 pts):
Note, show blanks with an _ (underscore) character.
integer :: number = 5
write (*,'(i5.3)') number

79



Chapter 10 » Formatted Input/Output

4)

5)

6)

7)

What is the write statement and format specifier to output the integer variable num1 which
contains a value between 0 and 999 (right justified, no leading zero's, no additional spaces).

What is the write statement and format specifier to output the real value of pi which has been
initialized to 3.14159 (right justified, no additional spaces)?

What is the single write statement and format specifier to output "Programming" and "Is Fun!"
on two different lines?

What is the single write statement and format specifier to output "Enter Number:" and leave the
cursor on the current line?

10.10.2 Suggested Projects

Below are some suggested projects.

1)

2)

3)

Type in the date formatting program example, compile, and execute the program. Test the
program on a series of different input values and verify that the output is correct for those input
values.

Update the date formatting program to perform complete error checking on the date entered.
That is, the program should check for appropriate values for month (between 1 and 12), check
for appropriate values for date (between 1 and 31), including checking for a valid date for the
specific month, and ensure that the value for year is between 1970 and 3000 (inclusive). For
example, April 31 is not a valid date. Additionally, the program should check for a leap year to
see if February has 28 or 29 days for that year. Test the program on a series of different input
values and verify that the output is correct for those input values.

Write a Fortran program that displays an amortization schedule. The program should read the
loan amount, annual interest rate, and the loan term in months (from a single line).

The formula for calculating the monthly payment is:

term

(1+irate)
1+irate -1
( ( )term )

payment = amount * | irate *

Note, the annual interest rate, irate, in the formula must be converted to a monthly rate (divided
by 12) and then divided by 100 (to convert from percentage). During the time period, term,
some of each monthly payment will be used to pay the interest and some will be used to reduce
the outstanding balance. The monthly interest amount can be calculated by multiplying the
monthly interest rate times outstanding balance. The amounts must be lined up with only two
digits for cents. The payment number must display three digits, including leading zeros if
necessary. Test the program on a series of different input values and verify that the output is
correct for those input values.

80



4)

Chapter 10 <« Formatted Input/Output

Output will consist of appropriate headings and aligned and formatted columns for payment
number, monthly payment, principal paid, interest paid, and outstanding balance. A sum will
appear at the bottom of each column.

Loan amounts shall not exceed $250,000 and the maximum loan term shall not exceed 360
months. Be sure to follow the requirement that the three input variables will be formatted on a
single line.

Write a Fortran program that calculates and displays compounded interest. The program should
read the initial principal amount, interest rate percentage, and the term (number of years). The
program should display a summary of the input and the yearly compounded interest. Refer to
the example output for formatting.

The formula for compounding interest is:

value = principal(1+interest )"

Note, the interest rate percentage read from the user must be converted to a number (i.e.,
divided by 100). The output must be formatted in a manner similar to the example output. This
includes ensuring that the dollar amounts are displayed with the appropriate two decimal points.
Test the program on a series of different input values and verify that the output is correct for
those input values.

81



Chapter 10 » Formatted Input/Output

82



11 Characters and Strings

Fortran was originally developed for scientific and engineering application requiring significant
mathematical calculations. However, the Fortran 95/2003/2008 language includes extensive character
and string handling capabilities.

11.1 Character and String Constants

A character is a single character or symbol, typically enclosed in quotes. For example, letters (“A”-"Z”
and “a” - “z”), punctuation (“!”, “,”, “?”, etc.) , symbols, (“@”, “#”, “>”, etc.), and digits “1”, “2” are
characters.

Some examples include:

llxll
n zll
lI5lI

Character and string constants are case sensitive. So, character “X” (upper-case) is not the same as “x”
(lower-case). When a digit is enclosed in quotes, it is treated as a character and consequently
arithmetic operations (addition, subtraction, etc.) are not allowed.

A string is a series of characters. A string consists of an arbitrary sequence of characters also enclosed
in quotes. Some examples include:

"Hello World."

n 4 5 6 n

n 1 2 3 n

n 4 5 6 ? n

"Goodbye cruel world!!"
"Have a nice day?"

Since digits enclosed in quotes are not numeric values, the strings “1 2 3” and “456?” are allowed.

A problem arises if you want to have a quote in the string itself. A double quote will be interpreted as a
single within a string. The two quotes must be together (no spaces between). For example, the string:

"He said ""wow"" when he heard"

Would be displayed as

"He said "wow" when he heard"

The double-quote is sometimes referred to as an escape character. Strings and characters must be
associated with the character data type.

83



Chapter 11 » Characters and Strings

11.2 Character Variable Declaration

A character variable is a variable that can contain a set of 1 or more characters. Character variables
must have a defined length. All declarations are placed in the beginning of the program (after the
program statement). Declaring character variables formally defines the type and sets aside memory.

This is performed with a type declaration statement in the form of:

<type> :: <list of variable names>

For character variables, the type is “character”. For example, to define a character variable to hold the
day of week (i.e., “Wednesday”), the following declaration,

character(len=9) :: dayofweek

Would define the variable, dayofweek, with a maximum length of 9 possible characters.
Additional examples include:

character(len=3) :: symboll, symbol2
character :: symbol3

character(l) :: symbol4, symbol5
character(30) :: symbol6, symbol7

The declarations can be entered in any order, however they must be at the beginning of the program.

The “len=" is optional and can be omitted. When the length is omitted entirely, the default length is set

bE AN 1Y

to 1. This, “character”, “character(len=1), and “character(1)” are all the same.

When multiple variables are included in a single declaration, they must all be the same length. If
different lengths are required, separate declaration lines are required.

11.3 Character Variable Initialization

It is possible to declare a character variable and to set an initial value at the same time. This
initialization is not required, but can sometime be convenient. For example, to define a character
variable, dayofweek, and set it to the day of week:

character(len=9) :: dayofweek="Wednesday"

Additional examples include:

character(9) :: thismonth="June", lastmonth, nextmonth="July"
character :: ltrl="A", ltr2="b"

Spaces or no spaces between the variables, equal signs, semicolons, and commas are allowed.
Variables initialized at declaration can be changed during program execution as needed.

11.4 Character Constants

It is possible to declare a character variable, set its initial value, and ensure that the value cannot be
changed. For example, to define a character constant, language,

character(len=7), parameter :: language="English"

84



Chapter 11 <« Characters and Strings

To save counting characters, the “*” can be used. For example,

character(len=*), parameter :: university="UNLV"

This instructs the Fortran compiler to count the characters and set the appropriate length.

11.5 Character Assignment

Assignment is a term for setting a character variable equal to some value (character or string).
Assignment is performed with an equal (=) sign. For example, given the declaration,

character(9) :: thismonth

A value can be assigned to the variable as follows,
thismonth = "September"

When character variables are assigned, they are filled from the left and automatically padded with
blanks if necessary. For example, if the variable thismonth is reset

thismonth = "May"

The variable thismonth contains “May  ” (e.g., “May” with an additional 6 blanks).

11.6 Character Operators

The only character operator is “//” (concatenation) which simply concatenates two strings together. For
example,

"University of " // "Nevada Las Vegas"

Characters variables and literals may be used with concatenation. For example, given the following
declaration,

character(len=6)
character(len=12)

strl="ABCDEF", str2="123456"
: str3

The following statements
str3 = strl // str2

will set str3 to “ABCDEF123456”.

11.7 Character Substrings

A substring is a subset or part of a string. A substring can be selected based on its position within the
string with the first character corresponding to 1, the second character corresponding to 2, and so forth.
The substring is selected or specified with a start and stop position in the form of (start:stop). The
stop must be greater than or equal to the start position.

85



Chapter 11 » Characters and Strings

For example, given the following declaration,
character(len=6) :: strl="ABCDEF", str2="123456", str3

The following statements
str3 = strl(1:3) // str2(4:6)

will set str3 to “ABC456”.

11.8 Character Comparisons

The standard relational operators (“==", “>”, “>=”_etc.) have some limitations when character data is
used. Simple comparisons, such as,

IIAII < IIDII

"ABC" == "ABC"

will work as expected. That is, both will evaluate to true.

However, when comparing, the following characters, each will evaluate to false.
IIAII > n a n
ll20ll < "100"
llABCD " <= “ABC nw

This is a result of the relational operations referring to the assigned values (based on their location in
the ASCII table located in Appendix A).

Comparisons between digits, “0” - “9”, will work relative to each other. Comparisons between upper-
case letters, “A” - “Z”, will also work relative to each other. Comparisons between lower-case letters,
“a” - “z”, will also work relative to each other. Since the lower case letters are after the upper case
letters in the table an upper-case letter will be less than a lower-case letter. The digits are in the table
before the letters (upper- and lower-case), so they will evaluate as less than letters. This must be taken

into account when dealing with character comparisons.

11.9 Intrinsic Character Operations

There are a number of character oriented intrinsic operations. Some of the basic character oriented
functions include:

Function Description

ACHAR(D) Returns the character represented by integer argument I
based on the ASCII table (Appendix A). Integer argument I
must be between 1 and 127.

IACHAR(C) Returns the integer value of the character argument C
represented by ASCII table (Appendix A).

LEN(STR) Returns an integer value representing the length of string
argument STR.

LEN_TRIM(STR) Returns an integer value representing the length of string

86



Chapter 11 <« Characters and Strings

argument STR excluding any trailing spaces.

TRIM(STR) Returns string based on the string argument STR with any
trailing spaces removed.

ADJUSTL(STR) Return a string modified by removing leading spaces.
Spaces are inserted at the end of the string as needed.

ADJUSTR(STR) Return a string modified by removing trailing spaces.
Spaces are inserted at the beginning of the string as needed.

A complete list of intrinsic functions can be found in Appendix D.

11.10 Example

This example will scan a string and convert all lower-case letter to upper-case.

11.10.1 Understand the Problem

For this problem, the string will be read from the user with a maximum of 80 characters. Any lower
case letters encountered will be converted to upper-case. All other characters (digits, symbols, etc.)
will be left alone. To determine if a character is lower-case, we can see if it is between “a” and “z”.
The final string will be displayed back to the screen. Based on the ASCII table in Appendix A, there is
a specific, fixed difference between each upper and lower-case letter. Thus, in order to convert a lower-
case character to upper-case, that difference can be subtracted. However, in order to perform the
subtraction, each character needs to be converted into an integer (based on its value in the ASCII table).
The IACHAR() intrinsic function performs this conversion. After the conversion (subtraction), the
integer must be converted back into its corresponding character, which can be accomplished with the
ACHAR() intrinsic function. These functions work on a single character/integer, so each character will
need to be addressed individually.

11.10.2 Create the Algorithm

For this problem, first we will need to prompt for and read the input string. Then any trailing blanks
will be removed and the final length can be determined. Based on that length, each character will be
accessed and converted if needed.

declare variables
integer -> stringl, string2, I, strlen
display initial header
prompt for string
read string
trim any trailing blanks
determine length of string
loop
access each character
if check lower-case ("a" — "2z") -> convert to upper-case
display final string

For convenience, the steps are written as program comments.

87



Chapter 11 » Characters and Strings

11.10.3 Implement the Program

Based on the algorithm, the below program could be created.

program caseConverter

! declare variables
implicit none

integer :: i, strlen
character(80) :: stringl

! display initial header
write (*,'(a,/)') "Case Conversion Example"

! prompt for string
! read string

write (*,'(a)',advance="no") "Enter String (80 char max): "
read (*,'(a)') stringl

! trim any trailing blanks
! determine length of string
strlen = len(trim(stringl))

! loop
do i =1, strlen

! access each character
! if check lower-case -> convert to upper-case

if ( stringl(i:i) >= "a" .and. stringl(i:i) <= "z" ) then
stringl(i:i) = achar( iachar(stringl(i:i)) - 32)
end if

end do

! display final string

write (*,'(/,a)') "=—mm e "
write (*,'(a,/,2x,a,/)') "Final String: ", stringl

end program caseConverter

The spacing and indentation are not required, but help to make the program more readable.

88



11.10.4 Test/Debug the Program

Chapter 11 <« Characters and Strings

For this problem, the testing would ensure that the output string is correct for the given input.

For example, the following output,

c:\mydir> case
Case Conversion Example

Enter String (80 char max): Hello World!?

Final String:
HELLO WORLD!?

Each lower-case letter was converted to upper-case while the upper-case, space, and punctuation were
unchanged. The program should be executed with a series of test inputs to verify the correct output.

11.11 Exercises

Below are some quiz questions and project suggestions based on this chapter.

11.11.1 Quiz Questions

Below are some quiz questions.

1) What is the declaration for a character variable, msg, to contain the string “Hello World!”?

2) Given the following conditional expressions,

ap" > nn
100" < "20"
"Da" > "CA"
20" < 10"
Ildll > llcll

20" < 100"

"ABBC" <= "ABCD"

state which will evaluate to true and which to false.

89



Chapter 11 » Characters and Strings

3) Given the following Fortran statements,

character(len=6) :: strl="abcdef", str2="ABCDEF"
character(len=6) :: str3="123456", str4="78910"
character(len=12) :: astrl, astr2, astr3, astr4

astrl = strl1(1:3)

astr2 = str3(4:6)

astr3 = str3 // str4

astr4d = str2(4:6) // str3(1:3) // strl(2:3)

provide the resulting strings (astrl, astr2, astr3, and astr4).

4) How can the integer value (based on the ASCII table) of a character be obtained?

5) How can integer value be converted to a character (based on the ASCII table)?

11.11.2 Suggested Projects

Below are some suggested projects.

1)

2)

3)

4)

Type in the case conversion example program, compile, and execute the program. Test the
program on a series of different input values and verify that the output is correct for those input
values.

Update the case conversion example program to convert any upper-case characters to lower-
case characters. Test the program on a series of different input values and verify that the output
is correct for those input values.

Write a program to read a string and count the vowels (“a”, “e”, “i”, “0”, and “u”). The
program should provide a count for each vowel and a total count of vowels. The program
should ensure that the vowels are counted for both upper and lower-case. Test the program on a

series of different input values and verify that the output is correct for those input values.

Write a program to read 5 strings (< 80 characters each) and display the strings in alphabetical
order. Test the program with a variety of different input strings, including digits, upper-case,
and lower-case characters. Test the program on a series of different input values and verify that
the output is correct for those input values.

90



12 File Operations

File operations allow Fortran programs to read from files and/or write to files. The basic read and write
statements for file operations are the same as previously used with some additional information or
clauses.

12.1 File Open

A file must be opened before information can be written or read from a file. In order to open a file, the
operating system needs some information about the file in order to correctly identify the file and
establish the access parameters (i.e., read, write, etc.). The open statement “clauses” provide that
information to the operating system.

The file open statement is as follows:

open (unit=<unit number>, file=<file name>, &
status=<file status>, action=<file action>, &
position=<file position>, iostat=<status variable>)

The following table summarizes the various open statement clauses.

Clause Explanation

unit Unit number for subsequent file operations (i.e.,
read, write, etc.). Typically an integer between 10
and 99.

file Name of file to be opened. Can be character literal
or a character variable.

status Status of file. Allowable options “old”, “new”, or
“replace”

“old” - the file must already exist.
“new” — anew file will be created.
“replace” — anew file will be created,
replacing an existing one if necessary.

action Action or open operation. Allowable options are
“read”, “write”, or “readwrite”.
“read” — read data from a file.
“write” — write data to a file.
“readwrite” — simultaneously read data from
and write data to a file.

position Position or place to start. Allowable options are
“rewind” (beginning), “append” (end).

91



Chapter 12 » File Operations

iostat Name of variable for system to place a status code
indicating the status (success or failure) of the
operation. If the status variable is set to 0, the
operation is successful. If the status variable is set
to >0, an error occurred and the operation was
unsuccessful.

The unit number assigned should be between 10 and 99.

12.2 File Write

The file must be opened for “write” or “readwrite” access before any information can be written to the
file. The general form of the write statement is as follows:

write (unit=<unit number>, fmt=<format statement>, &
advance="no", iostat=<variable>) &
<variables/expressions>

The write statement is the same as the simple write; however, the unit number must be the number
assigned during the open operation. Normally, the next write will be on the next line. The
advance="no" is optional. If it is included, the next write will be on the same line where the previous
line stopped.

For example to open a file named temp.txt and place the string “Fortran Example” and the numbers 42,
and 3.14159 on separate lines, the following declarations:

integer :: myanswer=42, myopenstatus, mywritestatus
real, parameter :: pi=3.14159

character(15) :: mymessage="Fortran Example"
character(8) :: myfilename="temp.txt"

and the following Fortran statements,

o]

open (unit=10, file=myfilename, status="replace",
action="write", position="rewind", &
iostat=myopenstatus)
if (myopenstatus > 0) stop "Cannot open file."
write (10, '(a/, i5/, £7.5)', iostat=mywritestatus) &
mymessage, myanswer, pi

would write the file information to the file.

12.3 Stop Statement

The Fortran stop statement, as used in the previous example, will immediately terminate the program.
The optional string, as used in the previous example, will be displayed. This is useful for ending the
program when certain error critical conditions prevent any further progress.

92



Chapter 12 <« File Operations

12.4 File Read

The file must be opened for “read” or “readwrite” access before any information can be read from the
file. The general form of the write statement is as follows:

read (unit=<unit number>, fmt=<format statement>, &
iostat=<variable>) <variables>

The read is the same as the simple read; however, the unit number must be the number assigned during

the open operation. If the status variable is set to less than 0, that is an indication that the end of the file
has been reached. For example, if the file numbers.dat exists and has two numbers (on separate lines),

the following declarations,

integer :: numl, num2, myopenstatus, myreadstatus
character(1ll) :: myfilename="numbers.txt"

and the following Fortran statements,

-4

open (unit=12, file=myfilename, status="old",
action="read", position="rewind", &
iostat=myopenstatus)

if (myopenstatus > 0) stop "Cannot open file."

read (12, '(i5)', iostat=myreadstatus) numl
read (12, '(i5)', iostat=myreadstatus) num2

would read information from the file.

12.5 Rewind

An open file can be reset back to the beginning. This might be useful if the file needs to be read twice.
The rewind statement will reset the file read pointer and subsequent reads will start back at the
beginning. The general form of a rewind statement is:

rewind(<unit number>)

Where the unit number was assigned during the initial open. The file must be open when the rewind is
executed for the rewind to work correctly.

12.6 Backspace

When reading from a file, each successive read will return the next line from the file. The computer
keeps track of which lines have been read and will automatically return the next line. It is possible to
read a line and then backspace and re-read the line again with the backspace statement.

The general form of a backspace statement is:

backspace(<unit number>)

Where the unit number was assigned during the initial open. The file must be open when the backspace
is executed for the backspace to work. It should be noted that this operation is not used very often.

93



Chapter 12 » File Operations

12.7 Close File

An open file should be closed when it is no longer needed. The general form of a close statement is:

close(<unit number>)

Where the unit number was assigned during the initial open.

For the previous examples,

close(10)
close(12)

would be used to close the opened files.

12.8 Example

In this example, we will write a Fortran program to read an input file and write a line number and the
original line to an output file.

12.8.1 Understand the Problem

For this problem, we will read the file names from the user and open the files. Then we will read a line
from the input file, and write the line number and line to the output file. When done, we will close the
file.

12.8.2 Create the Algorithm

For this problem, first, we will need to prompt for and read the file names from the user and ensure that
they open correctly. If the file cannot be opened, an error message will be displayed and the file names
will be re-read.

! declare variables

! integer -> i, rdopst, wropst
! character -> line

! display initial header

! loop

! prompt for input file name

! read input file name

! open input file (read access)
! if open unsuccessful, display error message
! otherwise, end loop

! loop

! prompt for output file name

! read output file name

! open output file (write access)

! if open unsuccessful, display error message
! otherwise, end loop

Once the file is open, a line will be read from the input file, and the line number and the line will be
written to the output file. For this example, we will assume that a line will have 132 or less characters.

94



Chapter 12 <« File Operations

This process will continue until there are no more lines in the input file.

! loop

! read line from input file

! if end of file, exit loop

! write line number and line to output file
! close files

For convenience, the steps are written as program comments.

12.8.3 Implement the Program

Based on the algorithm, the below program could be created.

program linenumbers

! declare variables

implicit none

integer :: i, rdopst, wropst, rdst
character(30) :: rdfile, wrfile
character(132) :: line

! display initial header
write (*,*) "Line Number Example"

! prompt for input file name
do
write (*,'(a)', advance="no") "Input File Name: "

| read input file name
read (*,*) rdfile

! open input file (read access)
if open unsuccessful, display error message
otherwise, end loop
open(12, file=rdfile, status="old",
action="read", position="rewind", &
iostat=rdopst )
if (rdopst==0) exit

o]

write (*,'(a/,a)') "Unable to open input file.", &
"Please re-enter"
end do

! prompt for output file name
do
write (*,'(a)', advance="no") "Output File Name: "

95



Chapter 12 » File Operations

! read output file name
read (*,*) wrfile

! open output file (read access)
! if open unsuccessful, display error message
!

otherwise, end loop

-]

open(14, file=wrfile, status="replace",
action="write", position="rewind", &
iostat=wropst )

if (wropst==0) exit

write (*,'(a, a/,a)') "Unable to open ", &
"output file.", "Please re-enter"
end do
R ——
i=1
do

! read line from input file

read (12, '(a)', iostat=rdst) line

! if end of file, exit loop

if (rdst >0) stop "read error"
if (rdst <0) exit

! write line number and line to output file

write (14, '(il0,2x,a)') i, line
i=i+1
end do
! close files
close(12)
close(14)

end program linenumbers

The spacing and indentation are not required, but help to make the program more readable.

12.84 Test/Debug the Program
For this problem, testing would involve executing the program with various input files and verifying
that the line numbers are correctly added.

12.9 Exercises
Below are some quiz questions and project suggestions based on this chapter.

96



Chapter 12 <« File Operations

12.9.1 Quiz Questions

Below are some quiz questions.

1) What must occur before a file can be read or written?
2) What is the range of the valid unit numbers for a file open?

3) For the following statements:

integer :: opnstat
character(20) :: filename="file.txt"

open (14, file=filename, status="old", action="read",
& position="rewind", iostat=opnstat)

if ( opnstat > 0 ) then
write (*, *) "Error, can not open file."
stop
end if
a) What is the name of the file being opened?
b) What is the unit number that will be used for subsequent write operations?
c) Does the error message get printed if the file does not exist (yes/no)?

d) What does it mean when the status variable is > 0?

4) Assume the file answers.txt exists, has been successfully opened using unit number 20,
and contains the following data:

"line 1 datal=23 data2 =034 data3 =05123"

What is the read statement required to get datal, data2, and data3 into the integer variables
numl1, num2, and num3 respectively?

12.9.2 Suggested Projects
Below are some suggested projects.

1) Type in the line numbers program, compile, and execute the program. Test the program on a
number of different input values.

97



Chapter 12 » File Operations

2)

3)

Imagine the movement of a small circle that rolls on the outside of a
rigid circle. Imagine now that the small circle has an arm, rigidly
attached, with a plotting pen fixed at some point. That is a epicycloid,
commonly called a Spirograph®. Write a Fortran 95/2003/2008
program to generate the (X,y) coordinates for a Spirograph drawing.

First, the program should prompt for an output file name, read the file name, and open the file.
If the file cannot be opened, the program should display an appropriate error message and re-
prompt. Next, the program should prompt for a read radius 1 (fixed circle), radius 2 (moving
circle), and offset position (rigid arm length). The radius 1, radius 2, and offset position values
must be between -100 and +100 (inclusive). If any value is out of range, the program should re-
prompt. If the user does not enter a valid file name or number of input values after three tries,
the program should terminate with an appropriate error message. That is, three errors are
acceptable, but if a fourth error is made, the program should terminate. The prompts and
subsequent reads should be on the same line (see example).

Then, the program should generate (x,y) points based on one the following formulas:

x=((radius + radius,) * cos(step)) +| offsetposition * cos((radiusl+ radius,) * step. )
radius,

y =((radius 1Hr adiusz) * Sin(step)) + | offsetposition * sin((radiusl+radiusz) * ::Z:_us )
2

The step should start at 0.0 and stop at 360.0, stepping by 0.1. All writes should use a formatted
output (not the *"). Then the program should close the output file and inform the user the
plotting is completed. Test the program on a number of different input values.

Write a Fortran program that plays the Chaos Game. To play the Chaos Game, plot 3 points A,
B, C, and an arbitrary initial point X1. Then, generate a random number between 1 and 3
representing A (1), B (2), or C (3). If A comes up, plot the midpoint of the line joining X1 to A.
If B comes up, plot the midpoint of the line joining X1 to B; the case with C is similar. Call this
new point X2. Generate another random number between 1 and 3. Plot the midpoint of the line
joining X2 to either A, B or C depending on the random number. Call this new point X3.
Repeat this process N times. Test the program on a number of different input values.

Refer to Appendix C for more information regarding generating random numbers.

Note, the correct output of this program is shown on the cover page. The image is referred to as
a Serpinski Triangle'.

9 For more information, refer to: http://en.wikipedia.org/wiki/Spirograph
10 For more information, refer to: https://en.wikipedia.org/wiki/Sierpinski_triangle

98



13 Single Dimension Arrays

An array is a collection or set of data. A variable can hold a single value. An array can hold multiple
values. The type (i.e., integer, real, etc.) of each item in the array must be the same. In order to access
specific elements, an index or subscript is used. The index specifies which element or value in the
array is being accessed.

An array is considered a direct access structure since any element can be accessed directly without
accessing any other elements.

The most basic form of an array is a single dimension array. A single dimension array can be thought
of as a single column in a spreadsheet. The column name, like A, is the array name and the row
number is like the index. For example, a spreadsheet column might appear as follows:

A
<value>
<value>
<value>
<value>
<value>
<value>
<value>
<value>
<value>
<value>

A single dimension array is logically the same and might look like:

Index Array Name

1 <value>
2 <value>
n-1 <value>
n <value>

The array name is chosen by the programmer and thus is not limited to A. The specific syntax requires
an index or subscript to specify which element of the array to access. By default, the first element is at
index=1, the next at index=2, and so forth. This can be changed if needed.

99



Chapter 13 » Single Dimension Arrays

13.1 Array Declaration

An array must be declared before use. The type of the array is defined followed by the size or
dimension. There are two ways to declare an array; static and dynamic.

13.1.1 Static Declaration

A static declaration means that the size or dimension of the array must be defined initially (before the
program is compiled). The size definition cannot be altered. The general form an array declaration is,

type, dimension(extent) :: namel, name2, .., nameN

where type is the data type (integer, real, etc.) of the array. The dimension specifies the extent or size,
and namel, name2, ..., nameN are names of one or more arrays being declared.

For example, to declare an array of 1000 integers,

integer, dimension(1000) :: numsl

will create an array, nums1, with space for 1000 integer values.

In this example, the extent is 1000 which means that the array indexes will range from 1 to 1000. The
extent can be changed by specifying the extent as:

smaller-integer : larger-integer

When only one number is specified, the smaller-integer is assumed to be 1. When both numbers are
specified, the array index's will range between the smaller-integer and the larger-integer. For example,
a declaration of:

integer, dimension(-5:5) :: ranges

will create an array, ranges, with indexes between -5 and 5 (inclusive). Using index values not within
the specified range will result in an error. If the compiler option, fcheck=bounds, to verify subscript
bounds is used, this error will be trapped at run-time. However, if the run-time bounds checking is not
turned on, the error may not be obvious and could result in unrelated problems such as other variables
being over-written or even security holes in some cases.

13.1.2 Static Array Declaration

Static array declarations are appropriate when the maximum size of the array is known ahead of time.
The size of a static array is set by the declaration and once the array is declared, the size cannot be
changed. Optionally, the array value can be initialized by the declaration. For example, to declare an
array named costs with 4 elements and set the four elements to 10.0, 15.0, 20.0, and 25.0,

real, dimension(4) :: costs=(/10.0, 15.0, 20.0, 25.0/)

The numbers, enclosed between the “/”’s are assigned in order. So, costs(1) is set to 10.0, costs(2) is set
to 15.0, costs(3) is set to 20.0, and costs(4) is set to 25.0.

100



Chapter 13 <« Single Dimension Arrays

Additionally, after declaration, it is possible to initialize all elements of an array to a single value with
an assignment statement. For example,

costs = 0.0

will set all four elements of the costs array to zero.

13.1.3 Dynamic Array Declaration

A dynamic declaration means that the size or dimension of the array can be set when the program is
executed. Dynamic array declarations are appropriate when the maximum size of the array is not
known ahead of time and can be determined based on information obtained when the program is
executing. However, once set, the size cannot be altered. When using a dynamic declaration, the array
type and name must be defined. This only specifies the name and type of the array, but does not
reserve any space for the array. During the program execution, the array must be allocated. The
allocation will create the space for the array. Only after the array has been allocated can it be used.

For example, to declare an array,

integer, dimension(:), allocatable :: nums2

reserves the name nums2, but does not reserve any space for values.

13.1.3.1 Dynamic Array Allocation

To allocate the space for the array, the allocate statement must be used. Before an array can be allocated, it
must be declared as allocatable. The general form of the allocate statement is:

allocate(<array name>, stat=<status variable>)

The status variable must be an integer variable and will be used by the system to place a status code
indicating the status (success or failure) of the operation. If the status variable is set to 0, the allocation
was successful. If the status variable is set to >0, an error occurred and the allocation was not
successful.

For example, given the declarations,

integer, dimension(:), allocatable :: nums2
integer :: allst

the following allocate statement allocates space for 1000 numbers in array nums2,
allocate(nums2(1000), stat=allst)

The size, 1000 in this example, can be a variable, but it must be an integer. The status variable allst

will be set to O if the allocation is successful. However, if the status variable allst is set to a value >0,
an error occurred and the allocation was not successful.

101



Chapter 13 » Single Dimension Arrays

13.2 Accessing Array Elements

To access elements in an array, the array name and an index must be specified. The index must be an
integer or integer expression and enclosed in parentheses. The general format is,

array-name(<integer expression>)

For example, given the declaration,

real, dimension(10) :: times

would declare an array with ten elements. To place a value 121.3 in the first array element,
times(1l) = 121.3

And to place 98.125 in the fifth element,
times(5) = 98.125

The index in these examples is a literal. However, the index can be an integer variable or integer
expression.

For example, given the following declarations,
real, dimension(10) :: temps
integer :: i=5, j

would declare an array with ten elements. To place a value 98.6 in the fifth array element,
temps(i) = 98.6

To access the fifth element, subtract 3.0 and place the result in the sixth element,

temps(i+tl) = temps(i) — 3.0

To set all elements of the temps array to 0.0, a loop could be used as follows:

doi=1, 10
temps(i) = 0.0
end do

Array elements can be accessed as many times as needed.

13.2.1 Array Bounds

When an array is declared for a specific size, only that many elements can be used. For example, if an
array is declared with 10 elements, only 10 elements are available. Given the following declaration,

real, dimension(10) :: expArr

would declare an array with ten elements.

102



Chapter 13 <« Single Dimension Arrays

To place a value 42.5 in the first array element and 73.5 in the last array element.

expArr(l) = 42.5
expArr(10) = 73.5

However, if an array element is accessed that is outside the declared bounds, it is an error. For
example,

expArr(1ll) = 99.5
would be an error. These kinds of errors would be difficult to find. However, if the bounds checking is
turned on (as noted in chapter 3), when the program is executed the error will be noted.

To compile with bounds checking turned on, the following compile command should be used:

C:\fortran> gfortran -fcheck=bounds -o hw hw.£f95

This command will tell the 'gfortran’ compiler to include bounds checking.

In general, using the bounds checking can slow a program down. However, this is not a significant
issue when learning to write programs.

13.3 Implied Do-Loop

An implied do-loop is a special form of a loop that can be performed on one line. This can be useful
for accessing elements in an array. For example, assuming i is declared as an integer, the following
code,

write (*,*) nums(l), num(2), num(3), num(4), num(5)

would display each element of the 5 element array to the screen.

The same thing can be accomplished with an implied do-loop as follows:

write (*,*) (nums(i), i=1,5)

Both forms of the loop will display the same results. If necessary, a step can be used. If the step is
omitted, as in the example, the step is defaulted to 1.

13.4 Intrinsic Functions

There are a number of intrinsic, or built-in, functions that can be used for arrays.

Function Description

MAXVAL(ARR1) Returns the maximum value in array ARR1. Type of value
returned is based on the type of the argument array ARR1.

MINVAL(ARR1) Returns the minimum value in array ARR1. Type of value
returned is based on the type of the argument array ARR1.

SUM(ARR1) Returns the sum of values in array ARR1. Type of value
returned is based on the type of the argument array ARR1.

103



Chapter 13 » Single Dimension Arrays

A complete list of intrinsic functions can be found in Appendix D.

13.5 Initializing Arrays
An array can be initialized when it is declared. Each element in the array can be initialized to a single
value or each element to a different value. The following declaration,

real, dimension(10) :: numbers = 1.0

will initialize each of the 10 elements in the array numbers to 1.0.
To initialize each element to a different value, each value needs to be specified.

For example, the following declaration,
real, dimension(5) :: numbers = (/ 1.0, 2.0, 3.0, 4.0, 5.0 /)

will initialize each of the 5 elements in the array numbers to 1.0, 2.0, 3.0, 4.0, and 5.0 respectively.
The implied do-loop may also be used. For example, in the following declaration,

integer, dimension(5) :: numbers = (/ (i, i=1,5) /)
will initialize each of the 5 elements in the array numbers to 1, 2, 3, 4, and 5 respectively.

13.6 Example

In this example we will write a Fortran program to read a series of numbers from a file and compute
some statistical information including minimum, maximum, sum, average, and standard deviation"'.

The standard deviation is calculated as follows:

n

Z (average— list(i))*

i=1

standard deviation =
n—1

As such, the average must be calculated before the standard deviation.

13.6.1 Understand the Problem

The program will display an initial header and get the file name. Specifically, we will need to prompt
for the file name, read the file name, and verify that the file is available by attempting to open the file.
Then, the program will read the numbers from the file and store them in an array. For this problem,
there will be no more than 5000 numbers in the file. After the numbers are in the array, the minimum,
maximum, and sum will be found. Next, the average can be computed. Finally, the standard deviation
can be calculated (using the provided formula). The numbers should be displayed, ten per line,
followed by the results.

11 For more information, refer to: http://en.wikipedia.org/wiki/Standard_deviation

104



Chapter 13 <« Single Dimension Arrays

13.6.2 Create the Algorithm

After the header is displayed, the program should prompt for the file name, read the file name, and
verify that the file is available by attempting to open the file. If the file cannot be opened, the program
will display an error message and re-prompt. If the user does not enter correct information after three
tries, the program should terminate with an appropriate error message. That is, three errors are
acceptable, but if a fourth error is made, the program will terminate.

declare variables

integer -> i, ncount, errs, opstat, rdstat
real -> min, max, sum, stdsum

real -> array for

character -> filename(20)

display initial header
loop

prompt for file name

read file name

attempt to open file

if file open successful, exit loop
display error message

count error

if >3 errors, terminate program

end loop

Then, the program will loop to read the numbers from the file and store them in an array. The program
will check for any read errors (status variable > 0) and for the end of file (status variable < 0).

If a valid number is read, it will be counted and placed in the array.

loop

read from the file

if error on read, terminate program
if end of file, exit loop

increment number counter

place number in array

end loop

Next, another loop will be used to find the minimum, maximum, and sum of the numbers. To find the
minimum and maximum values, we will assume that the first element in the array is the minimum and
maximum. Then, the program will check each number in the array. If the number from the array is less
than the current minimum value, the current minimum value will be updated to the new value. Same
for the maximum, if the number from the array is more than the current maximum value, the current
maximum value will be updated to the new value.

initialize min, max, and sum
loop

check for new min
check for new max
update sum

end loop

Once the sum is available, the average can be computed. Finally, a loop will be used to calculate the

105



Chapter 13 » Single Dimension Arrays

summation for the standard deviation.

! calculate average

! initialize stdsum

! loop

! calculate average — array item
! update stdsum

! end loop

Once the summation is completed, the standard deviation can be computed and the final results
displayed. As per the example specifications, the numbers should be displayed 10 per line.

One way to handle this is to display numbers on the same line (with the advance=“no” clause) and
every 10" line display a new line.

calculate standard deviation

loop to display numbers, 10 per line
display results

end program

For convenience, the steps are written as program comments.

13.6.3 Implement the Program

Based on the algorithm, the program below could be created.

program standardDeviation

! declare variables

implicit none

integer :: i, ncount=0, errs=0, opstat, rdstat
real :: num, min, max, sum, average, stdsum, std
real, dimension(5000) :: numbers

character(20) :: filename

! display initial header
write (*,*) "Standard Deviation Program Example."

! loop
do

! prompt for file name
write (*,'(a)', advance="no") "Enter File Name:"

! read file name
read (*,*) filename

! attempt to open file

open(42, file=filename, status="old",
action="read", position="rewind", &
iostat=opstat )

4]

106



Chapter 13 <« Single Dimension Arrays

! if file open successful, exit loop

if (opstat==0) exit

! display error message
write (*,'(a)') "Error, can not open file."
write (*,'(a)') "Please re-enter."

! count error
errs = errs + 1
! if >3 errors, terminate program

if (errs > 3) then
write (*,'(a)') "Sorry you are having problems."

write (*,'(a)') "Program terminated."

stop
end if
! end loop
end do
! loop
do
! read file
read (42, *, iostat=rdstat) num
! if error on read, terminate program
if (rdstat>0) stop "Error on read."
! if end of file, exit loop
if (rdstat<0) exit
! increment number counter
ncount = ncount + 1
! place number in array
numbers (ncount) = num
! end loop
end do
! initialize min, max, and sum
min = numbers(1)
max = numbers(1l)
sum = 0.0
! loop

do i = 1, ncount

! check for new min and new max

if (numbers(i) < min) min = numbers(i)
if (numbers(i) > max) max numbers (i)

107



Chapter 13 » Single Dimension Arrays

! update sum
sum = sum + numbers(i)

! end loop
end do

! calculate average
average = sum / real(ncount)

! initialize stdsum
stdsum = 0.0

! loop
do i = 1, ncount

! calculate (average — array item)”2 and update sum
stdsum = stdsum + (average - numbers(i))**2

! end loop
end do

! calculate standard deviation
std = sqgrt ( stdsum / (real(ncount)-1) )

! display results
write (*,'(a)') "= "
write (*,'(a)') "Results:"

do i = 1, ncount
write (*,'(£8.2,2x)', advance="no") numbers(i)
if (mod(i,10)==0) write (*,*)

end do

write (*,'(a, £8.2)') "Minimum = ", min

write (*,'(a, £8.2)') "Maximum = ", max

write (*,'(a, £8.2)') "Sum = ", sum

write (*,'(a, £8.2)') "Average = ", average

write (*,'(a, £8.2)') "Standard Deviation = ", std

end program standardDeviation
The spacing and indentation are not required, but help to make the program more readable.

13.6.4 Test/Debug the Program

For this problem, the testing would involve executing the program using a file with a set of numbers
where the correct results are either known ahead of time or can be calculated by hand in order to verify
that the results are accurate.

108



Chapter 13 <« Single Dimension Arrays

13.7 Arrays of Strings

An array may also contain characters or strings. The declaration and access of array elements is the
same. However, the string size must be included in the declaration and cannot be easily changed once
defined.

For example, to declare an array to hold 100 titles where each title is a maximum of 40 characters,

character(40), dimension(100) :: titles

Setting an element is the same. For example, to set the first element of the array to a simple message,

titles(l) = "Programming is fun!"

The message must contain 40 or less characters.

Character arrays may be statically or dynamically declared as noted in the previous sections.

13.8 Exercises

Below are some quiz questions and project suggestions based on this chapter.

13.8.1 Quiz Questions

Below are some quiz questions.

1) Explain why an array is considered a direct access structure.
2) Can arrays hold integer values (yes/no)?
3) Can arrays hold real values (yes/no)?

4) Write the declarations for the following:
a) An integer constant, SIZE1, set to 100.
b) An array, rvalues, with 10 real elements.
c) An array, inums, with SIZE1 integer arguments.
d) An array, counts, with 10 real elements whose subscript values range from 0 to 9.

5) Given the declarations and the following code:

integer, dimension(4) :: arr
integer :: k

arr(l) = 10
arr(2) = 15
arr(3) = 20
arr(4) = 25
k=3

a) What does arr(1) equal?

109



Chapter 13 » Single Dimension Arrays

b) What does arr(1) + arr(2) equal?
c) What does arr(1+2) equal?
d) What does arr (k) equal?

6) When can an array be allocated (two options)?

7) Given the following statements:

integer, dimension(5) :: nums
integer :: i=1

nums = 0
do
if (i ==5 ) exit
if ( mod(i,2) == 0) then
nums(i) = 99
else
nums(i) = i
end if
i=1i+1
end do

a) What values are in the array after execution?

b) What is the (nums(i), i=1,5) referred to as?

c) What does write (*,'(1x,i2)') (nums(i), i=1,5) display? Note: use an
underscore (“_") to show the spaces.

13.8.2 Suggested Projects
Below are some suggested projects.

1) Type in the standard deviation program, compile, and execute the program. Test the program
on a series of different input values.

2) Write a Fortran program to cube a series of integer numbers from a file and cube each number.
The program should also calculate the real average of the original numbers and the real average
of the cubed numbers. Test the program on a series of different input values.

3) Write a Fortran program to generate a series of real values between 1.0 and 100.0 and store the
numbers in an array. Then, the program should compute the norm of a vector (single dimension
array). The formula for norm is as follows:

norm| = Va2 + a2+ @ + ... + a
| | 1 2 3 n

Refer to Appendix C for more information regarding generating random numbers. Test the
program on a series of different input values.

110



Chapter 13 <« Single Dimension Arrays

4) Write a Fortran program to read a series of numbers from a file, store the numbers in an array,
and then sort the numbers using the following selection sort algorithm:
for i = len downto 1

big = arr(1)

index =1

for j=1+¢to i

if arr(j) > big
big = arr(j)
index = j
end if

end for

arr(index) = arr(i)

arr(i) = big

end for

You will need to convert the above pseudo-code algorithm into Fortran code.
on a series of different input values.

Test the program

111



Chapter 13 » Single Dimension Arrays

112



14 Multidimensional Arrays

A more advanced array is a multidimensional array. A multidimensional array can be thought of as
multiple columns in a spreadsheet. The column name, like A, B, C, etc., are the array columns and the
number is like the row.

For example, a two-dimensional array might look like:

index 1 2
Array Name 1 <value> | <value>
2 <value> | <value>
3

<value> | <value>

n <value> | <value>

The specific syntax requires an index or subscript to specify which element of the array to access. The
indexing for a two dimension array is:

index 1 2
Array Name 1 arr(1,1) arr(1,2)
2 arr(2,1) arr(2,2)
3 arr(3,1) arr(3,2)

n arr(n,1) | arr(n,2)

By default, the first element is at index=1, the next at index=2, and so forth. This default (where the
first number is at index 1) can be changed if needed.

14.1 Array Declaration

Multidimensional array declaration is very similar to single-dimension array declaration. Arrays must be
declared before use. The type of the array is defined followed by the size or dimension, which in this case
requires a size for each dimension. As before, there are two ways to declare an array: static and dynamic.

113



Chapter 14 » Multidimensional Arrays

14.1.1 Static Declaration

A static declaration means that the size or dimension of the array must be defined initially (before the
program is compiled). The size definition cannot be altered. The general form of an array declaration is,

type, dimension(extent,extent) :: namel, name2, ... , nameN

where type is the data type (integer, real, etc.) of the array. The dimension specifies the size, and namel,
name2, ..., nameN are names of one or more arrays being declared.

For example, to declare a two-dimensional array 100 by 100,

integer, dimension(100,100) :: numsl

will create an array, nums1, with space for a total of 10,000 integer values.

In this example, the extent for each dimension is 100, which means that each of the two dimension's
indexes will range form 1 to 100. Each or both extents can be changed by specifying the extents as:

(smaller-integer:larger-integer, smaller-integer:larger-integer)
When only one number is specified, the smaller-integer is assumed to be 1. When both numbers are

specified, smaller and larger index, the dimension of the array will range between the smaller-integer
and the larger-integer. For example, a declaration of:

integer, dimension(0:9,0:9) :: ranges

will create an array, ranges, with both indexes between 0 and 9 (inclusive). Using index values not
within the specified range will result in an error.

14.1.2 Dynamic Declaration

The same as single-dimension, a dynamic declaration means that the dimension of the array can be set when
the program is executed. Once set, the dimensions cannot be altered. When using a dynamic declaration,
the array type and name must be defined, which specifies only the name and type of the array, but does not
reserve any space for the array. Then, during program execution, the array can be allocated which will
create the space for the array. Only after the array has been allocated can it be used.

For example, to declare an array,

integer, dimension(:,:), allocatable :: nums2

reserves the name nums2, but does not reserve any space for values.

14.1.3 Dynamic Array Allocation

To allocate the space for the array, the allocate statement must be used. Before an array can be allocated, it
must be declared as allocatable.

The general form of the allocate statement is:

allocate(<array name>, <dimension>, stat=<status variable>)

The status variable must be an integer variable and will be used by the system to place a status code
indicating the status (success or failure) of the operation. As before, if the status variable is set to 0, the

114



Chapter 14 <« Multidimensional Arrays

allocation was successful. If the status variable is set to >0, an error occurred and the allocation was
not successful.

For example, given the declarations,

integer, dimension(:,:), allocatable :: nums2
integer :: allstat

the following allocate statement allocates space for 10,000 numbers in array nums2,
allocate(nums2(100,100), stat=allstat)

The size, 100 by 100 in this example, can be a parameter or variable, but it must be an integer. The
variable allstat will be set to O if the allocation is successful and >0 if the allocation failed.

14.2 Accessing Array Elements

To access elements in an array, the array name and the an index must be specified. The index must include
an integer or integer expression for each dimension enclosed in parentheses. The general format is,

array-name(<integer expression>, <integer expression>)

For example, given the declaration,

real, dimension(10,5) :: tablel

would declare an array, tablel, with a total of 50 elements. To place a value 121.3 in the first row and first
column,

tablel(1l,1) = 121.3

And to place 98.125 in the tenth row and fifth column,
tablel(10,5) = 98.125

The index in these examples is a literal. However, the index can be an integer variable or integer
expression. For example, given the following declarations,

real, dimension(10,10) :: tmptable
integer :: i=2, j=3
would declare an array, tmptable, with one hundred elements.

To place a value 98.6 in the second row, fourth column,
tmptable(i, j+1) = 98.6

To access the same element, subtract 3.0 and place the result back into the same location,
tmptable(i,j+1) = tmptable(i,j+1) — 3.0

115



Chapter 14 » Multidimensional Arrays

To set all elements of the tmptable array to 0.0, a nest loop could be used as follows:

doi=1, 10
do j =1, 10
tmptable(i,j) = 0.0
end do
end do

In addition, the entire array can be set to 0 in the following statement,
tmptable = 0.0

Array elements can be accessed as many times as needed.

14.3 Example

In this example, we will write a Fortran program that will request a count, generate count (x,y) random
points, and perform a Monte Carlo 1 estimation based on those points. All x and y values are between
0 and 1. The main routine will get the count and then use a subroutine to generate the random (x,y)
points and a function, to perform the Monte Carlo m estimation. For this example, the count should be
between 100 and 1,000,000.

14.3.1 Understand the Problem

Based on the problem definition, the main routine that will read and verify the count value. If the count
is not between 100 and 1,000,000, the routine will re-prompt until the correct input is provided. Once a
valid count value is obtained, then the main will
allocate the array and call the two subroutines.

The first subroutine will generate the random 1
(x,y) points and store them in an array. The
second subroutine will perform the Monte Carlo o |
Tt estimation. :

1B gnuplot graph [&=15]

Pi Estimaton Program Output

Monte Carlo methods are a class of e
computational algorithms that rely on repeated L \\
random sampling to compute their results. 5
Suppose a square is centered on the origin of a e \
Cartesian plane, and the square has sides of
length 2. If we inscribe a circle in the square, it ?
will have a diameter of length 2 and a radius of e
length 1. If we plot points within the upper right quadrant, the ratio between the points that land within
the inscribed circle and the total points will be an estimation of .

samples inside circle
total samples

estm = 4

As more samples are taken, the estimated value of m should approach the actual value of m. The
Pythagorean theorem can be used to determine the distance of the point from the origin. If this distance
is less than the radius of the circle, then the point must be in the circle. Thus, if the square root of
(x*+y*) < 1.0, the random point is within the circle.

116



Chapter 14 <« Multidimensional Arrays

Finally, the figure we are discussing, a square centered on the origin with an inscribed circle is
symmetric with respect to the quadrants of its Cartesian plane. This works well with the default
random number generations of values between 0 and 1.

14.3.2 Create the Algorithm

The main routine will display an initial header, get and check the count value, and allocate the array.
The program will need to ensure that the array is correctly allocated before proceeding. Then the
program can generate the (x,y) points. Based on the problem definition, each point should be between
0.0 and 1.0, which is provided by default by the Fortran random number generator. Next, the program
can perform the Monte Carlo pi estimation. This will require the already populated (x,y) points array
and the count of points. Each point will be examined to determine the number of points that lie within
the inscribed circle. The Pythagorean theorem allows us to determine the distance of the point from the
origin (0.0,0.0). Thus, for each point, we will calculate the 4 (x*+y’) and if the distance is less than

the circle radius of 1.0, it will be counted as inside the circle.

Then, the estimated value of T can be calculated based on the formula:

samples inside circle
total samples

estm = 4
When completed, the program will display the final results. The basic algorithm is as follows:

declare variables
display initial header
prompt for and obtain count value
loop
prompt for count value
read count value
if count is correct, exit loop
display error message
end loop
allocate two dimension array
generate points
loop count times
generate x and y values
place (x,y) values in array at appropriate index
end loop
set count of samples inside circle = 0
loop count times
if [ sgrt (x(i)**2 + y(i)**2) < 1.0 ]
increment count of samples inside circle
end loop
display results

For convenience, the steps are written as program comments.

117



Chapter 14 » Multidimensional Arrays

14.3.3 Implement the Program
The following code results from the implementation of the preceding algorithm.

program piestimation

! declare variables
implicit none

integer :: count, alstat, i, incount
real :: x, y, pi_est, pt

real, allocatable, dimension(:,:) :: points

! display initial header
write (*,'(/a/)') "Program Example — PI estimation."

! prompt for and obtain count value

do

! prompt for count value

write (*,'(a)', advance="no")
"Enter Count (100 - 1,000,000): "

! read count value

read (*,*) count

I if count is correct, exit loop

if ( count >= 100 .and. count <= 1000000 ) exit

! display error message

write (*,'(a,a,/a)') "Error, count must be ",
"between 100 and 1,000,000.",
"Please re-enter."

end do

! allocate two dimension array
allocate (points(count,2), stat=alstat)

if (alstat /= 0 ) then
write (*,'(a,a,/a)"')
" allocate memory.",
stop

end if

"Error, unable to", &
"Program terminated."

! generate_points
call random_seed()

! loop count times
do i =1, count

| generate x and y values

call random_ number(x)
call random number(y)

118



Chapter 14 <« Multidimensional Arrays

! place (x,y) values in array

pts(i,1l) = x
pts(i,2) =y
end do

! perform monte carlo estimation
| set count of samples inside circle = 0
incount = 0

! loop count times
do i = 1, count

! if [ sqrt (x(i)? + y(i)?) < 1.0 ]
! increment count of samples inside circle

pt = pts(i,1)**2 + pts(i,2)**2
if (sqrt(pt) < 1.0) incount = incount + 1

end do

pi_est = 4.0 * real(incount) / real(count)

! display results
write (*,'(a, £8.2)') "Count of points: ", count
write (*,'(a, £8.2)') "Estimated PI value: ", pi_est
end program piestimation
The spacing and indentation are not required, but help to make the program more readable.

14.3.4 Test/Debug the Program

For this problem, the testing would involve executing the program using a series of different count
values and ensure that the T estimate is reasonable and improves with higher count values.

14.4 Exercises

Below are some quiz questions and project suggestions based on this chapter.

14.4.1 Quiz Questions

Below are some quiz questions.

1) Can a multidimensional array simultaneously hold both integer and real values (yes/no)?
2) Multiple choice: what is the order of the indexes?

a) (row, column)

119



Chapter 14 » Multidimensional Arrays

3)

4)

b) (column, row)
c) (row, row)

d) (column, column)
e) user-selectable

Note, there is only one correct answer.

Given the following code:

real, dimension(5,3) :: mdarr
integer :: i, j

doi=1,5
do j=1, 3
mdarr(i,j) = real(i+j)
end do
end do

a) How many values, total, can be stored in the mdarr array?
b) Show the contents of every cell in the mdarr.

c¢) What does mdarr(2,1) contain?

d) What does mdarr(1,3) contain?

e) What does mdarr(4,3) contain?

How can an unsuccessful multidimensional dynamic allocation be detected?

14.4.2 Suggested Projects

Below are some suggested projects.

1)

2)

3)

4)

Type in the m estimation program, compile, and execute the program. Test the program on a
series of different point count values. Demonstrate that larger point values provide a better
estimation.

Update the m estimation program to ensure that a valid count value is obtained within three
tries. If there are more than three errors, the program should display an error message and
terminate.

Update the m estimation program to display the estimated m value 10 times. In order to perform
this, the count value can be divided by 10 and the current estimated m value displayed.

Write a program to statically declare a 100x100 two-dimensional array of real values. The
program should populate the array with random numbers between 0 (inclusive) and 1
(exclusive). Refer to Appendix C for information regarding generating random numbers. The
program should scan the array to find and display the maximum value and the location of that
value (i.e., the row and column where the value was found).

120



Chapter 14 <« Multidimensional Arrays

5) Update the find maximum program (from the previous question) to declare the array
dynamically and allow the user to enter the row and column dimensions and ensure that each is
between 10 and 1000. Once entered, the program should allocate the array and find and display
the maximum and minimum values and their locations (row and column).

6) Write a Fortran program to construct an odd-order Magic Square. The algorithm for
constructing a NxN odd ordered Magic Square is as follows:

e First, place a 1 in the middle of the top row.

e After placing an integer, k, move up one row and one column to the right to place the
next integer, k+1, unless the following occurs:

o If a move takes you above the top row in the j* column, move to the bottom of the j"
column and place the integer there.

o If a move takes you outside to the right of the square in the i row, place the integer
in the i row at the left side.

o If a move takes you to an already filled square or if you move out of the square at
the upper right hand corner, place k+1 immediately below k.

Test the program and compare the results to the Wikipedia example.

12 For more information, refer to: http://en.wikipedia.org/wiki/Magic_square

121



Chapter 14 » Multidimensional Arrays

122



15 Subprograms

Until now, all of the programs have essentially been single, fairly small programs. However, as we
scale up into larger programs, this methodology will become more difficult. When developing larger
programs, it becomes necessary to break larger programs up into multiple, smaller more manageable
pieces. Then, during program development, it is possible to focus on each subsection or piece
individually and then combine the results into a final complete program. And, for very large projects,
multiple people may work on different parts of the program simultaneously.

Some of the key advantages of developing a program using functions and/or subroutines include:
e Structured development of programs
e Reuse of subprograms
e Isolation of subprograms

Fortran subprograms are the mechanism to break a large program into multiple smaller parts. This
allows for a more comprehensive program design.

15.1 Subprogram Types

There are two types of Fortran subprograms: functions, and subroutines, each of which is explained in
the following sections.

15.2 Program Layout

The functions and subroutines can be defined as either internal or external. Internal functions and
subroutines are defined within the program statement (i.e., before the “end program <name>"
statement). The basic layout for both internal and external subprograms are as follows:

program <name>

<declarations>
<program statements>

contains

<internal functions or subroutines>
end program <name>

<external functions or subroutines>

Where a combination of both or either internal or external routines is allowed.

123



Chapter 15 » Subprograms

15.2.1 Internal Routines

Internal routines require the keyword “contains” to separate them from the program code. Primarily,
internal routines will be used in this text for simplicity. There is no limit to the number of internal
routines. However, if too many routines are included the file will become large and such large files can
be difficult to work with.

15.2.2 External Routines

External functions are defined outside the program statement (i.e., after the “end program <name>”
statement) or in another file. For larger programs, external routines would be used extensively.
However, additional set-up statements, including an external declaration and an interface block, are
required. The definition and use of external routines are not addressed in this chapter.

15.3 Arguments

When writing and using Fortran subprograms, it is typically necessary to provide data to a subprogram
and/or to obtain results back from the functions or subroutines. This information, in the form of
variables, is referred to as an argument or arguments. The argument or arguments in the calling routine
are referred to as actual arguments, and the argument or arguments in the function or subroutine are
referred to as formal arguments. The formal arguments take on the values that are passed from the
calling routine.

The only way to transfer values in to or out of a subroutine is through the arguments. A function
typically passes values in through the arguments with a single return value (via the function name). All
other variables are independent and isolated.

15.3.1 Argument Intent

Subprograms often return values by altering or updating some of the arguments. When passing a
variable, the information (value or values) can be passed into the function or subroutine. This is
referred to as “intent(in)”. If the variable is to be set by the function or subroutine, that is referred to as
“intent(out)”. If the variable contains a value or multiple values (i.e., an array) that are to be passed
into the function or subroutine and altered in some way by the function or subroutine and returned back
to the calling routine, that is referred to as “intent(inout)”.

15.4 Variable Scope

The variable scope refers to where a given variable can be accessed. Scope rules tell us if an entity
(i.e., variable, parameter, and/or function) is visible or accessible at certain places. Places where an
entity can be accessed, or visible, is referred as the scope of that entity. The variables defined in a
subprogram are generally not visible to the calling routine. Thus, a variable x in the calling routine is
different than a variable x in the subprogram.

15.5 Using Functions and Subroutines

Before a function or subroutine can be used, it must be defined or written. Once defined, the function
or subroutine can be used or called. A function or subroutine is called by using its name as we have

124



Chapter 15 <« Subprograms

done with the intrinsic functions. When a program uses a subroutine, it is called with a call statement.
When a program uses a function, it is used by name and returns a result which must be assigned
somewhere appropriate (e.g., like a variable).

15.5.1 Argument Passing

When using functions or subroutines, information (values, variables, etc.) is typically passed to or from
the routines. Argument association is a way of passing values from actual arguments to formal
arguments. If an actual argument is an expression, it is evaluated and passed to the corresponding
formal argument. If an actual argument is a variable or constant, its value is passed to the
corresponding formal argument. There must be a one-to-one correspondence between the actual
argument (calling routine) and the formal argument (function/subroutine).

The arguments in the call are matched up to the arguments in the function/subroutine by position. Each
of the arguments is matched by its corresponding position. The names of the variables do not need to
match, however, the data types must match. For example, given the following subroutine call and
subroutine,

Calling Routine

call example (x, Yy, 2)

AN

Subroutine \ \ \

subroutine example (a, b, c)

each variable is matched by its corresponding position.

Other variables in either the calling routine (top) or the subroutine (bottom) are isolated from each
other. As such, the same variable name can be re-used in both the calling routine and the subroutine
(and refer to different values).

15.6 Functions

A function is a special type of Fortran subprogram that is expected to return a single result or answer.
A function will typically accept some kind of input information and based on that information, return a
result. The two types of Fortran functions are described in the following sections.

125



Chapter 15 » Subprograms

15.6.1 Intrinsic Functions

As described previously, an intrinsic function is a built-in function that is already available. Some of
the intrinsic functions already described include sin(), cos(), tan(), real(), int(), and nint(). A more
comprehensive list is contained in Appendix D.

15.6.2 User-Defined Functions

A user-defined function is a function that a written by the user for specific or specialized requirements.
The general form of a user-defined function is as follows:

<type> function <name> ( <arguments> )
<declarations>

<body of function>

<name> = expression
return
end function <name>

The <type> is one of the Fortran data types: real, integer, logical, character, or complex. It is possible
to place the type declaration on a separate line from the function statement.

The information, in the form of arguments, is passed from the calling routine to the function. Each of
the passed arguments must be declared and the declaration must include the type and the intent. The
arguments in the calling routine and the function must match and are matched up by position.

An example function to convert a Fahrenheit temperature to Celsius temperature would be as follows:

real function fahr to_celsius(ftemp)
real, intent(in) :: ftemp

fahr to_celsius = (ftemp — 32.0) / 1.8

return
end function fahr to celsius

Which, given a Fahrenheit temperature, will return the Celsius temperature. The single input argument,
ftemp, is declared to be a real value and “intent(in)”, which means that the value is expected to be
coming into the function and cannot be changed. The final value is returned to the calling routine by
assigning a value to the function name, fahr_to_celsius, in this example.

15.6.2.1 Side Effects

A side-effect is when a function changes one or more of its input arguments. Since the arguments can
be declared as “intent(out)” or “intent(inout)”, the function could change the arguments. In general,
this is considered poor practice and should be avoided. None of the examples in this text will include
or utilize side-effects.

126



Chapter 15 <« Subprograms

15.7 Subroutines

A subroutine is a Fortran subprogram that can accept some kind of input information and based on that
information, return a result or series of results.

The general form of a subroutine is a follows:

subroutine <name> ( <arguments> )
<declarations>

<body of subroutine>

return
end subroutine <name>

The information, in the form of arguments, is passed from the calling routine to the subroutine. Each
of the passed arguments must be declared and the declaration must include the type and the intent. The
arguments in the calling routine and the subroutine must match and are matched up by position.

For example, given the following simple program to find the sum and average of three numbers.

program subExample

implicit none
real :: x1=4.0, yl1=5.0, z1=6.0, suml, avel
real :: x2=4.0, y2=5.0, z2=6.0, sum2, ave2

call sumAve(xl, yl, zl, suml, avel)
write (*,'(a,£f5.1,3x,a,£f5.1)"') "Sum=", suml, &
"Average=", avel
call sumAve(x2, y2, z2, sum2, ave2)
write (*,'(a,£f5.1,3x,a,£5.1)') "Sum=", sum2, &
"Average=", ave2
contains

, b, ¢, sm, av)
a, b, ¢
: sm, av

subroutine sumAve (a

real, intent(in) ::

real, intent(out) :
sm =a+b+c
av = sm / 3.0

return
end subroutine sumAve

end program subExample

The arguments in the first call (x1, y1, z1, sum1, and avel) are matched up to the arguments in the
subroutine (a, b, ¢, sm, and av) by position. That is, the x1 from the call is matched with the a in the
subroutine. The arguments in the second call (x2, y2, z2, sum2, and ave2) are again matched up to the
arguments in the subroutine (a, b, ¢, sm, and av) by position. While the names of the variables do not

127



Chapter 15 » Subprograms

need to match, the data types must match. Variables declared in a function or subroutine are not the
same as variables in the calling routine. This is true, even if they are the same name!

15.8 Example

In this example, we will write a Fortran program to simulate the dice game of Twenty-Six"?, which is a
single player betting game with 10 dice. The main program will determine how many games to play,
track the count of games won and lost, and display some win/loss statistics. A subroutine will be used
to play the Twenty-Six game. The subroutine will be called as many times as requested.

The subroutine, twenty_six(), will play the dice game Twenty-Six. To play the game, the player rolls
the dice (1 to 6) and this initial roll is used as the “point” number. Then the player throws the ten dice
13 times. The score is the number of times that the point number is thrown. A random number
between 1 and 6 will be used for each dice roll.

The routine will determine the payout based on the point count using the following table:

Point Count Payout

10 or less 10
13 5

26 4

27 5

28 6

29 8
30 10
Other 0

The subroutine should display the dice (all 10 dice for each of 13 rolls), point count, game result, and
payout. For example, if the point was 6, the subroutine might display the following:

Point: 6
Roll: 1 Dice: 4 6 5 3 3 1 1 3 3 2
Roll: 2 Dice: 1 6 3 3 4 1 4 4 2 6
Roll: 3 Dice: 3 2 6 4 5 3 2 1 5 4
Roll: 4 Dice: 5 6 4 1 4 6 6 2 4 4
Roll: 5 Dice: 4 6 6 4 5 3 6 1 5 5
Roll: 6 Dice: 3 1 4 5 6 5 3 3 3 4
Roll: 7 Dice: 6 6 5 6 1 5 5 6 5 5
Roll: 8 Dice: 4 1 3 4 1 4 4 6 2 5
Roll: 9 Dice: 4 4 2 1 1 4 3 1 5 4
Roll: 10 Dice: 5 6 1 2 4 1 1 2 1 1
Roll: 11 Dice: 2 3 2 4 1 3 3 6 5 1
Roll: 12 Dice: 1 1 6 5 4 5 1 6 6 5
Roll: 13 Dice: 6 4 4 5 3 3 5 3 3 5

Point Count: 22

13 For more information, see: http://www.dice-play.com/Games/TwentySix.htm

128



Chapter 15 <« Subprograms

Game Result: LOSS Payout = 0

For this example, the main will track the games won and lost.

15.8.1 Understand the Problem

The program will display an initial header and get the number of games to play. Specifically, we will
need to prompt for the count of games and verify that the count is between 2 and 1,000,000 (arbitrarily
chosen). Then, the program will call the twenty_six() subroutine count times. After each game, the
main will update the count of games won. The main will also track the payout and bank value status,
which is initialized to 100 (chosen arbitrarily) and updated after each game is played.

An example main is provided as follows:

program diceGame

! Fortran program to simulate a dice game of Twenty-Six
! The main program:

! displays appropriate headers

! obtains and checks number of games to play

! loops to play 'count' number of games times

implicit none

integer, parameter :: initial bank=100

integer :: num games, games won=0, games lost=0
integer :: i, payout, bank

integer, dimension(13,10) :: dice

real :: win pct

write (*, '(/a/a/)') &
M e ", &
"Dice Game ""Twenty-Six"" Simulator."
do
write (*, '(2x, a )', advance = "no") &
"Enter number games to simulate: "
read (*,*) num_games
if (num _games >= 2 .and. num games <= 1000000) exit
write (*, '(2x, a)') "Error, number of ", &
"games must be between 1 and 1000000."
write (*, '(2x, a)') "Please re-enter."
end do

bank = initial_ bank
call random_seed()

do i = 1, num games
bank = bank - 1
call twentySix (payout)
if (payout > 0) then

129



Chapter 15 » Subprograms

games_won = games_won + 1
else

games_lost = games_lost + 1
end if
bank = bank + payout

end do

win pct = ( real(games won) / real(num games) ) * 100.00

write (*,'(/a,/a/,3(2x,a,19/),2(2x,a,i8/),2x,a,f4.1,a)")

contains

*kkkkkkk*%x

"Games Statistics:",

"Game Count: ", num_games,
"Games Won: ", games_won,
"Games Lost: ", games_lost,
"Initial Bank: ", initial bank,
"Final Bank: ", bank,

"Win Percentage: ", win_pct, "%"

khkhkhkhkhkhkhkhkhkhkkhkhkkhkkkhkkkhkkdkhkhkhkhkhhkhhkhkhkhkdkhkdkhkdkdkkxkdkkkkkkkx*%x

!
! subroutine(s) goes here...
!

*kkkkkkk*%x

end program

khkhkhkhkhkhkhkhkhkhkhkhkkkhkkkhkkkhkkkhhkhkhhhkhhkhkhkhkdkhkdkhkdkkdkkkkkkkkx*%

diceGame

Refer to Appendix C for additional information regarding the random number generation and
initialization of the built-in random number generator.

15.8.2

Create the Algorithm

Since the main is provided, the algorithm will focus on the twenty-six game. Since the built-in random
number generator provides random numbers between 0.0 and 1.0, they will need to be scaled and

converted to an integer between 1 and 6 (for a dice). The initial point value must first be established
followed by a loop to throw the ten dice 13 times in accordance with the game rules. The results will

be stored in a two-dimensional array. While not strictly required, it does provide an additional example
of how to use a two-dimensional array. Finally, the payout will be determined based on the game rules.

Randomly select a number from 1 to 6 as the "point" number

Throw ten

dice 13 times

results go into dice(13,10) array

is thrown

!
!
!
! Score is the number of times that the point number
!
!

determine payout

For convenience, the steps are written as program comments.

130



Chapter 15 <« Subprograms

15.8.3 Implement the Program

Based on the algorithm, the below program could be created.

| F*khkdhdkhkhdkhkkhkhhhhhhhhhhhhhhkhkhkhkhkkhkhhhhhhhhhhhhdkhkhkkhkhkkhhhrhd

! Subroutine to simulate twenty-six game.

! Randomly select a number from 1 to 6 as the “point” number
! Throw ten dice 13 times

! results go into dice(13,10) array

! Score is the number of times that the point number is
thrown

subroutine twentySix (payout)
implicit none
integer, dimension(13,10) :: dice
integer, intent(out) :: payout
integer :: point, pnt cnt
real :: x
integer :: i, j
! determine point
call random number (x)
point = int(x*6.0) + 1

! roll dice
pnt_cnt = 0

doi=1, 13
do j =1, 10
call random number (X)
dice(i,j) = int(x*6.0) + 1
if (dice(i,j) == point) pnt cnt = pnt _cnt + 1
end do
end do

! determine payout
select case (pnt_cnt)
case (:10)

payout = 10
case (13,27)

payout = 5
case (26)

payout = 4
case (28)

payout = 6
case (29)

payout = 8
case (30)

payout = 10
case default

payout = 0

131



Chapter 15 » Subprograms

end select

)
H
'—l
rr
o
*
-
—~
~
-
)
L]
-
o
-
~
-
)
%
-
o
-
'—I-
®)
-
~
-
u
b
-
o
-
'—I-
)
-
®

doi=1, 13
write (*,'(8x, a, i2, 2x, a, 10(2x, il),/)',
advance="no") "Roll: ", i, "Dice: ", &
(dice(i,j), 3=1,10)

-]

end do
write (*,'(/,5x%,a,i2)') "Point Count: ", pnt cnt

if (payout > 0) then

write (*,'(5x,a,i2)") &
"Game Result: WIN Payout = ", payout
else
write (*,'(5x,a,i2)"') &
"Game Result: LOSS Payout = ", payout
end if

write (*,'(5x,a,i6)') "Bank:", bank

return
end subroutine twentySix

The spacing and indentation are not required, but help to make the program more readable.

15.84 Test/Debug the Program

For this problem, the testing would involve executing the program using a file with a set of numbers
where the correct results are either known ahead of time or can be calculated by hand in order to verify
that the results are accurate.

15.9 Exercises

Below are some quiz questions and project suggestions based on this chapter.

15.9.1 Quiz Questions

Below are some quiz questions.

1) What are the two types of Fortran subprograms?
2) How many values does a user-defined function typically return?
3) In the function call, ans = power(x, y), what are x and y are called?

4) In the function heading, integer function power(a, b), what are a and b are called?

132



Chapter 15 <« Subprograms

5) In the function, integer function power(a, b), what is the type of the value returned?
6) Is it possible to pass integer arguments to a real function (yes/no)?

7) The subprogram section (where functions and subprograms are defined) is marked by what
keyword?

8) What is the output of the following function:

integer function power(a, b)
integer, intent(in) :: a, b

power = a ** b
return
end function power

a) with the inputofa=2andb = 3?
b) with the input of a=3 and b = 2?

9) Given the following program?

program quiz
implicit none
real :: temp=80.0, templ=50.0, temp2

write (*, '(£5.2, 2x, £5.2)') temp, templ
temp2 = fahrToCelsius(templ)
write (*, '(f5.2, 2x, £5.2)') temp, temp2

contains

real function fahrToCelsius(temp)
real, intent(in) :: temp

fahrToCelsius = (temp — 32.0) / 1.8
return
end function fahrToCelsius

end program quiz

a) What is the name of the function?

b) Is the above program correct (yes/no)?

c) Does the variable temp in the main and the variable temp in the function refer to the same
value?

d) What is the output?

10) What is meant by the term variable scope?

133



Chapter 15 » Subprograms

11) What is the correct intent for the following situations:

a) A variable passed to a function that will not be changed in the function.

b) A variable that will be set in the subroutine and returned. No value is passed in.

c) A variable that will be passed into a subroutine, updated, and returned back to the calling
routine.

12) What is a meant by the term side-effect?

15.9.2 Suggested Projects

Below are some suggested projects.

1)

2)

3)

4)

Type in the dice game program example, compile, and execute the program. Test the program
by playing it for a series of rounds. Ensure the scoring is correct.

Write a main program and an integer Fortran function, gSeries(), to compute the following
geometric series:

g = 2 X" = 1ax+x 453+ o 4xY

The arguments for the call, in order, are as follows: n (integer value). The function should
return an integer result (of the formula based on the n value). The main should call the function
with several different values.

Write a main program and a real function, harmonicMean(), to compute the harmonic mean of
a series of real numbers. The real numbers are pass to the function in an array along with the
count.

N

1 1
—+.t—

X, XN

harmonic mean =
1
—+
X

The arguments for the call, in order, are as follows; array of numbers (with count real values),
count (integer). The function should return a real result (of the formula). The main should call
the function with several different values.

Write a main program and a subroutine, CircleStats(), that, given an array containing a series of
circle diameter's (real values), will compute the area of each circle in a series of circles and
store them into a different array (real values). The subroutine should also compute the real
average of the circle areas. The arguments for the call, in order, are as follows; circle diameter's
array (count real values), circle areas array (count real values), count (integer), areas average
(real). The main program should declare the array and initialize the array with a series of values
for circle areas. The program results should be verified with a calculator.

134



5)

6)

Chapter 15 <« Subprograms

Write a main program and a subroutine, ReadCoord(), to read an (x, y, z) coordinate from the
user. The subroutine must prompt for and read (x, y, z) and ensure that the x, y, and z values are
between 0 and 100 (inclusive). The values may be prompted for and read together, but the
prompt should leave the cursor on the same line. The subroutine should re-prompt for all three
if the input data is not correct. If the user provides valid data, the (x,y, z) values should be
returned with a logical for valid data set to true. If the user does not provide valid data entry
after three tries, the subroutine should display an error message and a set the logical for valid
data to false. The arguments for the call, in order, are as follows; x value (integer), y value
(integer), z value (integer), and valid data flag (logical value). The main program should call
the subroutine three times and display the results for each call.

Write a main program and a subroutine, Stats(), that, given an array containing a series of
numbers (real values), will find and display the following real values; minimum, median,
maximum, sum, and average. The display must use a formatted write(). The real values will
not exceed 100.0 and should display three digits decimal values (i.e., nnn.xxx). The arguments
for the call, in order, are as follows; array of numbers (count real values), count (integer). The
main program should populate the array with random numbers and call the subroutine.

135



Chapter 15 » Subprograms

136



16  Derived Data Types

A derived data type is a user-defined combination of the intrinsic data types. The derived data types
are a convenient way to combine or group variables about a particular item.

For example, a 'student' might include a name, identification number, final score, and grade. Each of
these pieces of information can be represented with individual variables (as outlined in previous
section) as follows:

character(50) :: name
integer :: id
real :: score
character(2) :: grade

However, for multiple students, multiple sets of variables would be required. This can become
cumbersome and confusing.

By using a derived data type, these separate pieces of information can be more easily grouped together.
The details on defining, declaring and using derived data types are provided in the following sections.

16.1 Definition

Before a derived data type can be used, it must be defined. The definition will establish which pieces
of information will be grouped together. Each piece of information included in the definition is
referred to as a component.

type type name
<component definitions>
end type type name

For example, to declare the student type described previously, the following declaration would be
appropriate:
type student
character(50) :: name
integer :: id
real :: score
character(2) :: grade
end type student

The indentation is not required, but does make the definition easier to read. The fields (name, id, score,
grade) are called components. These components together make up the information for a 'student'.

The type definition is required only once at the beginning of the program. Once defined, the type
definition cannot be changed. More specifically, additional components cannot be added unless the
definition is updated and the program is recompiled.

This definition will establish a template as follows:

137



Chapter 16 » Derived Data Types

student name
id

score

grade

Once defined, the template can be used to declare variables. Each variable declared with this definition
will be created based on the definition which includes these four components.

16.2 Declaration

Once a derived data type is defined, variables using that definition can be declared. The general format
for a declaration is as follows:

type (<type_name>) :: <variable name(s)>

For example, to declare two students, the following declaration could be used:
type (student) :: studentl, student2

This declaration will declare two variables, student1 and student2, each with the set of components
defined in the type definition. The definition can be thought of as the cookie cutter and the declaration
is the cookie. Only after a variable has been declared, can values be set for that variable.

16.3 Accessing Components

Once some variables using the derived data type have been declared, the individual components can be
accessed. To access a component of a derived data type, specify the variable name followed by a “%”
(percent sign) followed by the component name. The general format is:

<variable name>%<component_ name>

For example, to set all components for the student student1, the following

studentl%name = "Joseph"
studentl%id = 1234
studentl%score = 99.99
studentl%grade = "A"

Each component for studentl is set individually. Not every component must be set. Of course, as with
other variables, any component that has not been set cannot be used.

138



Chapter 16 <« Derived Data Types

This previous declaration and these assignments will establish a variable as follows:

student name Joseph
id 1234
score 99.99
grade A

It is possible to assign all components to another variable of the same derived data type. For example,
to set student2 to be the same as studentl, an assignment is used as follows:

student2 = studentl

This will copy all components from the variable student1 into the variable student2 (since both
studentl and student2 are of the same derived data type).

16.4 Example One

In this example, we will write a simple program to read two times from the user, time one and time
two, and calculate the sum of the two times. For this example, the time will consist of hour, minutes,
seconds in 24-hour format. For this exercise, the hours may exceed 23 when the times are summed.
The program should declare the appropriate variables using a derived data type, use a subroutine to
read a time (which should be called twice), and another subroutine to calculate the sum of the times.
The subroutine to read the times must perform appropriate error checking. The main should display
both the times and the final time sum.

16.4.1 Understand the Problem

The main is expected to define the appropriate derived data type for time, declare some variables of
that type and call the subroutines. The first subroutine will read a time from the user which will consist
of hour, minutes, and seconds in 24-hour format. This subroutine will be called twice. The second
subroutine will add the times together and provide a result.

The first subroutine to read a time from the user is expected to perform error checking on the data
entered by the user. Specifically, this requires that hours range from 0 to 23, minutes range from 0 to
59, and seconds range from 0 to 59. Values outside these ranges, 60 seconds for example, are not valid.
For this simple example, we will re-prompt for incorrect data entry (until correct data is provided).

The second subroutine will add the two times and must ensure that the correct ranges for seconds and
minutes are maintained. When adding the two times, it is possible to add the seconds, minutes, and
hours. However, if the sum of the two seconds values exceeds 60, the seconds must be adjusted and
the minutes must be updated accordingly (add one extra minute). This applies to the minutes as well.
However, when added in this exercise, the sum of the final time may exceed 23 hours.

For example, given time one as 14 hours, 47 minutes and 22 seconds (i.e., 14:47:22) and time two as 18
hours, 22 minutes, and 50 seconds, (i.e., 18:22:50), the total time would be 33 hours, 10 minutes and 12
seconds (i.e., 33:10:12).

139



Chapter 16 » Derived Data Types

16.4.2 Create the Algorithm

For this example, there are three parts; the main, the read time subroutine, and the time summation
subroutine. The basic steps for the main include:

define derived data type for time
must include = hours, minutes, seconds
declare variables, including = timel, time2, and timesum
display initial header
call subroutine to read timel
call subroutine to read time2
call subroutine to add times
display results

The basic steps for the read time subroutine include:

subroutine header and appropriate declarations
loop
prompt for time
read time (hours, minutes, seconds)
check time entered
- if [ hours(0-23), minutes(0-59), seconds (0-59) ] exit
display error message
end loop

The basic steps for the time summation subroutine include:

subroutine header and appropriate declarations
add the seconds
add the minutes
add the hours
if seconds > 59, then
subtract 60 from seconds
add 1 to minutes
if minutes > 59, then
subtract 60 from minutes
add 1 to hours

For convenience, the steps are written as program comments.

16.4.3 Implement the Program

Based on the algorithm, the below program could be created.

program timeSummation

define derived data type for time (hours, minutes, seconds)

implicit none

type time

140



Chapter 16 <« Derived Data Types

integer :: hours, minutes, seconds
end type time

! declare variables
! includes - timel, time2, and timesum
type(time) :: timel, time2, timesum

! display initial header

write (*,'(/,a,/)') "Time Summation Example Program."
! call subroutine to read each time

call readtime(timel)

call readtime(time2)

! call subroutine to add times
call addtimes(timel, time2, timesum)

! display results

write (*,'(/,a,i2.2,al1,i2.2,al,i2.2)') "Time One: ", &
timel%hours, ":", timel%minutes, ":", timel%seconds

write (*,'(a,i2.2,al,i2.2,al,i2.2)') "Time Two: ", &
time2%hours, ":", time2%minutes, ":", time2%seconds

write (*,'(a,i2.2,al1,i2.2,al1,i2.2,/)') "Time Sum: ", &
timesum%hours, ":", timesum%minutes, ":", &

timesum%seconds
contains

| *dhhkkhhkhhdkhdhkhhdkkhhhkhhhkhhhhhhhkkhhkhhhhhhkkhhhkhhkkkhkkd

! Subroutine to prompt for, read, and check
! a time (hours:minutes:seconds) in 24-hour format.

subroutine readtime ( timeval )
type(time), intent(out) :: timeval

do
! prompt for time
write (*,'(a)',advance="no") &
"Enter time (hh mm ss): "
! read time (hours, minutes, seconds)
read (*,*) timeval%hours, timeval%minutes, &
timeval%seconds

check time entered
if ( timevalshours >= 0 .and.
timevalghours <= 23.and.
timeval%minutes >= 0 .and.
timeval%minutes <= 59 .and.
timeval%seconds >= 0 .and.
timeval%seconds <= 59 ) exit

o I - < I - < -]

141



Chapter 16 » Derived Data Types

! display error message
write (*,'(a,/,a)")
"Error, invalid time entered.", &
"Please re-enter time."

-4

end do

return
end subroutine readtime

*kkkkkkkkkkkkkkhkkkhkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk*
Subroutine to add two times.
Ensures seconds and minutes are within range (0-59)
Hours may exceed 23

! subroutine header and appropriate declarations
subroutine addtimes ( tml, tm2, tmsum )
type(time), intent(in) :: tml, tm2

type(time), intent(out) :: tmsum

! add the seconds, minutes, hours
tmsum%seconds = tml%$seconds + tm2%seconds
tmsum¥minutes = tml%minutes + tm2%minutes
tmsum%hours = tml%hours + tm2%hours

! if seconds > 59, subtract 60 from seconds and add 1 to minutes
if (tmsum%seconds > 59) then
tmsum%seconds = tmsum%seconds - 60
tmsum¥minutes = tmsum%minutes + 1
end if

! if minutes > 59, subtract 60 from minutes and add 1 to hours
if (tmsum%minutes > 59) then
tmsum$minutes = tmsum$minutes - 60
tmsum%hours = tmsum$hours + 1
end if

return
end subroutine addtimes

end program timeSummation

If the program does not work at first, the comments can aid in determining the problem.

16.4.4 Test/Debug the Program

For this problem, the testing would involve executing the program and entering a series of various time
values to ensure that the results are correct. If the program does not work initially, the functionality of
each subroutine should be checked. The times read from the user can be displayed to the screen to

142



Chapter 16 <« Derived Data Types

ensure they are correct. Once the times are correct, the add times subroutine can be checked. Each of
the time sums can be displayed to help determine where the error might be.

16.5 Arrays of Derived Data

In addition to declaring single variables based on the derived data type definition, it is possible to
declare an array based on the derived data type definition. For example, to declare an array named
class to hold 30 elements of type student, the following declaration can be used:

type(student), dimension(30) :: class

Each element of the array class will be of the type student and include each of the defined components
(name, id, score, grade in this example). For an array of type(student), the layout would be as follows:

class(1) name
id

score

grade

class(2) name
id

score

grade

class(3) name
id

score

grade

To access elements in the array, an index must be used. After the index, the desired component would
be specified. For example, to set values for the third student, the following statements could be used.

class(3)%name = "Fred"
class(3)%id = 4321
class(3)%score 75.75
class(3)%grade = "C"

As with any array, the index can be an integer variable.

As with single variables, it is possible to assign all components of an array element to another array
element, or another variable of the same derived data type. The following declarations and code could
be used to swap the location of the fifth student and the eleventh student.

type student
character(50) :: name

143



Chapter 16 » Derived Data Types

integer :: id

real :: score

character(1l) :: grade
end type student

type(student), dimension(30) :: class
type(student) :: temp

temp = class(5)
class(5) = class(1l1)
class(11l) = temp

This code fragment will copy all components from the fifth array element (of type student) into a
temporary variable (also of type student). Then, the eleventh array element can be copied into the fifth
array element (thus overwriting all previous values). And, finally, the eleventh array element can be set
to the original values from the fifth array element, which are held in the temporary variable.

16.6 Example Two

In this example, we will write a simple program to perform some processing for students. The student
information will be stored in an array of derived data types. There will be no more than 50 students per
class. The main will call a subroutine to read student information (name and score) and another
subroutine to set the student grades. Finally, the main will call a function to calculate the class average.
The main will display the average. Routines for displaying the students are left as an exercise.

16.6.1 Understand the Problem

The main is expected to define the appropriate derived data type for student, declare some variables of
that type and call the subroutines. The first subroutine will read student information, including a name
(up to 60 characters) and score from the user. Names and scores should continue to be read until a
blank name is entered. The score value must be between 0.0 and 100.0 (inclusive). For this simple
example, we will re-prompt for incorrect data entry (until correct data is provided). The routine must
return the count of students entered. The second subroutine sets the grades based on the following
standard scale.

A B C D F

A>=90 80 -89 70-79 60 - 69 <=59

When determining the final grade, the program should round up when appropriate. The main will call
a function to calculate and return the average of the scores. Additionally, the main will display the final
average.

16.6.2 Create the Algorithm

For this example main, part for the main includes a declaration, display header, call read time
subroutine, and the call the time summation subroutine. The basic steps for the main include:

144



Chapter 16 <« Derived Data Types

define derived data type for student

must include = name, id, grade
declare variables

includes = array for up to 50 students
display initial header
call subroutine to read student information
call subroutine to set grades
use function to calculate average of scores
display average

The basic steps for the read student information subroutine include:

! subroutine header and appropriate declarations
! loop

! prompt for student name
! read name

! if name is empty, exit loop
! loop

! prompt for student score
! read score
! check score entered

! if [score is between 0.0 and 100.0, inclusive] exit
! display error message

! end loop

! update count of students

! place values in student array

! end loop

The basic steps for the set grades subroutine include:

! subroutine header and appropriate declarations

! loop

! read score / set grade

! =290 - A; 80 - 89 » B; 70 — 79 =» C; 60 — 69 = D; < 59 = F
! end loop

When determining the final grade, the nearest integer intrinsic function, nint(), can be used to perform
the appropriate rounding.

The basic steps for the calculate average score function include:

function header and appropriate declarations
loop
sum scores
end loop
calculate and return average

For convenience, the steps are written as program comments.

16.6.3 Implement the Program

Based on the algorithm, the below program could be created.

145



Chapter 16 » Derived Data Types

program classScores
! define data type for student, includes = name, id, grade

implicit none

type student
character(60) :: name
real :: score
character(1l) :: grade

end type

! declare variables, including = array for up to 50 students
type(student), dimension(50) :: class

integer :: count

real :: average

! display initial header
write (*,'(/,a,/)') "Student Information Example Program."

! call subroutine to read student information
call readStudents (class, count)

! call subroutine to set grades
call setStudentGrades (class, count)

! use function to calculate average of scores
average = classAverage (class, count)

! display average
write (*,'(/,a, £5.1)') "Final Class Average: ", averadge

contains

hkhkkkdkkhkkhkkhkkhhkkhkhhhhhhhrhhrhdhddhkdhkhkkhkkhkhkhhkhhkhkhkhhhhhhhdix

!

! Subroutine to read student information (name and score).
! A blank name will stop input

! The score must be between 0.0 and 100.0 (inclusive)

subroutine readStudents (class, count)
type(student), dimension(50), intent(out) :: class
integer, intent(out) :: count = 0

character(60) :: tempname

real :: tempscore

do

prompt for student name and read name
write (*,'(a)',advance="no") "Enter Student Name: "
read (*,'(a60)') tempname

if name is empty, exit loop
if ( len_trim(tempname) == 0 ) exit

146



Chapter 16 <« Derived Data Types

do

prompt for student score and read score

write (*,'(a)',advance="no") &
"Enter Student Score: "

read (*,*) tempscore

! check score entered
if ( tempscore >= 0.0 .and. &
tempscore <= 100.0 ) exit

display error message

write (*,'(a,/,a)") &
"Error, invalid score.", &
"Please re-enter time."

end do

! update count of students and place in student array
count = count + 1
class(count)%name = tempname
class(count)%$score = tempscore

end do

return
end subroutine readStudents

kR kR kR R ok ok o R o R o R o R R R o kR R R R o o o o o

]
! Subroutine to set student grades.
! =290 » A; 80 - 89 - B; 70 — 79 - C; 60 - 69 » D; = 59 » F

subroutine setStudentGrades (class, count)
type(student), dimension(50), intent(inout) :: class
integer, intent(in) :: count

integer :: i

! check each score / set each grade
do i = 1, count
select case ( nint(class(i)%score) )
case (90:)
class(i)%grade
case (80:89)
class(i)%grade = "B"
case (70:79)
class(i)%grade = "C"
case (60:69)

llAll

class(i)%grade = "D"
case (:59)
class(i)%grade = "F"
end select
end do

147



Chapter 16 » Derived Data Types

return
end subroutine setStudentGrades

| *dhhkkhhkhhdkhdhkhhdkkhhhkhhhkhhhhhhhkkhhkhhhhhhkkhhhkhhkkkhkkd

! Function to calculate average score.

real function classAverage (class, count)
type(student), dimension(50), intent(in) :: class
integer, intent(in) :: count

integer :: i

real :: sum = 0.0

! sum scores
do i =1, count
sum = sum + class(i)%score
end do

! calculate and return average
classaverage = sum / real(count)

return
end function classAverage

end program classScores

If the program does not work at first, the comments can aid in determining the problem.

16.6.4 Test/Debug the Program

For this problem, the testing would involve executing the program and entering a series of student data
values to ensure that the results are correct. If the program does not provide the correct results, each of
the subroutines and the function results should be verified individually. Each can be checked by
displaying the intermediate results to the screen. In this manner, the subroutine or function that is not
working correctly can be quickly identified. Once identified, some additional write statements inside
the subprogram can be used to help identify the specific problem. The testing and debugging process is
left to the reader as an exercise.

16.7 Exercises

Below are some quiz questions and project suggestions based on this chapter.

16.7.1 Quiz Questions

Below are some quiz questions.

1) Anitem in a derived data type is called?

2) How are components of a derived data type accessed?

148



Chapter 16 <« Derived Data Types

3) Define a derived data type, circle, to store information about a circle. Must include a circle
name (max 20 characters), size (radius — a real value) and the position in 3-dimensional space
(x,y,and z — all integer values).

4) Write the declaration necessary to declare two variables named ring1 and ring2 of type circle
(from previous question).

5) Define a user-defined type, planet, to store information for a planet. Include a name (15
characters), radius (real value), area (real value), and volume (real value). Additionally, write
the declaration necessary to declare two variables named earth and mars of type planet.

6) Define a user-defined type named date for processing dates consisting of a month name (10
characters), month (integer), date of month (integer), and year (integer).

7) Based on the previous question
a) Write the statements to declare a variable named today and set it to 12/25/2013.
b) Write the statements to declare a variable named newyear and set it to January 1, 2011.

16.7.2 Suggested Projects
Below are some suggested projects.

1) Type in the time summation program, compile and execute the program. Test on several sets of
input including the example in the explanation.

2) Write a Fortran program to read and display information about a set of planetary bodies. The
program should read the information from a file, allow the user to select a display option, and
call the appropriate routine to display that information.

The main program should call a series of subroutines as follows:

e Subroutine readPlanets() to prompt for a file name of the planets file, open the file
(including error checking), and read the file into an array. Three errors are allowed, but
if a fourth error is made, the routine should terminate the program.

e Subroutine calcPlanetArea() to calculate the planet area based on the diameters.
e Function getUserOption() to display a list of options, read the selection option.

e Subroutine displayPlanetMinMax() to display the minimum and maximum based on an
option as follows:

= Option (1) — Smallest and Largest Planets (based on area)
= Option (2) —» Coldest and Hottest Planets (based on average temperature)
= Option (3) — Planets with Shortest and Longest Days (based on day length)

e Subroutine printPlanetsSummary() to display the planet name, distance from sun, and
planet size.

149



Chapter 16 » Derived Data Types

3)

4)

5)

6)

The output should be formatted as appropriate. Test on several sets of input values and verify
that the output is correct for the given input values.

Modify the planet program (from previous question) to sort the planets based on the radius. Test
on several sets of input values and verify that the output is correct for the given input values.

Type in the time class scores program, compile and execute the program. Test on several sets of
input values.

Modify the class scores program to assign grades based on the following scale:

F D C- C C+ B- B B+ A- A A+
0-59 | 60-70 | 70-72 | 73-76 | 77-79 | 80-82 | 83-86 | 87-89 | 90-92 | 93-96 | 97-100

Test on several sets of input values and verify that the output is correct for the given input.

Modify the class scores program to read the name and score file. The program should include
prompting for a file, opening the file, and reading the file contents into the class array. In order
to complete this exercise, create a file containing some random names and scores. Test on
several sets of input values.

150



17 Modules

For larger programs, using a single source file for the entire program becomes more difficult.
Fortunately, large programs can be split into multiple source files, each file can contain a subset of
subroutines and/or functions. There must be a main or primary source file that includes the main
program. The secondary file or files is referred to as a module or modules. Additionally, the modules
can then be more easily used in other, different programs ensuring that the code can be easily re-used.
This saves time and money by not re-writing routines. This section provides a description of the
formatting requirements and an example of how to set-up the modules.

17.1 Module Declaration
The secondary source file or module must be formatted in a specific manner as follows:

module <name>
<declarations>
contains
<subroutine and/or function definitions>

end module <name>

For example, to declare a module named stats that includes a function to find the average of the
numbers in an array, the following module declaration might be used.

module stats
! note, no global variables used in this module

contains

kR R R R ok ko ko kR ok R R o R R o R o kR kR R R R R kR kR R o o o o o

|
! Simple function to find average of len values in an array.
real function average(array, len)
real, intent(in), dimension(1000) :: array
integer, intent(in) :: len
integer :: i

real :: sum = 0.0

do i =1, 1len
sum = sum + array(i)
end do
average = sum / real(len)
end function average
end module stats

This example assumes the real array contains len number of values up to a maximum of 1000 values.

151



Chapter 17 » Modules

17.2 Use Statement

Once the module is defined, the routines from the module can be included by using the use statement.
The use statement or statements must be at the beginning of the applicable source file. For example,
below is a simple main that uses the previous stats module.

program average
use stats

implicit none

real, dimension(1000) :: arr
integer :: i, count

real :: ave

! 1Initialize array with some values.

count = 0

doi=1, 20
arr(i) = real(i) + 10.0
count = count + 1

end do

! Call function to find average and display result.
ave = arraverage(arr, count)
write (*, '(/, a, £10.2, /)') "Average = ", ave

end program average

The use statement is included before the variable declarations. Any number of use statements for
defined modules may be included.

17.3 Updated Compilation Commands

For a large program that is split between multiple source files, the compilation process must be
updated. The compilation process refers to the steps required to compile the program into a final
executable file. Each module unit must be compiled independently. This allows the programmer to
focus on one module, or set of routines, at a time. Further, for very large projects, multiple
programmers can work on separate modules simultaneously.

The initial step is to compile each module. Assuming the module from the earlier section is named
stats.f95, the command to compile a module is:

gfortran -c stats.£95

which will read the source file (stats.£95) and create two new files: an object file stats.o and a
module file stats.mod. The name of the object file is based on the name of the source file. The

152



Chapter 17 <« Modules

name of the module file is based on the module name. While they are the same name in this example,
that is not a requirement.

The compile command is required for each module.

Once all the modules are compiled and the .o and .mod files are available, the main file can be
compiled. This step reads the .o and .mod files for each module and builds the final executable file.
For example, the command to compile the main file for the previous array average example is:

gfortran -o main main.f95 stats.o

For multiple modules, each of the .o files would be listed. In this example, the stats.mod file is read
by the gfortran compiler. While not explicitly listed, the .mod files are required and used at this
step.

17.4 Module Example Program

The following is an example program to compute the surface area and volume of a sphere. This is a
fairly straightforward problem focusing more on the creation and use of a module for some routines.

17.4.1 Understand the Problem

This problem will be divided into two parts, the main program source file and a secondary source file
containing the subroutines and functions. While this problem is not large enough to require splitting
into multiple files, it is split to provide an example of how to use modules.

The formulas for the surface area and volume of a sphere are as follows:

o 2
surfaceArea = 4.0 * m * radius

volume = A0 *m * radius’
3.0

The value of m will be defined as a constant and set to 3.14159.

For this example, the main program will display some initial headers and read the radius from the user.
Once the radius is read, the main program will call functions for the surface area and the volume, and a
subroutine to display the results.

17.4.2 Create the Algorithm

Based on the problem definition, the steps for the main are:
! display header and read radius

! call functions for sphere volume and surface area
! call routine to display formatted results

The module will contain the functions and subroutine. The first function will compute the sphere
volume. The single step is:

153



Chapter 17 » Modules

! compute the volume of a sphere with given radius.
! sphere volume = [ (4.0 * pi) / 3.0 ] * radius”"3

The second function will compute the sphere surface area. The single step is:

! compute the volume of a sphere with given radius
! sphere volume = 4.0 * pi * radius”2

The subroutine will display the formatted results.

17.4.3 Implement the Program

The program is presented in two parts corresponding to the main program and the secondary module
routines. While this example is not really long or complex enough to require multiple files, the
program is split in order to provide an example using a separate module file.

17.4.3.1 Main Program

Based on the algorithm, the below program could be created.

program sphere
use sphereRoutines

implicit none
real :: radius, spVolume, spSurfaceArea
! Display header and read radius

write (*,'(a/)') "Sphere Example Program"
write (*,'(a)', advance="no") "Radius: "

read (*,*) radius

! Call functions for sphere volume and surface area
spVolume = sphereVolume(radius)
spSurfaceArea = sphereSurfaceArea(radius)

! Call routine to display formatted results.
call displayResults(radius, spVolume, spSurfaceArea)

end program sphere

The name of the module, sphereRoutines in this example, must be the name of the secondary
source file.

154



Chapter 17 <« Modules

17.4.3.2 Module Routines

Based on the algorithms for the two functions and subroutine, the below module program could be
developed. In this example, the declaration for m is defined as a global variable. This shares the
variable between all the subroutines and functions in the module. Use of global variables is typically
limited. This provides an example of an appropriate use of a global variable.

! Example secondary source file.

module sphereRoutines
implicit none ! needed in every module

! Global declarations, if any, go here.

real, parameter :: pi = 3.14159

| d*hkdhkhkhhkkkhkhhhhhhhhhhhhhhkhkhdkhkhkkhkhkhhhhhhhhhhhhkhkkdkkkkkkhrk

! Subroutines and functions are included after
! the 'contains'.

contains

*hkkkkkkkkkkkhkkkhkhkkhkhkhkhhkhkhkhkhkhkkhkkhkkhkkhkkkkkkkkkkkhkkhkhkkhkkkkkkxk*x

!
! Compute the volume of a sphere with given radius.
! sphere volume = [ (4.0 * pi) / 3.0 ] * radius”"3

real function spherevolume (radius)
real, intent(in) :: radius

sphereVolume = ( ( 4.0 * pi ) / 3.0 ) * radius ** 3

return
end function spherevVolume

*hkkkkkkkkkkkhkkkhkhkkhkhkhkhhkhhkhkhkhkkhkkhkkhkkhkkkkkkkkkkkhkkkhkkkhkkkkkkk*x

!
! Compute the volume of a sphere with given radius.
! sphere volume = 4.0 * pi * radius”2

real function sphereSurfaceArea (radius)
real, intent(in) :: radius

sphereSurfaceArea = 4.0 * pi * radius ** 2

return
end function sphereSurfaceArea

*hkkkkkkkkkkkhkkkhkhkkhkhkhkhhkhhkhkhkhkkhkkhkkhkkhkkkkkkkkkkkhkkkhkkkhkkkkkkk*x

!
! Simple routine to display results.

subroutine displayResults(rad, vol, area)
real, intent(in) :: rad, vol, area

155



Chapter 17 » Modules

write (*,'(/, @)') "= "

write (*, '(a)' ) "Results:"

write (*,'(3x, a, £10.2)') "Sphere Radius = ", rad

write (*,'(3x, a, £10.2)') "Sphere Volume = ", vol

write (*,'(3x, a, £10.2, /)') &
"Sphere Surface Area = ", area

return

end subroutine displayResults

! *kkkkkkkkkkkkkkhkkkhkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk*k
end module sphereRoutines

In a more complex program, multiple module files might be used. The grouping should be based on
the logical relationship of the routines. A more complicated program would require a more
comprehensive design effort.

17.4.4 Compile the Program

The commands to compile the module file and then the main file are as follows:

gfortran -c sphereroutines.f95
gfortran -o modmain modmain.f95 sphereroutine.o

The first will create files sphereroutines.o and sphereroutines.mod. The second will read the
files modmain.£95 and sphereroutines.o then create the executable modmain.exe file.

17.4.5 Test/Debug the Program

For this problem, testing would involve executing the program and entering a series of radius values
and to ensure that the results are correct. If the program does not provide the correct results, each of
the functions and the subroutines could be verified individually. Each can be checked by displaying the
intermediate results to the screen. In this manner, the subroutine or function that is not working
correctly can be quickly identified. Once identified, some additional write statements inside the
subprogram can be used to help identify the specific problem.

17.5 Exercises

Below are some quiz questions and project suggestions based on this chapter.

17.5.1 Quiz Questions

Below are some quiz questions.
1) What is the primary purpose of using a module?

2) In the main program, what statement is used to include the modules?

156



Chapter 17 <« Modules

3) In the secondary source file, what statements is used to define and name the module?
4) How many main programs are allowed?
5) How many modules are allowed?

6) Isthe contains key word needed in a module file (yes or no)?

17.5.2 Suggested Projects
Below are some suggested projects.

1) Type in the array average main program and the array average module, compile and execute the
program. Test on several sets of input including the example in the explanation.

2) Type in the sphere volume and surface area main program and the sphere volume and surface
area module, compile and execute the program. Test on several sets of input including the
example in the explanation.

3) Update the planets program from the previous chapter, problem #2, and break the program into
a main file and a module file for the functions and subroutines.

157



Chapter 17 » Modules

158



18 Recursion

The Google search result for recursion, shows Recursion, did you mean recursion?

Recursion is a powerful general-purpose programming technique and is used for some important
applications including search and sorting methods. Recursion is the idea that a function may call itself
(which is the basis for the joke).

Recursion can be very confusing in its simplicity and power. The examples in this section will not be
enough in themselves for the reader to obtain recursive enlightenment. The goal of this section is to
provide an introduction to the concept on recursion. The simple examples here, which are used
introduce recursion, are meant to help demonstrate the form and structure for recursion. More complex
examples (than will be discussed here) should be studied and implemented in order to ensure a
complete appreciation for the power of recursion.

The calling process previously described supports recursion without any changes.

A recursive routine must have a recursive definition that includes:
1. base case, or cases, that provide a simple result (that defines when the recursion should stop).
2. rule, or set of rules, that reduce toward the base case.

This recursive definition is referred to as a recursive relation.

18.1 Recursive Subroutines

A recursive subroutine declaration must be preceded by the keyword recursive. For example:

recursive subroutine <name> ( <arguments> )
<declarations>

<body of subroutine>

return
end subroutine <name>

Based on this declaration the subroutine can call itself. The routine must ensure that it eventually stops
calling itself. Arguments are passed in the standard way.

The calling routine does not need any special declarations in order to call a recursive routine.

159



Chapter 18 » Recursion

18.2 Recursive Print Binary Example

This section provides an example recursive subroutine to accept a decimal number and print that
number in binary (i.e., using 1's and 0").

It is assumed the reader has a basic understanding of binary'* representation. This information is
summarized in the chapter on Computer Organization. Additionally, there are many references
available on the Internet.

18.2.1 Understand the Problem

For this example, the problem is divided into two parts, the main program and the recursive subroutine.
The main program will handle the prompting and reading of the decimal number including error
checking and re-prompting as needed. The recursive subroutine will display the binary value. Since
the error checking is already performed, the recursive subroutine will assume valid input. For more
complex examples, the routine may need to perform basic error checking.

18.2.2 Create the Algorithm

One basic algorithm to convert a decimal number into a binary number, is successive integer division
by 2. For example, given the number 13, 13 divided by 2 is 6 with a remainder of 1. Next, the 6 is
divided by 2 giving 3 with a remainder of 0. Again, the 3 is divided by 2 providing a 1 with a
remainder of 1. The final 1 is divided by 2 resulting in a 0 with a remainder of 1. With a final result of
0, the algorithm is completed. The process is shown as follows:

12—3 = 6 remainder 1
6 .
> =3 remainder 0
3 _ .
E =1 remainder 1
1 .
5 =0 remainder 1

The remainders, always 0 or 1, represent the binary value. However, the resulting remainders are
generated in backwards order. As such, the resulting remainders 1, 0, 1, and 1 in this example must be
reversed for a final value of 1101, (as noted in chapter 2).

This process can be converted into a recursive relation as follows:

ifn<1 n
printBinary(n) = [if n>1 printBinary (n/ 2)
output mod(num, 2)

14 For more information regarding binary representation, refer to: http://en.wikipedia.org/wiki/Binary_number

160



Chapter 18 <« Recursion

This definition assumes that the value of n is positive. The recursive relation can be used by directly
converting the algorithm into code.

18.2.3 Implement the Program

Based on the recursive definition, a simple recursive subroutine can be created. In order to demonstrate
the recursive subroutine, a main program is provided that will read a decimal value from user and
ensure it is between 0 and 1,000,000, and then call the recursive routine.

! Simple recursive program to print a decimal number in binary

program binary
implicit none
integer :: decimalNumber

write (*,'(a/)') "Decimal to Binary Conversion Example"

do
write (*,'(a)', advance="no") &
"Enter Decimal Number (0 - 1,000,000): "
read (*,*) decimalNumber
if (decimalNumber >= 0 .and. &
decimalNumber <= 1000000) exit
write (*,'(a)') "Brror, decimal value out of range."
write (*,'(a)') "Please re-enter."
end do
write (*,'(/a, i7, a)', advance="no") &

"The decimal value of ", decimalNumber, " is "

call printBinary(decimalNumber)
write (*,'(/)")

contains

hkhkkkkkhkkhkhkhkhkhhhhhhhhdhrdhrdhkhhhdkhkdkhkhkkhkkhhkhhkhhhkhkhdhdrdhdhddkdkdkdxdd

]
! Print binary subroutine.

recursive subroutine printBinary(num)
integer, intent(in) :: num

if (num > 1) call printBinary(num/2)
write (*,'(il)', advance="no") mod(num,2)

return
end subroutine printBinary

| *khkhkdhhkhkhhkhhhkhkhkhkhkhkhhkhkhhkkhkhkhkhhkhkhkhhkhkhhkhkhkkkkhkkkhkkhkkkhkkkkkkkk*x

end program binary

161



Chapter 18 » Recursion

The spacing and indentation are not required, but help to make the program more readable. The main
program ensures that the recursive routine is not called in invalid values (i.e., values < 0).

18.2.4 Test/Debug the Program

For this problem, the testing would involve executing the program and entering a series of decimal
values and ensure that the results are correct. The Windows calculator provides simple convert-to-
binary function that can be used for verification.

If the program does not provide the correct results, the input to the recursive subroutine should be
verified (via write statements). Next, some additional write statements in the recursive subroutine can
be added to provide insight into what is being done for each call.

18.3 Recursive Functions

A recursive function declaration must be preceded by the keyword recursive. In addition, the keyword
result must be explicitly added to the function declaration. The result keyword is used to specify a
single variable for the return value. Similar to a standard function, the result variable must be set to a
return value to the calling routine.

The function type specifies the type of the result variable. For example:

<type> recursive function <name> (<arg's>) result (<variable>)
<declarations>

<body of function>
<variable> = expression

return
end function <name>

The main does not need any special declarations.

18.4 Recursive Factorial Example

This section provides an example recursive function to compute the mathematical factorial"® function.
It is assumed the reader is familiar with the factorial function.

18.4.1 Understand the Problem

The factorial function is mathematically defined as follows:

n! = ﬁk
k=1

Or more familiarly, you might see 5! as:
nl = 5X4X3X2X1
For this example, the problem is divided into two parts, the main program and the recursive function.

15 For more information regarding factorial, refer to: http://en.wikipedia.org/wiki/Factorial

162



Chapter 18 <« Recursion

The main program will handle the prompting and reading of the n value. This will include error
checking and re-prompting as needed. The recursive function will compute and return the factorial
value. Since the error checking is performed, the recursive function will assume valid input.

For more complex examples, the function itself may need to perform the error checking. As such, a
simple helper function could be used to verify the input value or values before calling the recursive
function.

18.4.2 Create the Algorithm

A typical recursive relation for factorial is as follows:

1 ifn=0

actorial| n) =
f fal(n) n X factorial(n—1)  ifn>1

This definition assumes that the value of n is positive.

It must be noted that this function could easily be computed with a loop. However, the reason this is
done recursively is to provide a simple example of how a recursive function is developed using a
familiar mathematical function.

18.4.3 Implement the Program

Based on the recursive definition, a simple recursive function can be created. In order to demonstrate
the recursive function, a main program is provided that will read the decimal value from user and
ensure it is between 1 and 15, and then call the recursive routine.

The recursive function declaration uses an input argument, n, and a result argument, ans, in this
example. The input argument must be declared as intent(in) in the standard manner. However, the
result argument is an out by definition and will assume the type of the function itself, integer in this
example.

For the recursive factorial function, the basic algorithm is provided as part of the recursive definition.
The example main will read the n value from the user, call the factorial function, and display the
results.

! Simple recursive function example.

program recursionExample
implicit none
integer :: num, numFact
write (*,'(a/)') "Recursion Example"

do
write (*,'(a)', advance="no") "Enter N (1-15): "
read (*,*) num
if (num >= 1 .and. num <= 15) exit
write (*,'(a)') "Brror, N out of range."
write (*,'(a)') "Please re-enter."
end do

numFact = fact(num)

163



Chapter 18 » Recursion
write (*,'(a, i2, a, il0,/)') "Factorial of ", num, &
" is ", numFact
contains

! khkkkkkkhkkkkhkkhkkkhhkkkhkkhkkkhkkhhhkhhhkhkhkkkkhkkhhkhkhkhhkkhkkhkhkhkkkkkhkkkkkkkkkkk
! Factorial function

integer recursive function fact(n) result (ans)
implicit none
integer, intent(in) :: n

if (n == 1) then

ans = 1
else

ans = n * fact(n-1)
end if
return

end function fact

I *hkdkhkdkhkkhkkkhdkhhddddhdhhhhkhhkkhkhkhkhdhhhddrdhkhhdkhkkhkdkkhdhrhdhhdd
end program recursionExample

The spacing and indentation are not required, but help to make the program more readable. The main
program ensures that the recursive routine is not called in invalid values (i.e., values < 0).

18.4.4 Test/Debug the Program

For this problem, the testing would involve executing the program, entering a number, and ensuring
that the result is correct. The Windows calculator includes a factorial function which can be used to
verify the result.

If the program does not provide the correct result, the input to the recursive function should be verified
(via write statements). Next, some additional write statements in the recursive function can be added to
provide insight into what is being done for each call.

164



Chapter 18 <« Recursion

18.5 Recursive Factorial Function Call Tree

In order to better understand recursion, a recursion tree can help show how the recursive calls interact.

Illustration 3: Factorial Recursion Tree

When the initial call to factorial function occurs from main, the main will start into the fact() function
(shown as step 1). Since the argument of 5 is not a base case, the fact() function must call fact() again
with the argument of n-1 or 4 in this example (step 2). And, again, since 4 is not the base case, the
fact() function must call fact() again with the argument of n-1 or 3 in this example (step 3).

This process continues until the argument passed into the fact() function meets the base case which is
when the arguments is equal to 1 (shown as step 5). When this occurs, only then is a return value
provided to the previous call (step 6). This return argument is then used to calculate the previous
multiplication which is 2 times 1 which will return a value to the previous call (as shown in step 7).
This process will continue (steps 8, 9, and 10) until the main has a final answer.

Since the code being executed is the same, each instance of the fact() function is different from any
other instance only in the arguments and any local values (none in this example).

165



Chapter 18 » Recursion

It should also be noted that the height of the recursion tree is directly associated with the amount of
memory used by the recursive function. For problems where the recursion tree is very large, this can
have a negative impact on overall performance of a recursive routine.

18.6 Exercises

Below are some quiz questions and project suggestions based on this chapter.

18.6.1 Quiz Questions
Below are some quiz questions.
1) What are the two requirements for a recursive definition?
2) Inrecursion, the case for which a solution is obtained directly is called what?
3) What keyword is required for a recursive subroutine?
4) What two keywords are required for a recursive function?

5) What special requirements are required of the calling routine in order to call a recursive
subroutine or recursive function?

6) For a recursive routine, what would happen if the routine does not stop recursing?

7) Create a recursion tree for the recursive Fibonnaci function (as described in the following
suggested projects section) with the input of 13. Note, the recursive Fibonnaci function requires
two recursive calls for the non-base case step.

18.6.2 Suggested Projects
Below are some suggested projects.

1) Type in the print binary main program and recursive subroutine. Test on several data sets and
verify that the program produces the correct results.

2) Type in the factorial main program and recursive function. Test on several data sets and verify
that the program produces the correct results.

3) The recursive definition of Fibonnaci function is as follows:

1 ifn=0
fib(n) = |1 ifn=1
fib(n—1)+fib(n—2)  ifn>2

Create a main program to read the n value from the user and ensure it is between 1 and 40.
Develop recursive function, fib, to recursively compute the Fibonnaci number based on the
provided definition. Note, the recursive Fibonnaci function requires two recursive calls for the
non-base case step.

166



4)

5)

Chapter 18 <« Recursion

Develop a recursive subroutine to recursively print a star tree. Based on an initial value, n, the
star tree should be displayed. For example, for an n value of 5, the program should output
something similar to the following:

Recursive Subroutine Program
Enter Number of Stars: 5

Star Tree:

* % X F %
* % ¥ F
* % *

* %

Create a main program to read the n value from the user and ensure it is between 1 and 50.
Develop recursive subroutine, printStars(), to recursively print the start tree as shown. The
subroutine should print one line per call. For successive recursive calls, the n value passed as
an argument should be decremented. The based case would be one (1) star.

Write a program using a recursive function to determine the number of possible paths through a
two-dimensional grid. The only allowed moves are one step to the right or one step down. For
example, given a grid as follows:

0 1 2
0 | start
1
2
3 end

Moving from the starting location, (0,0) in this example, going to the end location, (3,2) in this
example, can be performed in 10 different ways. Two, of the ten, different ways are shown in
the example above. The function must be recursive.

Create a main program to read the initial grid coordinates and ensure that they are valid
(positive values) and that the end coordinates are greater than the start coordinates. Create a
recursive function, countPaths(), to determine the number of possible paths through a two-
dimensional grid. The function will accept a start coordinate (row,col) and a final end
coordinate (row,col).

167



Chapter 18 » Recursion

6) The Tower of Hanoi is a mathematical puzzle that consists of three pegs, and a number of disks
of different sizes which can slide onto any peg. The puzzle starts with the disks neatly stacked
in order of size on one peg, the smallest at the top, thus making a conical shape.

The objective of the puzzle is to move the entire stack
to another peg, obeying the following rules:

o Only one disk may be moved at a time.

o Each move consists of taking the upper disk from
one of the pegs and sliding it onto another peg, on
top of the other disks that may already be present
on that peg.

o No disk may be placed on top of a smaller disk.

The following is a recursive definition for the problem:

write( move the disc from from to to) ifn=1

hanoi(n, from, to, by) = hanoi(n—1, from, by, to) ifn>1
hanoi (1, from, to, by)
hanoi (n—l, by, to, from)

Create a main program to read and validate the number of disks, n, from the user and ensure it
is between 1 and 10. Develop recursive function, hanoi, to recursively compute a solution to
the Tower of Hanoi problem.

168



19 Character String | Numeric Conversions

Characters string values, such as “123” cannot be used to perform numeric operations such as addition
or multiplication. As such, for more complex programs, there is sometimes the need to convert
between a character string representing a numeric value and an actual real or integer number.

These conversions can be performed using what is referred to as an internal read or an internal write.
Basically, the read or write functions and associated format statements can be used to perform basic
conversions. Instead of reading from an open file, the read and write operations can read and write
directly from and to variables. The specified format provides guidance for the conversion result.

Based on the input, a conversion may not be possible. For example, the character string “3.14” can be
converted into the real value of 3.14. However, the character string “3.1z4” could not be converted
since the 'z' is not a legal numeric value.

If a conversion is not possible, an error would be generated. If not handled, such an error would crash
the program. In order to address and handle any potential errors, the iostat parameter for the read/write
operation is used as previously described in the file operations chapter.

19.1 Character String to Numeric Conversion

A character string can be converted into an integer or real value using an internal read operation. The
string is provided as the input instead of a file unit number. The numeric variable is provided as the
location for the result of the read operation. The format will provide guidance for the conversion.

The following is a simple example that will declare two strings and convert the first into an integer
value and the second into a real value. Additionally, a third string conversion is perform on an invalid
numeric string (to better show the error handling).

Example program to use an internal read for
character / numeric conversion.

program cvtExample 1

implicit none

integer :: cvtErr

character(4) :: iString "1234"
character(7) :: rString = "3.14159"
character(7) :: badString = "3.14259"
integer :: iNuml, iNum2

real :: pi, tau

write (*,'(a, /)') "Example Conversion Program."

169



Chapter 19 » Character String / Numeric Conversions

Convert string to an integer value.

read (iString, '(il0)', iostat=cvtErr) iNuml

if (cvtErr == 0 ) then
iNum2 = iNuml * 2
write (*,'(a, i5, /, a, i5, /)"') &
"numl = ", iNuml, "num2 = ", iNum2
else

write (*,'(a, /)"')

"Error, invalid integer string."
end if

read (rString, '(£17.6)', iostat=cvtErr) pi

if (cvtErr == 0 ) then
tau = pi * 2.0
write (*,'(a, £5.3, /, a, £5.3, /)"')

"pi =", pi, "tau = ", tau
else

write (*,'(a, /)")

"Error, invalid real string."
end if

read (badString, '(f12.4)', iostat=cvtErr) pi

if (cvtErr == 0 ) then
tau = pi * 2.0
write (*,'(a, £5.3, /, a, £6.3)"'")

"pi =", pi, "tau = ", tau
else

write (*,'(a, /)"')

"Error, invalid real string."
end if

end program cvtExamplel

The specific formats used on the read operations in the example are wider or larger than the expected
number (which is allowed). Should a smaller format be used, it would either truncate the value or

possibly generate a conversion error. To ensure appropriate conversion, the final values should be
verified against the expected result.
An example of the output for this program is as follows:

Example Conversion Program.

numl
num2

1234
2468

170



pi

Chapter 19 <« Character String / Numeric Conversions

= 3.142

tau = 6.283

Error, invalid real string.

The multiplication by 2 for each of the numeric values was performed only as an example since
multiplication can only be performed on numeric data types (i.e., integer, real, or complex).

19.2 Numeric to Character String Conversion

An integer or real value can be converted into a character string using a write operation. The string is
provided as the output variable instead of a file unit number. The numeric variable is provided as the

input for the write operation.

The following is a simple example that will convert an integer into a string and a real into a string.
Some numeric operations are performed on the numeric values and then the resulting strings are
concatenated with another string. Concatenation can only be performed on character data types.

! Example program to use an internal write for
! character / numeric conversion.

program cvtExample2

implicit none

integer :: cvtErr

character(50) :: strl, str2, msgl, msg2
integer :: iNum=2468

real :: pi = 3.14, tau

write (*,'(a, /)') "Example Conversion Program."

Convert integer value to a string.

iNum = iNum / 100
write (strl, '(i3)', iostat=cvtErr) iNum

if (cvtErr == 0 ) then
msgl = "My age is " // strl
write (*,'(a, a)') &
"Message 1 = ", msqgl
else

write (*,'(a, /)') "Error, invalid conversion."
end if

Convert real value to a string.

tau = pi * 2.0

171



Chapter 19 » Character String / Numeric Conversions

write (str2, '(£5.3)', iostat=cvtErr) tau

if (cvtErr == 0 ) then
msg2 = "The value of TAU is " // str2
write (*,'(a, a, /)") &
"Message 2 = ", msg2
else
write (*,'(a, /)') "Error, invalid conversion."
end if

end program cvtExample2

An example of the output for this program is as follows:

Example Conversion Program.

Message 1
Message 2

My age is 124
The value of TAU is 6.283

Once the numeric values are converted into strings, the character functions and character operations
can be used as needed.

19.3

Exercises

Below are some quiz questions and project suggestions based on this chapter.

19.3.1 Quiz Questions

Below are some quiz questions.

1)

2)

3)

4)

Which operation, internal read or internal write, is required to convert a character string
containing a numeric value?

Which operation, internal read or internal write, is required to convert a real value into a
character string?

Provide an appropriate statement to convert the character string sNum=“123" into an integer
variable iNum. The error status should be written to the variable cvtErr. You may assume all
variables are already declared and initialized.

Provide an appropriate statement to convert the integer variable iNum=234 into a character string
sNum. The error status should be written to the variable cvtErr. You may assume all variables are
already declared and initialized.

19.3.2 Suggested Projects

Below are some suggested projects.

1)

Type in the character string to numeric values conversion example program. Update the values
of the character strings with different data and verify that the program produces the correct
results.

172



2)

3)

4)

5)

Chapter 19 <« Character String / Numeric Conversions

Update the program from the previous question to read a series of character strings from the
user, attempt conversion for each character string to a real value. If invalid, the user should be
re-prompted. If valid, the sum of the values should be maintained. When the user enters a 0,
the program should stop reading numbers, display the final sum, and terminate.

Type in the numeric values to character string values conversion example program. Update the
values of the real and integer values with different numbers and verify that the program
produces the correct results.

Develop a program to read a series of integer values, sum the values, and convert the final sum
into a character string. The string should be concatenated with the string “The sum is ” and
displayed to the terminal using a single character string variable.

Write a program to prompt the user for an integer number between 100 and 999, re-prompting
until a valid number is provided. When a valid number is provided, create a file name in the
form of “file<number>.txt”, open/create the file, and write all numbers from 1 to the number,
one per line, and close the file. For example, if 42 is entered, the file file42.txt should be
created and contain the numbers 1, 2, 3, ..., 42 (one per line).

173



Chapter 19 » Character String / Numeric Conversions

174



20 System Services

The term system services generally refers to asking the operating system for information.

The read, write, and file operations (open, read, write, close) are common system services and have
already been addressed in a previous chapter.

Other system services include obtaining the date and/or time from the operating system and obtaining
the command line arguments (if any). The term command line arguments is used to refer to
information entered on the command line after the program name. This allows the user to provide
some information to the program before it starts (or as the program is started), which might save time
as compared to prompting for and interactively reading the information at run-time.

While there are many system services, only these basic ones are presented for reference. These system
services may be useful when working on more complex problems. Additionally, the calls and usage for
other system services is very similar to how these are performed.

20.1 Date and Time

The date and time functions are combined into a single system service call. The date and time values
can be obtained as character strings, as integers, or both simultaneously. The options for date and time
as explained in the next section followed by an example.

It must be noted that if the operating system has an incorrect date or time, the values returned to the
program will also be incorrect.

20.1.1 Date and Time Options

The date and/or time values are are obtained from the operating system using the get_date time()
system service call. The argument or arguments for the system service call must specify at least one of
the following options:

date = <character(8)>

time = <character(10)>

zone = <character(5)>

values = <integer values array>

As noted, each option must provide a location of where to place the results of the specified size and
date type. The options are comma separated, similar to the read and write calls noted in a previous
chapter. At least one argument must be included in the call.

The zone, or time zone, option will provide the time difference between local time and Coordinated
Universal Time (UTC'). The character string will provide a result in hours:minutes format and the integer
values will be in minutes only. However, the minutes can be easily converted to hours.

16 For more information regarding coordinated universal time, refer to:
http://en.wikipedia.org/wiki/Coordinated_Universal_Time

175



Chapter 20 » System Services

The options and associated values returned as more fully described in the following table.

Option Data Type Description

date character(8) The string returned will be in the form
YYYYMMDD, where YYYY is year, MM is
month, and DD is date.

time character(10) The string returned will be in the form
HHMMSS.SSS where HH is hour, MM is
minute, SS is second, and SSS is
milliseconds.

zone character(5) The string returned will be in the form of
+HHMM, where HHMM is the time
difference between local time and
Coordination Universal Time.

values integer array, 8 The values will be returned in the 8 value
elements integer array as follows:

+ values(1) - year

« values(2) -~ month (1-12)

+ values(3) — date (1-31)

« values(4) - time zone difference
(minutes)

« values(5) - hour (0-23)

+ values(6) — minutes (0-59)

« values(7) — seconds (0-59)

+ values(8) — milliseconds (0-999)

Each argument is optional, but at least one argument must be included. Multiple arguments are
allowed.

20.1.2 Date and Time Example Program

The following as an example program that obtains the date and time information from the operating
system in various formats. The final results are shown for reference.

! Example program to obtain the date and time from the system.

program timeDateExample

! Declarations.

implicit none

176



Chapter 20 <« System Services

integer, dimension(8) :: valuesArr
character(len=8) :: today
character(len=10) :: now
character(len=5) ::
integer :: i

! Display simple header.

write (*,'(a)')

"Example Program for Date and Time Functions."

Display to screen for reference.

call date_and_ time(date=today)
write (*,'(/a, a)') "Today is: ", today

call date_and time(time=now, 2zone=myzone
write (*,'(a, a)') "Time is: ", now

)

Get date, time, and zone from system as characters.

write (*,'(a, a/)') "Time Zone is: ", myzone

Display to screen for reference.
call date_and_ time(values=valuesArr)

write (*,'(a)') "Values Array:"

write (*,'(a, i4)') "Date, Year:

write (*,'(a, i2)') "Date, Month:

write (*,'(a, i2)') "Date, Day:

write (*,'(a, i2)') "Time, Hour:

write (*,'(a, i2)') "Time, Minutes:

write (*,'(a, i2)') "Time, Seconds:
14

write (*,'(a, i3)') "Time, Millseconds:

write (*,'(/,a, i8)")

"Time difference with UTC in minutes:

valuesArr(4)

write (*,'(a, i2, al, i2.2 ,/)"')
"Time difference with UTC in hours:

Get all date values from the system as integers.

valuesArr(1)
valuesArr(2)
valuesArr(3)
valuesArr(5)
valuesArr(6)
valuesArr(7)
valuesArr(8)

&
ll’ &

&
&

valuesArr(4)/60, ":", mod(valuesArr(4), 60)

end program timeDateExample

While this program does not really use the time or date values for anything meaningful, it does provide

177



Chapter 20 » System Services
an example of how the information is obtained for use in other, more complex programs. The output of
this example program is shown as follows:

Today is: 20131212

Time is: 154032.491

Time Zone is: -0800

Values Array:

Date, Year: 2013
Date, Month: 12
Date, Day: 12
Time, Hour: 15
Time, Minutes: 40
Time, Seconds: 32

Time, Millseconds: 491

Time difference with UTC in minutes: -480
Time difference with UTC in hours: -8:00

The UTC for Las Vegas, Nevada is indeed, -8 hours as shown. The results for the UTC will be based
on the actual geographic location of where the system executing the program is located.

20.2 Command Line Arguments

The usage of command line arguments, information entered on the command line after the program
name, can be very useful in specific circumstances. By allowing the user to provide some information
on the command line, it saves the effort of entering the information interactively after the program
starts. The term command line arguments is sometimes referred to as command line options.

For example, when starting a Fortran program for a simple game, the persons name could be provided
on the command line. If the name is provided, the program could use that name. Otherwise, the
program could use a generic name such as 'player’. The command line might appears as follows:

c:\fortran> tictactoe ed
On Unix based systems, this might be:
% ./tictactoe ed

Where tictactoe is the name if the program and 'ed' is the single command line argument.

Multiple command line arguments can be provided, but must be separated with a space or multiple
spaces. There is no predefined required format. The formatting or ordering requirements are up to the
program.

The gfortran compiler requires command line arguments for the various options including the input file
name (i.e., tictactoe.f95) and the output file name (i.e., -o tictactoe) specification. For example,

c:\fortran> gfortran tictactoe.f95 -o tictactoe

For the gfortran compiler, there is no required order for the command line arguments. However, a
valid output file name must follow the '-o' argument.

178



Chapter 20 <« System Services

The error handling for command line arguments is typically handled differently. Many programs check
the command line arguments, and if incorrect for any reason, display an error message and terminate
the program. This is what the gfortran compiler does when invalid or incorrect arguments are
provided.

It would be possible to create a program that could verify arguments, and if incorrect, display an error
message and then request correct input from the user. The handling of the command line arguments
processing is entirely the responsibility of the program and not the operating system.

20.2.1 Argument Count

There are generally two steps to obtaining the command line arguments. The first step is getting the
argument count or the number of arguments entered on the command line. The previous tic-tac-toe
example has one argument (i.e., 'ed'). The previous gfortran example had three (i.e., 'tictactoe.f95', '-o',
and 'tictactoe").

The argument count is obtained using the command_argument_count () system service as follows:

integer :: myCount
myCount = command_argument_count()

Which will return the count in the variable myCount (as shown above). The count will be zero if no
arguments are entered.

20.2.2 Get Arguments

Once the argument count is available, the actual arguments can be obtained. The arguments are always
returned as character values. If the argument is meant to be used as a real or integer value, it must be
converted. The Character String / Numeric Conversions chapter provides a description of how this can
be accomplished.

When obtaining the command line arguments, the get_command_argument () system service is
used. An argument is returned into a specified character variable. The character variable should be
large enough (i.e., able to hold enough characters) to store the expected argument. The actual length of
the returned argument can optionally be provided. Additionally, if the character variable is too small,
the returned result will be truncated and the status set accordingly to indicate an error.

The options and associated values returned are described in the following table.

Option Data Type Description

length integer Input integer argument indicating which
argument should be returned. Must be
between 1 and the
command_argument_count() value.

value character(*) Output character variable of where to store
the N™ argument as specified by the length
value (above). The variable must be
declared with an appropriate size.

179



Chapter 20 » System Services

length integer Output integer argument for the actual
length of the string returned by the value
argument (above).

status integer Output integer argument for the returned
status value. A return status value of 0 is
success and -1 is fail.

The first two arguments are required and the final two arguments are optional.

20.2.3 Command Line Arguments, Example Program

This simple example obtains the command line argument count and displays the arguments to the
screen for reference. In this example, the program will expect a real value as the first argument and an
integer value as the second argument (if a second argument is provided). Any additional arguments,

while not used, are still displayed the screen along with the argument count value.

For this example, since the number of arguments is unknown ahead of time, an array to hold the
arguments is allocated at run-time. While this is not necessary, it does help provide a more complete
example. Such a process would only be appropriate if a varying number of command line arguments is

desired.

! Example program to demonstrate how to obtain the
! command line arguments from the system.

program argsExample
implicit none
integer :: argCount, allocStatus, rdErr, i, iNum

real :: rNum
character(len=80), dimension(:), allocatable :: args

Get command line argument count from system.
argCount = command_ argument_count()

if (argCount == 0) then

write (*,'(a)') "No command line arguments provided."

stop
end if

Allocate an array to hold the arguments.

allocate(args(argCount), stat=allocStatus)

if (allocStatus > 0) then

180



Chapter 20 <« System Services

write (*,'(a)") &
"Allocation error, program terminated."
stop
end if

Get each argument, one at a time, from system.

do i = 1, argCount
call get_command argument (number=i,value=args(i))
end do

Display arguments to screen.

if (argCount == 0) then

write (*,'(a)') "No command line arguments provided."
else
if (argCount == 1) then
write (*,'(a, i1, a)') "There was ", &
argCount, " command line argument."
else
write (*,'(a, i2, a)') "There were ", &
argCount, " command line arguments."
end if
write (*,'(/,a)') "The arguments were: "
do i = 1, argCount
write (*,'(a, a)') " ", trim(args(i))
end do
write (*,*)
end if

Convert a string to a numeric value using an internal read.

if (argCount >= 1) then
read (args(l), '(f12.5)', iostat=rdErr) rNum
if (xrdErr == 0 ) then

write (*,'(a, £12.5)') &
"Argument 1 - Real Number = ", rNum
else
write (*,'(a)') "Error, invalid real value."
end if
end if

if (argCount >= 2) then
read (args(2), '(il0)', iostat=rdErr) iNum
if (rdErr == 0 ) then
write (*,'(a, 110)') &

181



Chapter 20 » System Services

"Argument 2 - Integer Number = ", iNum
else
write (*,'(a)') "Error, invalid integer value."
end if
end if

write (*,*)
end program argsExample

An example of the output for this program with valid command line arguments provided is shown
below. The executable name of the example program is 'args'.

c:\fortran> args 3.14 23 hello world
There were 4 command line arguments.

The arguments were:
3.14
23
hello
world

Argument 1 - Real Number = 3.14000
Argument 2 - Integer Number = 23

c:\fortran>

Another example of the output for this program with invalid command line arguments provided is
shown as follows:

c:\fortran> args 3.14 23 hello world
There were 4 command line arguments.

The arguments were:
hello
3.14
23
world

Error, invalid real value.
Error, invalid integer value.

c:\fortran>

Note, the order for the valid and invalid arguments was chosen arbitrarily.

20.3 Exercises

Below are some quiz questions and project suggestions based on this chapter.

182



Chapter 20 <« System Services

20.3.1 Quiz Questions

Below are some quiz questions.

1)

2)

3)
4)

5)

6)

7)

8)

Can the date alone be obtained (i.e., without obtaining the time) using the get_date_time()
system service (yes/no)?

When using the get_date_time() system service to obtain the integer date and time values, what
is the index number for the:

1. The month value.

2. The hour value.

3. The year value.

How can the integer time zone value be converted to hours:minutes format?

Provide the get_date_time() system service call to obtain the current date string into the already
declared character variable dStr.

Provide the get_date_time() system service call to obtain the current time string and time zone
string into the already declared character variables timeStr and zoneStr.

Provide the get_date_time() system service call to obtain the current date/time integer values,
and the current date string into the already declared 8 element integer valuesArr array.

If there are no arguments entered on the command line, what is returned by the
get_command_argument() system service?

Provide an appropriate statement to obtain the 3™ command line argument, the argument length, and
a status value. You may assume the variables for the command line argument (character), named
args, the length (integer), named arg3length, and the status (integer), named, arg3stat are already
declared appropriately.

20.3.2 Suggested Projects

Below are some suggested projects.

1)

2)

3)

Type in the get date and time example program. Update the output to more clearly display only
the current date and time on one line. Remove the unnecessary or redundant output.

Type in the get command line arguments example program. Execute the program using a
variety of different expected and unexpected arguments.

Develop a program that reads command line arguments for a title and time (hours and minutes).
Calculate and display the difference between the current time and the time from the command
line. If the command line arguments are incomplete or incorrect, an error message should be
displayed and the program, terminated. The program should use 24-hour format. One possible
approach to determining the time difference would be to convert each time into minutes (from
hours and minutes), compute the difference, and convert the difference in minutes back to hours

183



Chapter 20 » System Services

and minutes. The final output should display the title, the system time, the entered time, and the
time difference. All times should be displayed in hours:minutes format.

4) Write a program to get the date from the system and display a formatted date. The formatted
date should be: <day of week>, <month name> <day>, <year>. For example, 12/2/2013 should
be displayed as Monday, December 2, 2013. Each string should include only the appropriate
spacing. Specifically, there should be no extra spaces between the words or numbers (including
the date value, 2 in the example).

To calculate the day on which a particular date falls, the following algorithm may be used.
Note, all variables are integers and the divisions are integer divisions.

14 — month
12

y = year —a

m = month+ 12 X a — 2

dayNum = day+y+%—L+L+ mod 7

31 x M
100 ~ 400 12

Where the month, day, and year variables are the integer date values (12, 2, and 2013 in the
previous example). The final value of dayNum is 0 for a Sunday, 1 for a Monday, 2 for a
Tuesday, and so forth with the maximum value of 6 for Saturday.

5) Update the program from the previous question to write the formatted date to a file. The file
name should be created based on the current date in the following format
“file<MMDDYY>.txt” For example, for a date of 12/02/2013, the file should be named
file120213.txt and contain the character string Monday, December 2, 2013.

6) Write a program to obtain the current date and attempt to open a file based on the date in the
following format, “file<MMDDY Y>.txt”. For example, for a date of 12/02/2013, the file
should be named file120213.txt. If the file exists, the contents should be displayed to the
screen. If the file does not exist, an appropriate error message should be displayed.

184



21 Appendix A - ASCII Table

This table lists the American Standard Code for Information Interchange (ASCII) characters or symbols
and their decimal numbers.

Char. | Dec. Char. | Dec. Char. | Dec.
32 @ 64 : 96
! 33 A 65 a 97
" 34 B 66 b 98
# 35 C 67 c 99
$ 36 D 68 d 100
% 37 E 69 e 101
& 38 F 70 f 102
! 39 G 71 g 103
( 40 H 72 h 104
41 I 73 i 105
* 42 J 74 j 106
+ 43 K 75 k 107
, 44 L 76 1 108
- 45 M 77 m 109
46 N 78 n 110
/ 47 (0] 79 0 111
0 48 80 P 112
1 49 Q 81 q 113
2 50 R 82 r 114
3 51 S 83 s 115
4 52 T 84 t 116
5 53 U 85 u 117
6 54 \% 86 v 118
7 55 w 87 w 119
8 56 X 88 X 120
9 57 Y 89 y 121
58 zZ 90 4 122
5 59 [ 91 { 123
< 60 \ 92 | 124
= 61 ] 93 } 125
> 62 A 94 ~ 126
? 63 _ 95 127

185



Chapter 21 » Appendix A — ASCII Table

186



22 Appendix B - Start-Up Instructions

The following provides some specific instructions for getting started. These instructions are
specifically geared for using a MacOS or Windows based PCs. This includes all versions of Windows
from Windows XP, Windows Vista, Windows 7, Windows 8, and Windows 10.

The basic process is very similar to Linux (which is not covered here).

22.1 Working Files

Before working with Fortran program files, you should decide where you will be working (default
drive, USB drive, network drive, etc.) and create a working directory where your files will be placed.
In general, it will be easier if your Fortran files are not mixed with other, unrelated files. This directory
should be someplace you can easily get to it. That might be on your home workstation/laptop, on a
network drive, or on a USB drive.

22.2 Obtaining The Compiler

First, you will need to download and install the GNU Fortran compiler. The main web page for the
GNU Fortran compiler is:

http://gcc.gnu.org/fortran/

This page provides general information regarding the Fortran compiler development effort, project
objectives, and current status.

More specific information, and the Windows compiler binaries, can be found on the gFortran Wiki
page, which is located at:

http://gcc.gqnu.org/wiki/GFortran

This page contains links to the Gfortran binaries. On this page, click on the link labeled:
Binaries for Windows, Linux, and MacOS

Which will display the page for the GNUBinaries for various platforms, including Windows, MacOS,
and Linux. Click on the appropriate link Windows, MacOS, GNU/Linux.

22.2.1 Windows Download and Install

When selected, Windows link will show the various Windows installer options. For standard Windows
(XP/Vista/7/8), the heading MinGW build (“native Windows” build), includes a link for the latest
installer. Click on the link and download the Windows installation program. You will need to access
this file to perform the actual installation. There is no need to install the MinGW build.

This version will work on all supported Windows versions including Windows Vista, Windows XP,
Windows 7, Windows 8, and Windows 10.

187


http://gcc.gnu.org/wiki/GFortran

Chapter 22 » Appendix B — Start-Up Instructions

After downloading, install the compiler. The installation can be accomplished by double-clicking on
the downloaded file. As with all Windows installs, it will require System Administrator privileges.
Once the installation has been completed, the downloaded installation file can be deleted.

22.2.2 MacOS Download and Install

When selected, MacOS link will show the various MacOS installer options. Choose the appropriate
download link based on your specific MacOS version (from the listed options). After the download is
complete, click on the downloaded file and perform the installation. The installation will require the
system password. Once the installation has been completed, the downloaded installation (.dmg) file
can be deleted.

In order to develop programs on the MacOS, Xcode", the integrated development environment, is
required. The Xcode application can be downloaded from the Apple App Store or via iTunes. An
Apple account is required. If you do not have an Apple account, you can obtain a free developer
account (developer.apple.com).

22.3 Windows Compilation

Please note, the Fortran compiler download and installation (previous section) must have been
completed before starting this step. In order to compile and work with programs under Windows, it eill
be necessary to provide typed commands. This is done from within the “Command Prompt” utility.

22.3.1 Command Prompt Window

The first step is to open the Windows Command Prompt Window. In Windows 7, the “Command
Prompt” is usually under Programs — Accessories - Command Prompt. In Windows 8 or Window
10, the “Command Prompt” can be found by using Search and is listed under the Windows System
heading.

The open Command Prompt window for any Windows version will look similar to the following:

o C:\WINDOWShsystem32\cmd.exe

Microsoft Windows XP [Uersion 5.1.26881
{C>» Copyright 1985-2881 Microsoft Corp.

C:“Documents and Settings“Ed>

Once the Command Prompt is open, the device and directory for the working files can be set.

17 For more information, refer to: https://en.wikipedia.org/wiki/Xcode

188



Chapter 22 <« Appendix B — Start-Up Instructions

22.3.2 Device and Directory

In order to compile and work with programs under Windows, a working directory should be
established. This is where the program files will be stored. First, establish the device of the working
directory. If the files are on C:\ (the main hard drive), the device is already set. If the working
directory is located on a network drive, alternate drive, or USB drive, the device will need to be set.

Using the “My Computer”, determine the device or drive letter where your directory is located. Type
that letter at the prompt in the Command Prompt window. For example, if your device is K, you would
type “ks”.

At the drive prompt (i.e., “C:\>” or “K:\>”) you will need to change directory into the directory where
your files are (if you created one). The “cd <dir_name>” command can be used. For example, if the
directory is named cs117, the command would be “cd ¢s117”.

For example:

C:\Documents and Settings\Ed\My Documents> k:
C:\> cd csll7

At this point, typing dir (for directory) will provide a list of files in the directory. While the format
will appear different, the files are the same as shown in the My Computer listing.

22.3.3 Compiler Installation Verification

To ensure the compiler is installed correctly, open the “Command Prompt”, and type gfortran at the
prompt.

C:\csll7> gfortran
gfortran: fatal error: no input files
compilation terminated.

The “no input files” message means that the installation was completed successfully. It is not
necessary to set the device or directory in order to perform this verification.

However, if the following message is displayed,

C:\csll7> gfortran
'‘gfortran' is not recognized as an internal or external command,
operable program or batch file.

it means that the Fortran compiler is not installed. The installation issue must be addressed before
continuing. Once the installation is completed successfully, the compilation steps detailed in Chapter 3
can be completed.

22.3.4 Compilation

Once the Fortran compiler is installed, programs can be compiled. Open the “Command Prompt”, and
set the device and directory as appropriate.

189



Chapter 22 » Appendix B — Start-Up Instructions

At this point the program can be compiled, using “gfortran. The optional “-0” qualifier is used to set
the name of the output file. To execute, you can type the name of the executable (that was specified
with the “-0”).
To compile the example program, the following command would be entered:

C:\csll7> gfortran -o hw hw.£f95

This command will tell the 'gfortran’ compiler to read the file hw.£95 and, if there are no errors, create
an executable file named hw.exe. If there is an error, the compiler will generate an error message,
sometimes cryptic, and provide a line number. Such errors are usually the result of mistyping one of
the instructions. Any errors must be resolved before continuing.

22.3.5 Executing

To execute or run a program, type the name of the executable file. For example, to execute or run the
hw.exe program:

C:\csl117> hw
Hello World
C:\csll7>

Which will execute the example program and display the “Hello World” message to the screen.

22.3.6 Example

A more complete example is as follows:

= Command Prompt (2)

C:~fortran>
C:~fortran>gfortran —o hw hw.f95

C:~Ffortran>hw
Hello Yorld

C:~fortran>
C:~fortran>

It is not necessary to type the extension (i.e., “.exe”) portion of the file name.

22.4 MacOS Compilation

Please note, the Fortran compiler and xCode download and installation (previous section) must have
been completed before starting this step. In order to compile and work with programs under MacOS,
we will need to provide typed commands to the computer. This is done from within the Terminal
window.

190



Chapter 22 <« Appendix B — Start-Up Instructions

22.4.1 Terminal Window

The first step is to open the Terminal window. The open Terminal window will look similar to the
following:

e0e . - N— - - e " @ ed —-bash —80x24 o p—— - s ———
Last login: Tue Jun 27 16:30:34 on console -
eds-iMac:~ ed$ [

The screen background may be black depending on the default configuration settings. Once the
Terminal is open, the directory for the working files can be set as shown in the following section.

22.4.2 Device and Directory

In order to compile and work with programs under MacOS, a working directory should be established.
This is where the program files will be stored.

At the Terminal window prompt (i.e., “eds-iMac:~ ed$” in this example) you will need to change
directory into the directory where your files are (if you created one). The Terminal prompt will be
different for each user and includes a combination of the machine name and the current user account
name. The “cd <dir_name>” command can be used. For example, if the directory is named cs117, the
command would be “cd ¢s117”.

For example:

eds-iMac:~ ed$ cd csll7
eds-iMac:csll7 ed$

The prompt will change to show the new directory name (second line). At this point, typing Is (for

directory) will provide a list of files in the directory. While the format will appear different, the files
are the same as shown in the Finder listing.

191



Chapter 22 » Appendix B — Start-Up Instructions

22.4.3 Compiler Installation Verification

To ensure the compiler is installed correctly, open the Terminal window, and type gfortran at the
prompt.

eds-iMac:csll7 ed$ gfortran
gfortran: fatal error: no input files
compilation terminated.

The “no input files” message means that the installation was completed successfully.

However, if the following message is displayed,

eds-iMac:csll7 ed$ gfortran
-bash: gfortran: command not found

it means that the Fortran compiler is not installed. The installation issue must be addressed before
continuing.

If the following message is displayed,

eds-iMac:csll7 ed$ gfortran -o hw hw.£f95

xcode-select: note: no developer tools were found at
'/Applications/Xcode.app', requesting install. Choose an option
in the dialog to download the command line developer tools.

it means that the Fortran compiler is installed, but Xcode is not installed. Xcode must be successfully
installed in order to continue. Once the Fortran and Xcode installations are completed successfully, the
compilation steps detailed in Chapter 3 can be performed.

22.4.4 Compilation

Once the Fortran compiler and Xcode are installed, programs can be compiled. Open the Terminal
window and change directory as appropriate.

At this point the program can be compiled, using “gfortran. The optional “-0” qualifier is used to set
the name of the output file. To execute, you can use the name of the executable (that was specified
with the “-0”).

To compile the example program, the following command would be entered:

eds-iMac:csll7 ed$ gfortran -o hw hw.f95

This command will tell the 'gfortran’ compiler to read the file hw. £95 and, if there are no errors, create
an executable file named hw (no extension). If there is an error, the compiler will generate an error
message, sometimes cryptic, and provide a line number. Such errors are usually the result of mistyping
one or more of the instructions. Any errors must be resolved before continuing.

192



Chapter 22 <« Appendix B — Start-Up Instructions

22.4.5 Executing

To execute or run a program, type “./” and the name of the executable file. For example, to execute or
run the hw program:

eds-iMac:cs117 ed$ ./hw
Hello World
eds-iMac:csll7 ed$

Which will execute the example program and display the “Hello World” message to the screen.

22.4.6 Example

A more complete example is as follows:

® [ ] C m C;117 ;7—k;aish—80x24
leds-iMac:cs117 ed$ C
leds-iMac:cs117 ed$
leds-=iMac:cs117 ed$
leds-iMac:cs117 ed$ gfortran -o hw hw.f95
eds-iMac:cs117 ed$ ./hw
Hello World -
eds-iMac:cs117 ed$ |

The “./” is required when executing programs.

193



Chapter 22 » Appendix B — Start-Up Instructions

194



23 Appendix C - Random Number Generation

Generating random numbers is a common requirement for many problems. The following provides a
summary of utilizing the built-in Fortran random number generator routines.

23.1 Initialization

The first step in generating random numbers is to initialize the Fortran random number generator,
random_seed(). The most basic initialization is performed as follows:

call random_seed()

This will initialize the random number generator with a default seed. As such, each execution will re-
generate the same series of random numbers for each execution. While this may not appear very
random, since successive executions generate the same series of random numbers, the testing is more
repeatable.

23.2 Generating Random Number

To request a random number, a real variable must be declared and then passed to the following call to
the built-in random_number() routine. For example:

call random_ number (x)

The random number between 0.0 and 1.0 such that 0.0 < random number < 1.0.

In order to obtain a larger number, it can be multiplied by an appropriate scale. For example, to
simulating the roll of a dice, a random integer number between 1 and 6 would be required. The
following code would obtain the random number and then scale it and convert to integer as required.

call random number(x)
die = int(x*6.0) + 1

Since the 0.0 is a possible value and 1.0 is not ( 0.0 < random number < 1.0) 1 is added to ensure that 0
cannot be assigned to the variable die. Further, since .999 is the largest possible value (since 1.0 is
not), and .999 * 6 will generate 6 (5.9 truncated to 5 with 1 added).

195



Chapter 23 » Appendix C — Random Number Generation

23.3 Example

A simple example program to generate 100 random integer numbers, each between 1 and 100, is as
follows:

program rand

implicit none

integer, parameter :: rcount=100
integer :: i

integer, dimension(rcount) :: nums
real :: x

call random seed()

do i = 1, rcount

call random number(x)

nums (i) = int(x*100.0) + 1
end do

write (*,'(a)') "Random Numbers:"

do i = 1, rcount
write (*,'(i3,2x)', advance="no") nums(i)
if (mod(i,10)==0) write (*,*)

end do

end program rand

The call to random_seed() must be performed before the call to random_number(). Additionally, the
call to random_seed() can only be performed once.

The output of this example program is shown below:

Random Numbers:

100 57 97 75 37 49 8 1 35 35
22 14 91 39 45 67 2 66 65 33
86 41 21 97 60 68 46 34 11 76
61 72 90 66 16 62 98 100 26 56
66 56 98 91 66 73 41 93 15 68
77 34 12 62 83 95 74 50 38 43
56 100 100 75 96 10 74 76 95 71
82 56 7 49 60 14 59 52 89 31
67 67 51 27 8 11 55 38 2 80
63 78 96 12 32 60 5 12 22 11

Each execution will generate the same series of random numbers.

196



Chapter 23 <« Appendix C — Random Number Generation

23.4 Example

In order to generate different random number for successive executions, the seed must be initialized
with a different set of seed values each time.

The following example simulates the roll of two dice, which requires two random integer numbers,
each between 1 and 6.

program diceRoll

implicit none

integer :: m, diel, die2, pair
real :: x
integer :: i, n, clock

integer, dimension(:), allocatable :: seed
character(10) :: nickname

call random seed(size = n)
allocate(seed(n))

call system clock(count=clock)

seed = clock + 37 * (/(i-1, i=1, n)/)
call random_seed(put = seed)
deallocate(seed)

call random number (x)
diel = int(x*6.0) + 1

call random_ number(x)
die2 = int(x*6.0) + 1

write (*,'(2(a,1x,il/),a,1x,i2)') "Dice 1:", diel, &
"Dice 2:", die2, "Dice Sum", (diel+die2)

end program diceRoll

Will generate different values each execution. For example, three executions of the example program
are shown below:

C:\fortran> dice
Dice 1: 5

Dice 2: 4

Dice Sum 9

C:\fortran> dice
Dice 1: 2

Dice 2: 4

Dice Sum 6

197



Chapter 23 » Appendix C — Random Number Generation

C:\fortran> dice
Dice 1: 1

Dice 2: 6

Dice Sum 7
C:\fortran>

The dice values will be different for each execution.

198



24  Appendix D - Intrinsic Functions

The following is a partial listing of the Fortran 95/2003/2008 intrinsic functions. Only the most
common intrinsic functions are included in this section. A complete list can be found on-line at the

GNU Fortran documentation web page.

24.1 Conversion Functions

The following table provides a list of intrinsic functions that can be used for conversion between

different data types.

Function Description
INT(A) Returns the integer value of real argument A, truncating
(real part) towards zero.
NINT(X) Return the nearest integer value (with appropriate
rounding up or down) of the real argument X.
REAL(A) Returns the real value of integer argument A.
24.2 Integer Functions

The following table provides a list of intrinsic functions that can be used for integers.

Function Description

ABS(A) Returns the integer absolute value of integer argument A.

MOD(R1,R2) Return the integer remainder of integer argument R1
divided by integer argument R2.

199




Chapter 24 » Appendix D — Intrinsic Functions

24.3 Real Functions

The following table provides a list of intrinsic functions that can be used for reals.

Function Description

ABS(A) Returns the real absolute value of real argument A.

ACOS(W) Returns the real inverse cosine of real argument W in
radians.

ASIN(W) Returns the real inverse sine of real argument W in radians.

ATAN(X) Returns the real inverse tangent of real argument X in
radians.

COS(W) Returns the real cosine of real argument W in radians.

LOG(W) Returns the real natural logarithm of real argument W. Real
argument W must be positive.

MOD(R1,R2) Return the real remainder of real argument R1 divided by
real argument R2.

SIN(W) Returns the real sine of real argument W in radians.

SQRT(W) Returns the real square root of real argument W. Real
argument W must be positive.

TAN(X) Returns the real tangent of real argument X in radians.

24.4 Character Functions

The following table provides a list of intrinsic functions that can be used for characters/strings.

Function Description

ACHAR(D) Returns the character represented by integer argument I
based on the ASCII table (Appendix A). Integer argument I
must be between 1 and 127.

IACHAR(C) Returns the integer value of the character argument C
represented by ASCII table (Appendix A).

LEN(STR) Returns the integer value representing the length of string

argument STR.

LEN_TRIM(STR)

Returns the integer value representing the length of string
argument STR excluding any trailing spaces.

LGE(STR1,STR2)

Returns the logical true, if STR1 > STR2 and false
otherwise.

LGT(STR1,STR2)

Returns the logical true, if STR1 > STR2 and false
otherwise.

200




Chapter 24 <« Appendix D — Intrinsic Functions

LLE(STR1,STR2) Returns the logical true, if STR1 < STR2 and false
otherwise.

LLT(STR1,STR2) Returns the logical true, if STR1 > STR2 and false
otherwise.

TRIM(STR) Returns the string based on the string argument STR with

any trailing spaces removed.

ADJUSTL(STR) Return a string modified by removing leading spaces.
Spaces are inserted at the end of the string as needed.

ADJUSTR(STR) Return a string modified by removing trailing spaces.
Spaces are inserted at the beginning of the string as needed.

24.5 Complex Functions

The following table provides a list of intrinsic functions that can be used for complex numbers.

Function Description

AIMAG(2Z) Returns the real value of the imaginary part of the complex
argument Z.

CMPLX(X,Y) Returns the complex value with real argument X and the
real part and real argument Y as the imaginary part.

REAL(A) Returns the real value of the real part of the complex
argument Z.

24.6 Array Functions

The following table provides a list of intrinsic functions that can be used for arrays.

Function Description

MAXLOC(A1) Returns the integer location or index of the maximum value
in array Al.

MAXVAL(AL) Returns the maximum value in array A1. Type of value
returned is based on the type of the argument array Al.

MINLOC(A1) Returns the integer location or index of the minimum value
in array Al.

MINVAL(A1) Returns the minimum value in array Al. Type of value

returned is based on the type of the argument array A1l.

SUM(A1) Returns the sum of values in array Al. Type of value
returned is based on the type of the argument array A1l.

201



Chapter 24 » Appendix D — Intrinsic Functions

24.7

The following table provides a list of intrinsic functions that obtain information from the system.

System Information Functions

Function

Description

COMMAND_ARGUMEN
T_COUNT()

Returns the number of command line arguments.

GET_COMMAND_ARG
UMNENT(NUMBER,
VALUE, LENGTH,
STATUS)

Returns the command line arguments, if any.

NUMBER, integer argument of the number to
return. Must be between 1 and
COMMAND_ARGUMENT_COUNT().

VALUE, character(*), N" argument

LENGTH, integer, length of argument returned in
VALUE

STATUS, integer, status, O=success and -1=VALUE
character array is too small for argument, other
values=retrieval failed

CPU_TIME(TIME)

Returns the amount of CPU time expended on the current
program in seconds. TIME is return as a real value.

DATE_AND_TIME
(DATE,
TIME,ZONE, VALUES)

Return the date and time.

DATE(), character(8), string in the form
YYYYMMDD, where YYYY is year, MM is
month, and DD is date.

TIME(), character(10), string in the form
HHMMSS.SSS where HH is hour, MM is minute,
SS is second, and SSS is millisecond.

ZONE(), character(5), string in the form of
+HHMM, where HHMM is the time difference
between local time and Coordination Universal
Time.

VALUES(), integer array where

o VALUES(1) - year

o VALUES(2) - month (1-12)

o VALUES(3) - date (1-31)

o VALUES(4) — time zone difference (minutes)
o VALUES(5) — hour (0-23)

o  VALUES(6) — minutes

o VALUES(7) — seconds (0-59)

o  VALUES(8) — milleseconds (0-999)

Each argument is optional, but at least one argument must
be included.

202




25 Appendix E - Visualization with GNUplot

The Fortran language does not have any built-in graphics capabilities. To support some basic data
visualization a plotting application, GNUplot, can be used. GNUplot is a free, open source plotting
program that can plot data files and display user-defined functions.

This appendix provides a very brief summary of some of the basic GNUplot functions as applied to
plotting data from simple programs in this text. An general example program to plot a simple function
is provided for reference.

25.1 Obtaining GNUplot
The first step is to obtain and install GNUplot.

GNUplot is available at,
http://www.gnuplot.info/

To ensure that GNUplot is installed correctly, for Windows machine, you can enter command prompt
and type,

wgnuplot

which will start GNUplot by opening a new window. To exit, type exit at the prompt.

Complete documentation, tutorials, and examples are available at that site. Additionally, there are
many other web sites dedicated to GNUplot.

25.2 Formatting Plot Files

Since our specific use of GNUplot will involve plotting a data file created with a Fortran program, it
will be necessary to provide some information and directions for GNUplot in the file. That information
is provided in a header (first few lines) and a footer (last few lines). As such, the program must first
write the header, write the data, typically in the form of data points to be plotted, and write a final
footer. The header and footer may be very different based on what is being plotted.

203



Chapter 25 » Appendix E — Visualization with GNUplot

25.2.1 Header

The header will provides some guidelines on how the output should look, including title (if any), axises
(if any), labels (if any), and plotting color(s). Additionally, comments can be included with a “#”
character. Comments are useful to provide information about the contents of the plot file or nature of
the data being plotted. A typical header might be as follows:

# Example Plot File
set title "CS 117 Plot Function"
plot "-" notitle with dots linewidth 2 linecolor 2

Once the header is written, a series of data points can be written.

25.2.2 Footer

The footer is used to formally tell GNUplot there are no more points. Additionally, the “pause”
directive can be used to ensure that any plots displayed from the command line are left on the screen.
A typical footer might be as follows:

end
pause -1

Nothing after the footer will be read by GNUplot.

25.3 Plotting Files

In order to display a plot file on a Windows machine, at the command prompt, type,
wgnuplot file.plt

which will start GNUplot and instruct GNUplot to read the file “file.plt”. The file name can be

anything and the file extension is not required to be “.plt”.

If the header or footer commands are incorrect or the data points are invalid, nothing will be displayed.
To investigate, the file can be opened with a text editor.

25.4 Example

This section provides an example program that plots a simple function.

1—cos(x))

y = sin(x)*( 30

The program, data file, and final output are presented for reference.

204



Chapter 25 <« Appendix E — Visualization with GNUplot

25.4.1 Plot Program

The following is an example program that generates points, opens a plot file, write the header, data
points, and footer.

program plotExample

implicit none
real, dimension(200) :: X, y
integer :: i, opnstat

! Generate x and y points
doi=1, 200
x(i) =1 * 0.05
y(i) = sin(x(i)) * (l-cos(x(i)/3.0))
end do

! Output data to a file
open (12, file="data.plt", status="replace", &
action="write", position="rewind", &
iostat=opnstat)
if (opnstat > 0) stop "error opening plot file."

| Write header
write (12, '(a)') "# Example Plot File"
write (12, '(a)') "set title ""Example Plot Function"" "
write (12,'(a,a)') "plot ""-"" notitle with dots ",
"linewidth 2 linecolor 2"

! Write points to file.

do i=1,100
write (12,*) x(i), y(i)
end do

| Write footer and close file
write (12, '(a)') "end"
write (12, '(a)') "pause -1"
close(12)

end program plotExample

The data file name can be changed or read from the user.

205



Chapter 25 » Appendix E — Visualization with GNUplot

25.4.2 Plot File

The output file from this program appears as follows:

# Example Plot File
set title "Example Plot Function"

plot "-" notitle with dots linewidth 2 linecolor 2
5.0000001E-02 6.9413913E-06
0.1000000 5.5457884E-05
0.1500000 1.8675877E-04
0.2000000 4.4132397E-04
0.2500000 8.5854460E-04

[many points not displayed due to space considerations]

4.900000 -1.043852
4.950000 -1.048801
5.000000 -1.050716
end
pause -1

The output file can be edited with a standard text editor. This will allow checking the data file for
possible errors if it does not display correctly.

25.4.3 Plot Output
The plot output is as follows:

I cnuplot graph EJ@@

Example Plot Function

04

02

o b

0z [

04

06

08

4 b

1z
05 1 15 2 25 3 35 4 45 5

0
1.65203, 0.546556

On Windows machines, the plot can be printed by right clicking on the blue bar (on top). This will
display a menu, with “Print” as one of the options.

206



26

Appendix F — Quiz Question Answers

This appendix provides answers for the quiz questions in each chapter.

26.1

Quiz Question Answers, Chapter 1

There are no quiz questions in Chapter 1.

26.2

Quiz Question Answers, Chapter 2

Quiz question answers for chapter 2 are as follows:

1)
2)
3)
4)

5)

6)
7)

26.3

In the computer, information is represented in binary.

Convert the Fortran program into binary or machine language.
The BUS connects the memory to the CPU.

The answer are as follows:

a) The binary value 0000101, is 5 in decimal.

b) The binary value 0001001, is 9 in decimal.

c) The binary value 0001101, is 13 in decimal.

d) The binary value 0010101, is 21 in decimal.

Characters are represented in binary using binary ASCII. Refer to Appendix A for the ASCII
table.

Programs are stored on the secondary storage device (SSD, disk drive, or other storage media).

Program must be in primary storage or RAM in order to execute.

Quiz Question Answers, Chapter 3

Quiz question answers for chapter 3 are as follows:

1)
2)
3)

4)
5)
6)

The input file for the compiler is the Fortran program file.
The output from the compiler is the executable program.

Fortran programs must start with the program <name> statement and end with the end
program <name> statement.

Comments are marked with an explanation point (!).
The typical file extension for a Fortran 95/2003/2008 program is “.f95”.

The typical file extension of the compiler output file is “.exe” for Windows and no extension for
Unix based machines (i.e., MAC and Ubuntu).

207



Chapter 26 » Appendix F — Quiz Question Answers

26.4

Quiz Question Answers, Chapter 4

Quiz question answers for chapter 4 are as follows:

1)
2)

3)
4)

5)

6)

26.5

The five Fortran data types are integer, real, character, logical, and complex.

A Fortran variable name must start with a letter. Variable names may include numbers but must
start with a letter.

The implied data types are integer, real, integer, real, and real.

The statements are:

integer :: value
real :: count

The statements are:

real :: rate = 7.5

The statements are:

real, parameter :: e = 2.71828183

Quiz Question Answers, Chapter 5

Quiz question answers for chapter 5 are as follows:

1)
2)
3)

4)

5)

6)

7)

The assignment operator is = (equal sign).
The exponentiation operator is ** (double asterisks, no space).

An integer variable can be converted to a real with the real conversion function. For example,

realvVar = real(intVar)

An integer variable can be converted to a real with the real conversion function. For example,

intvar = int(realVvar)

Note, in this example precision may be lost since the fractional part is truncated (not rounded).

The two logical constants are .true. and .false. which must include the leading and trailing
periods.

Some intrinsic functions are real(), int(), nint(), cos(), sin(), mod(), tan(), and sqrt(). There
are more as listed in Appendix D.

The statements are as follows:
X1 = (pi / 6.0) * (3.0 * a**2 + 3.0 * b**2 + c**2)
x2 -(2.0 * a / c) * cos(b) * sin(b)
x3 (-b + sqrt(b**2 — 4.0 * a * c)) / (2.0 * a)

208



Chapter 26 <« Appendix F — Quiz Question Answers

26.6 Quiz Question Answers, Chapter 6
Quiz question answers for chapter 6 are as follows:
1) The “(*,*)” means to send it to the screen in 'free format'.

2) The statement is as follows:

write (*,*) "Programming is Fun!"

3) The statements are as follows:

integer :: myage
write (*,*) "Enter Age:"
read (*,*) myage

26.7 Quiz Question Answers, Chapter 7
Quiz question answers for chapter 7 are as follows:
1) The four program development steps are
1. Understand the Problem
2. Create the Algorithm
3. Implement the Program
4. Test/Debug the Program
2) The three types of errors are compiler error, run-time error, and logic error.
3) Since the formula is incorrect, that would be a logic error.

4) A compiler error is generated when the compiler does not understand the statement. This often
occurs when statements are mis-spelled. For example,

writte(*,*) "Opps"

would generate a compiler error since write is mis-spelled.

26.8 Quiz Question Answers, Chapter 8
Quiz question answers for chapter 8 are as follows:
1) The six relational operators are >, >=, <, <=, ==, and /=.

2) The three basic logical operators are .and., .or., and .not. where the leading and trailing periods
are required.

3) The answers are .true., .true., .false., .true., .true., .false., and .false. where the leading and
trailing periods are required.

209



Chapter 26 » Appendix F — Quiz Question Answers

4) The statements are as follows:

if (lives <= 0) then
write (*,*) "Game Over"
end if

Note, this also could be done as follows:

if (lives <= 0) write (*,*) "Game Over"

5) The statements are as follows:

if (num < 0) then

num = abs(num)

write (*,*) "Variable num was made positive"
end if

6) The statements are as follows:
if (y /= 0) then

z=x/y
else

z =0

write (*,*) "Z not calculated”
end if

Note, another correct solution is as follows:
if (y == 0) then
z =0
write (*,*) "Z not calculated”
else
z=x/y
end if

7) The statements are as follows:

if (x <= 0.0) then
f = x**2 * y
else
f=x*y
end if

26.9 Quiz Question Answers, Chapter 9
Quiz question answers for chapter 9 are as follows:

1) When an exit statement is executed, the current loop will be exited, thus not completing any
remaining iterations.

2) There may be an unlimited number of exit statements. Typically, there is only one.

3) When a cycle statement is executed, the remaining statements in the loop are skipped and the

210



Chapter 26 <« Appendix F — Quiz Question Answers

next iteration of the loop is started (from the beginning of the loop).
4) There may be an unlimited number of cycle statements. Typically, there is only one.
5) If there are multiple cycle statements, only the first executed cycle statement will be executed.

6) The output is as follows:
The SUM is: 15

7) The output is as follows:

start
1

WWNN PR
* % % % * *
NRNMNRNR
nmnuwnn

OWENNR

end

8) The statements are valid, however since the initial value of i is greater than the stop value, no
statements in the loop will be executed.

9) The statements are valid, however since the initial value of i is greater than the stop value, no
statements in the loop will be executed.

10) There is no specified limit.

11) When nesting IF statements, the nested IF statement must be completely nested within the loop.

26.10 Quiz Question Answers, Chapter 10
Quiz question answers for chapter 10 are as follows:
1) The format specifiers are rIw, rFw.d, rLw, nX, /, and rA.

2) The output, using an “_” (underscore) for blanks, is as follows:

Hello
Hello World

3) The output, using an “_” (underscore) for blanks, is as follows:
005

4) The statement is as follows:

write (*,'(i3)') numl

5) The statement is as follows:
write (*,'(£7.5)') pi

211



Chapter 26 » Appendix F — Quiz Question Answers

6)

7)

The statement is as follows:

write (*,'(a,/,a)') "Programming", "Is Fun!"

The statement is as follows:

write (*,'(a)', advance="no") "Enter Number:"

26.11 Quiz Question Answers, Chapter 11

Quiz question answers for chapter 11 are as follows:

1)

2)

3)

4)
5)

The declaration is as follows:

character (len=12) :: msg = "Hello World!"
The results are .false., .true., .false., .false., .true., .false., .true. where the leading and trailing
periods are required.

The value for astrl = “abc”, the value for astr2 = “456”, the value for astr3 = “12345678910”,
and the value for astr4 = “DEF123bc”.

The integer value can be obtained by using the IACHAR() function.
The character can be obtained from the integer value by using the ACHAR() function.

26.12 Quiz Question Answers, Chapter 12

Quiz question answers for chapter 12 are as follows:

1)
2)
3)

4)

Before a file can be read or written, it must be opened.

The recommended range for a file unit number is between 10 and 99 (inclusive).
The answers as follows:

a) The name of the file is file.txt.

b) The unit number used is 14.

c) Yes, the error message will be printed if the file does not exist.

d) If the status variable, opnstat, is > 0, an error on the file open has occurred.

The read statement is as follows:

read (20,'(13x,i2,8x,i3,8x%x,1i5)"') numl, num2, num3

26.13 Quiz Question Answers, Chapter 13

Quiz question answers for chapter 13 are as follows:

1)

An array is considered a direct access structure since any array value can be directly accessed
(without accessing any other locations).

212



Chapter 26 <« Appendix F — Quiz Question Answers

2) Yes, an array can hold integer values.
3) Yes, an array can hold real values.

4) The declarations are as follows:
integer, parameter :: SIZEl = 100
real, dimension(10) :: rvalues
integer, dimension(SIZEl) :: inums
real, dimension(0:9) :: counts
5) The answers as follows:
a) 10.
b) 25.
c) 20.
d) 20.
6) An array can be allocated a compile-time or run-time (but not both).
7) The answers are as follows:

a) The array will contain the following values:

nums
1
99
3
99
0

uu A W N =

b) The statements is called an implied do loop.

c) The statement will display the first 5 values on one line as follows:
199 399 0

26.14 Quiz Question Answers, Chapter 14

Quiz question answers for chapter 14 are as follows:
1) No, a multi-dimensional array can hold either real values or integers values.
2) The answer is a.

3) The answers are as follows:
a) 15.

213



Chapter 26 » Appendix F — Quiz Question Answers

b) The array contains the following values:

1 2 3

1 2.0 3.0 4.0

2 3.0 4.0 5.0

3 4.0 5.0 6.0

4 5.0 6.0 7.0

5 6.0 7.0 8.0
c) 3.0.
d) 4.0
e) 7.0

4) An unsuccessful allocation can be detected by checking the status variable for a value > 0.

26.15 Quiz Question Answers, Chapter 15
Quiz question answers for chapter 15 are as follows:
1) The two types of Fortran subprograms are subroutines and functions.
2) A function returns a single value.
3) The variables in the call are referred to as actual arguments.
4) The variables in the function heading are referred to formal arguments.
5) The return type is integer.
6) Yes, it possible to pass integer arguments to a real function.
7) The keyword contains.
8) The answers are as follows:
a) 8.
b) 9.
9) The answers are as follows:
a) fahrToCelsius.
b) Yes.
¢) No.
d) 10.0.
10) The term variable scope refers to where a given variable can be accessed.
11) The answers are as follows:

a) in

214



Chapter 26 <« Appendix F — Quiz Question Answers

b) out
c) inout

12) The term side-effect is when a function changes one or more of its input arguments. In general,
this is considered poor practice and should be avoided.

26.16 Quiz Question Answers, Chapter 16

Quiz question answers for chapter 16 are as follows:
1) Anitem in a derived data type is referred to as a component.
2) Components in a derived data type are accessed with the %.

3) The definition is as follows:

type circle
character(20) :: name
real :: radius
integer :: x, y, X
end type circle

4) The declaration is as follows:

type(circle) :: ringl, ring2

5) The definition is as follows:

type planet
character(15) :: name
real :: radius, volume
end type planet

type(planet) :: earth, mars

6) The definition is as follows:

type date
character(10) :: monthname
integer :: month, day, year
end type date

7) The answers are as follows:

a) The statements are as follows:
type(date) :: today
today%monthname = "December"
today%month = 12

today%date = 25
today%year = 2013

215



Chapter 26 » Appendix F — Quiz Question Answers

b) The statements are as follows:

type(date) :: newyear

newyear$monthname = "January"
newyear$month = 1
newyear%date = 1
newyearg%$year = 2011

26.17 Quiz Question Answers, Chapter 17

Quiz question answers for chapter 17 are as follows:

1)

2)
3)
4)
5)
6)

The primary purpose for using a module is to allow the program to be split into multiple source
files.

The use <moduleName> statement must be used in the main program.
The module <moduleName> statement must be used in the main program.
Only one main program is allowed.

An unlimited number of modules is allowed.

Yes, the contains statement is required in the module.

26.18  Quiz Question Answers, Chapter 18

Quiz question answers for chapter 18 are as follows:

1)

2)
3)
4)
5)

6)

The two requirements for a recursive definition are a base case and rule, or set of rules, that
reduce toward the base case.

In recursion, the case for which a solution is obtained directly is called the base case.
The keyword recursive is required for a recursive subroutine.
The two keywords required for a recursive function are recursive and result.

There are no special requirements needed in the calling routine in order to call a recursive
subroutine or recursive function.

If a recursive routine does not stop recursing, it will recurse indefinitely, thus hanging the program
and producing no results. The program would need to be manually terminated.

216



Chapter 26 <« Appendix F — Quiz Question Answers

7) A complete recursion tree for the recursive Fibonnaci function with an input of 4 is as follows:

step 16

fib: | step9  step 12 | fib; o
s < T N
| fib(1) P i fip(Q) € 5
step 3 step 8 step 11 step 13
step 5 % o e % fib: 4 fib: fib:
fib(0) return 1 return 1 return O
step 4 Frereeeenens . step 7
I step 6 | : step 7
P fib: fib:
return 1 return O

26.19 Quiz Question Answers, Chapter 19

Quiz question answers for chapter 19 are as follows:
1) An internal read is required to convert an character string contain a numeric value.
2) An internal write is required to convert a real value into a character string.

3) The statement to convert the character string sSNum=“123" into an integer variable iNum is as
follows:

read (sNum, '()', iostat-cvtErr) iNum

217



Chapter 26 » Appendix F — Quiz Question Answers

4)

The statement to convert the integer variable iNum=234 into a character string sNum is as
follows:

write (sNum, '()', iostat=cvtErr) iNum

26.20 Quiz Question Answers, Chapter 20

Quiz question answers for chapter 20 are as follows:

1)

2)

3)

4)

5)

6)

7)

8)

Yes, the date alone be obtained (i.e., without obtaining the time) using the get_date_time()
system service.

The answers are as follows:
a) 2.
b) 5.
c 1.

The hours can obtained from the minutes by dividing by 60 and the minutes obtained by
mod(hours,60).

The statement is as follows:
call get_date_time(date=dStr)

The statement is as follows:

call get_date_ time(time=timeStr, zone=zoneStr)

The statement is as follows:

call get_date_time(values=valuesArr)
If there are no arguments entered on the command line, the get_command_argument() system
service call will return a 0.

The statement is as follows:

call get_command argument(number=3, value=arg3, &
length=arg3length, status=arg3stat)

218



27 _ Appendix G — Fortran 95/2003/2008 Keywords

In programming, a keyword is a word or identifier that has a special Fortran 95/2003/2008 meaning.
Keywords are reserved in that they cannot be used for anything else such variable names.

The Type as listed in the table refers to the following:

e statement — implies a keyword that starts a statement, usually one line unless there is a

continuation "&"

e construct — implies multiple lines, usually ending with "end ..."

e attribute — implies it is used in a statement to further clarify or specify additional
information.

For reference, below is a partial list of keywords or reserved words. For a complete list of keywords,

refer to the on-line GNU Fortran 95/2003/2008 documentation.

Keyword Type Meaning

allocatable attribute no space allocated here later allocate

allocate statement allocate memory space now for variable

assignment attribute means subroutine is assignment (=)

backspace statement back up one record

call statement call a subroutine

case statement used in select case structure

character statement intrinsic data type

close statement close a file

complex statement intrinsic data type

contains statement internal subroutines and functions follow

cycle statement continue the next iteration of a do loop
(skipping the subsequent statements)

deallocate statement free up storage used by specified variable

default statement in a select case structure - all others

do construct start a do loop

else construct part of if, else if, else, end if

else if construct part of if, else if, else, end if

elsewhere construct part of where, elsewhere, end where

end do construct ends do loop

219




Chapter 27 » Appendix G — Fortran 95/2003/2008 Keywords

end function construct ends function
end if construct ends if
end interface construct ends interface
end module construct ends module
end program construct ends program
end select construct ends select case
end subroutine construct ends subroutine
end type construct ends type
end where construct ends where
endfile statement mark the end of a file
exit statement continue execution outside of a do loop
format statement defines a format
function construct starts the definition of a function
if statement and if(...) statement

construct
implicit statement "none" is preferred to help find errors
in a keyword for the argument is read only

intent
inout a keyword for the argument is read/write

intent
integer statement intrinsic data type
intent attribute intent(in) or intent(out) or intent(inout)
interface construct begins an interface definition
intrinsic statement says that following names are intrinsic
inquire statement get the status of a unit
kind attribute sets the kind of the following variables
len attribute sets the length of a character string
logical statement intrinsic data type
module construct beginning of a module definition
namelist statement defines a namelist of input/output
nullify statement nullify a pointer
only attribute restrict what comes from a module
open statement open or create a file
operator attribute indicates function is an operator like +
optional attribute a parameter or argument is optional

220




Chapter 27 <« Appendix G — Fortran 95/2003/2008 Keywords

out a keyword for the argument will be written
intent
print statement performs output to screen
pointer attribute defined the variable as a pointer alias
private statement and in a module
attribute
program construct start of a main program
public statement and in a module - visible outside
attribute
read statement performs input
real statement intrinsic data type
recursive attribute allows functions and derived type recursion
result attribute allows naming of function result
return statement returns from exits subroutine or function
rewind statement move read or write position to beginning
select case construct start of a case construct
stop statement terminate execution of the main procedure
subroutine construct start of a subroutine definition
target attribute allows a variable to take a pointer alias
then construct part of if construct
type construct start of user defined type
use statement brings in a module
where construct conditional assignment
while construct a while form of a do loop
write statement performs output

221




Chapter 27 » Appendix G — Fortran 95/2003/2008 Keywords

222



Index

ABS(A) ettt 199p.
Accessing Array Elements..........cc.cc........ 102, 115
Accessing COMPONENLS......ccccceeuurvrerrreeeeeeeeennns 138
ACHAR(D)...eooeeeieeieeeeneeeeeeeeeee e 86, 200
ACOS(W)etitteteiteieeeeneeteete sttt 200
Actual arguments...........cccceeeeveerieriieenieensieeennns 124
Addition.......coccieeeiieeeieeeceeeeeee e 23
ADJUSTL(STR)..ceeeevieereeieeieeeeeieeeeenne 87, 201
ADJUSTR(STR)...ceviiieeiieeieeieeieeenn 87, 201
Advance clause..........ccceeeverrieeniieenieenieeeeeeeenn 75
AIMAG(Z) et 201
ALLOCAL.....eveeeieieeieeeeeeeee et 101
American Standard Code for Information

Interchange.........ccoeeeeeveeriiencieenieeieenee e 5
ATrgument COUNt........ueeerrrvreerrrirreeensirrreeeeeeeens 179
Argument Intent.........ccceeeeevvieeeeieeeeeeeeeeeeeennnn. 124
Argument Passing.........ccccceeervviveeersieeeeinninneenn. 125
ATGUMENLS. ....eeveeeeeiereeeeireeeeerirerreeeeeeeeeeeeeeenns 124
Array Declaration..........cccceeveeeeeeinveeennnn. 100, 113
ASCIL.uiiiiteeeeeeeee ettt 5
ASIN(W) ettt 200
ASSIGNMENL......ueriieeeiiieeeeriieeeerreeeeerreeeeeeeeeenns 23
ATAN(X).eeteeeeieeienieeieeteneeseeete e eseeessaee e 200
Base 10....cceuiiieiieeeeeeeeeeeeee e 4
Base 2. 5
Binary digit.......ccceeeveevieenienieiieeieeeeeeeee e 5
Binary NUMDETS......ccccveeeiieeriieeeeeeireee e 5
Bttt 5
BO0O0lean........ccoocuiiieiiieeieeeeeeee e 15
Byt 5
Call StatemeNt.........ceeeveeeeereereireeesreeescnrreeeeannnns 125
CASE statement..........cceeeveeeeeeeeeereseineeeereeeeeeen 50
Central Processing Unit..........cccccveerereeercreeennnnenn. 3
Chaos Game........ccceevueerieeiiieeriieeeiieeeseeee e 98
(O] - el (<) F U 15
Character constant............ccceeeeeeeeeeceeesveennnnne 22
Character format specifier..........ccccceevveeereeennnen. 74
Character Literals.........cccoevvervveereenrieeeeerieeeennne 22
Character Representation............ccccuveeeeeecvveeeennn. 5

223

Character String / Numeric Conversions......... 169
CMPLX(X,Y ) vteverreneeneenieneeneeneeneeseeseeenne 201
Command line arguments............cccceeunuee 175, 178
Command line options.........c.cceeeveerierreennennne 178
Command_argument_count().........cceccveeruveenn. 179
COMMAND_ARGUMENT_COUNT()........ 202
[070)1210) 1 1<) VRS STP 4
Compiler EITor........coocvevviienieeniieeeiieeeneee e 40
Compiling......ccoevvieeiieeiiieceieceeee e 9
Complex CONStANL........cccuereeeeceeereeeeireeeeiereeennns 22
Complex Literals.......cccceeeveeervieeenireeeseiireeeeeennns 22
Complex NUMDET..........cccceerierrrernrernieeerrreeennns 15
COMPONENL...ciiiiririererrireeeinirieeeeeeeeeeessssssnnnnns 137
Computer program..............eeeeeeeeeeeeeeeeeesssssnnennne 2
Conditional Controlled Looping.............c.uee.... 63
Conditional expression...........cocceeeeveeeeeerseveennnns 43
Conditional EXpressions..........ccceceeeevveeeecveeeennns 43
Conditionally Controlled Loop Example.......... 65
CONSLANL ..ottt 17
CONLAINS. ....eeiiiieiiiieiieereeceecee e 124
Coordinated Universal Time.........c..ccccceeuuneee. 175
COS(W).eteteteeteeteeeeeseeeete sttt 200
Counter Controlled Example..........cccccceeeveennnnn. 61
Counter Controlled Looping...........cccceeeveeennnee. 59
CPU_TIME(TIME)...cccooetirieienieeeieeeeeeenne 202
Cycle Statement............cccveerueerereeneersreeennneeennns 61
Date....cooooiiiieieeieee 175
DATE_AND_TIME......ccccceviiiriiieenreeeeenennn 202
Decimal Numbers........cccceevervieniieeneenieeeeeee 4
Declaration.........ceeeeveereeesieeneeeeiiee e e 138
Declarations, Extended Size Variables.............. 18
Definition......coocveerieeieeriecereeceee e 137
Derived Data TYPeS......cccceeeeveeriveeeeencnreeeeenn. 137
Direct access SIruCture.........ccceecveeeeeeveeeeernunnnne 99
DiSCriminant........ceeeeeveeereeieeeiieineeeeeeeeeeseneeee 47
DiSK dIiVe.....eeeieieiieieeierieeeeeteree e 3
DIVISION. ..ctiiiiiiiiiteeeieeeiteeete et e e 24
DO-100P...cceieeiieieeieeteeeete e 59
Dynamic Array Allocation..........ccc.c...... 101, 114



Chapter » Index

Dynamic Array Declaration............cccceerueenee. 101
Dynamic Declaration..........ccceceeeriveernveerennnen. 114
E-NOtation......cccovviiiiiiiiiiiiiiiciiceenieeeecees 21
EQUAl t0...eeiiiieiiieeeeecteeceee e 43
Error Terminology........ccocceevevernieniiennieeiniieenns 40
Escape character..........cccceevveeveveenciveeeeennnns 22,83
Executable file........ccccoovieriiiiniiniiiiiieieeee 9
EXit Statement........ccceevvveerrriveeereriieeeessssieneene 61
EXponentiation..........cceeeeveeeeeeeieeeeerenneeeeeenneeeennns 25
EXternal.......cccceeeiieeeiieenieeceiiieee e e 123
External declaration...........ccocceevueevieniienneennnee. 124
External Routines..........cccceevveervieeeiincineeeeennnns 124
Factorial function.........ccccceeeveeviiiieenniieennnen. 162
File OPeN....cccciiieiieeeiieeniieeriie e eeiveee e 91
Formal arguments...........cceeeereverneensieenneeennnen. 124
FORMAT statement........cccuveeeeeeeeeeeeeersssnssnnnnnne 71
FUunCtions........ccocceeviieiniieiniiciiecccieeeeee 125
Get_command_argument()........ccceeerveerrveeenne 179
GET_COMMAND_ARGUMNENT(NUMBER,

VALUE, LENGTH, STATUS)......ccccevcvveernnnen. 202
Get_date_time().....ccovveeeereeereeeecrreeeieeeereeeeenns 175
GINUPIOL...ceeteeeiiieeieeeteeeeeeeiee e e raeee s e 203
Greater than..........ceceeveevervieneeneniene e 43
Greater than or equal........ccccceevveeiviieeeiinnnnnnn. 43
Helper function........ccccceecveevieniienneenienieeeen, 163
Horizontal positioning specifier...............c........ 73
TACHAR(C) oottt 86, 200
IF Statement.........cceeevveeeenriuieeriniiieeeeeeeessienene 45
IF THEN ELSE IF statement.............cccccveeennuee. 46
IF THEN ELSE statement..........cccceeeeeriivuennnee 45
IMPLICIT NONE......ccccctiiiiiinieierieeeeeeeeenn 15
IMPLiCit tYPING..ccevreeeiieeriieeriieeeieeeeeiireee e 15
Implied do-100P.......cooeerierriiiieiieeeieeee, 103
INA@X..eiieiiieeieecieeeeeeee et 99
INT(A) ettt 199
INEEGOT..ceeiiiieeieeeeeeeee e 14
Integer CONSLantS.........eeeeeeeeveeererieeeereeieeeeeeeennnne 21
Integer format specifier.........ccccecueeeeveeeeireennnee. 72
Integer Literals........ccoceevienieeniiieniiieeerieeeeee 21
INEENt(IN).uveerereeeiieeriieenieeeriee e sreee e 124
INtent(inOUL)....ccuveeeeeeciiieeeciree e, 124
INENt(OUL).ceuereeeiieeriieeeiieeeee e erereee e 124
Interface bloCK........cceervveeieninnieniiienieeeenee 124
Internal.......ccceeeviieiiieeeiieecieceeeece e 123
Internal read........coccevveevierienennieniieeeneeeene 169
Internal Routines...........cceevveevviveeeeieninneeerennns 124
Internal WIite........covvveevieriieenieceieeeeeee e, 169

224

Intrinsic FUNCtionS..........ceevvvvvvvevevvvnneennneen. 26, 126
LOStAL. ettt 169
Irrational numbers.........c.cccoevveriieinriieiniieeee, 15
Keyword......cccoveeeeuieeniieeniiecnieee e 14, 219
KiNd. .o 19
Kind specifier........cccceeveenieeciienieeeiee e 19
LEN_TRIM(STR)...coverierreeieeerieeeeeneen. 86, 200
LEN(STR).cueeitieieeeienteeeieeeeeeeeeeen 86, 200
Less than.....cceeeererrierieeeieceeeeereeeeee e 43
Less than or equal........cccccceeeeieeiniiieinieennieeeenn. 43
LGE(STR1,STR2)..ccceiiiriinieienicneeieeseeenee 200
LGT(STR1,STR2)..coouiiiieiiieeriereeieeseeene 200
LAterals....cceevueeeenerieneeieeteseesie e 21
LLE(STR1,STR2)..ccceeiieiiiieieeeieeeieeeeeene 201
LLT(STR1,STR2)..ccutivvieieeeiinieneeieeeeneeenee 201
LOG(W)etttteteiteteieeteeee ettt 200
LOGIC EITON.....eiiiiiiieeieeeeeecteee e 41
| 0 A (e | OO PRSPPN 15
Logical constant..........cceceereeerciieesriieeeenieeeennne 23
Logical Constants.........cceceevveeeeveeenveeeseneeesennnnns 23
Logical format specifier........c..ccecceeeveervvennnnene 74
Logical Operators..........cceecveereveeesveessnneeeeeannnns 44
| 070 ] 3 R R SO U PP PP PP PPPPPPTPPRRRRRRRIN 59
Machine language...........ccceecveeveieeniieencieeniieenne 4
Magic SqUare.........ccoeevveeeererieeeneeeeeeeeeeeenns 121
MAXLOC(AL)eeiteieeienteieeieneeiee et 201
MAXVAL(AL) oottt 201
MAXVAL(ARRD).cueiiiiiiriieeieieeeeeee e 103
MINLOC(AL)couteveeieneeriereeneereeeieseeseeseeeaee 201
MINVAL(AL) oottt 201
MINVAL(ARRI)...cooiiiiriirieieeieneeeneeeeeae 103
MOD(R1,R2).ccuiiiiiiinienieienieneeeeeesene 199p.
Module file.......covevieviiniiniiineeeee 153
MoOdUles.......ccoecvieimieeiriieiieeeiee e 151
Monte Carlo.......ccceeveererneeneeneeieneeseneeeieene 116
Multidimensional ArTays.......ccccceceeeveeeeersnnnnen. 113
Multiplication......c.cceevierrieenienieirieerieee e 24
ININT(X) v eeeeeieenieeiesieenieeieseesie et 199
INOt €qUAL t0..ccuveerieieeieeeeeieeee e 43
Object file.....ccieeieeiierieeieeceeeeeeeeee e 152
OPperands........ceeeeeecuerreeniieenienieeneesieeseesaeenes 43
Operating SYSteIM......ccoeevuveeerrrvreerrsrriiernrereeeeeeens 2
Order of Operations..........ccccceeeveerierieeneensuneenn. 25
Parameter..........cccueeeeeeiiiiiiniiiiiiiiiieeeeeeee 17
Pi eStimation.........cccceevveiineeinniieniiniiecenneeeee, 117
Primary Storage........ccceeeveveeeennieeeeiniineeeeeeseene 3
Print Binary......ccccceeveeeeeeeiiiieeeeeeeeeeeeeeceee 160



Program Layout........ccceeevveeiieiieeenciiieeeeeeennn. 123
Program Statement..........ccceeeveuveeeireeecieninneneneeen. 7
Pythagorean theorem...........ccccceeeueerveeinineenns 116
Quadratic equation..........ccceeeveeeeeeeecvreeeeeenennnne 47
Random Access Memory.........cccceeeeerveereeennennnes 3
Random_number()......ccccceeeeveerrieenceeenieeennnen. 195
Random_seed()......ccceeevvveervreenreeeciee e 195
Rational numbers..........ccceevveereieeeiiieeeiieeeeieenne 15
Read statement..........cocceveeveereeenneensieensieennieenne 32
Real CconStants........ccoccvueeeeieeercieeenieeenieeeeieeeeenns 21
Real format specifier..........ccccceeveieeriveeeninennnnne. 73
Real Literals........ccceeeieerciieeniiieeeceiiieee e 21
Real number2..........ccocevviiiniiiiniiiiiieecieeee 15
REAL(A). e eteteeeteeeeeteree et 201
ReCursion.........ccoeeeeeviieiniicniiiciicccec e, 159
Recursive Factorial.......ccccceeeviieinviieiniieennnnnnn. 162
Recursive relation...........ccceeeeevverreenciennieennnen. 159
Recursive subroutine..........ccccceeeeveeeeenenneeeenn. 159
Relational Operation..........ccceceevvercieeneernneennnen. 43
Relational Operator...........cccceeevveeeeeencnreeeeennnnnns 43
Relational Operator (alternate).........c..ccceevveenee 43
Result variable..........cccoocveeviieiniieenieeeiieeee, 162
Run-time EITOT......ccooovvieiiiiiiiiiieeeeieeeeeeeeeee 40
SCOPE...eteeetteeeetee et 124
Secondary source file.........cccoeeveerriieriniiiennnnne 151
Secondary StOrage.........cceeeeereeeerceeeniveeesenneeeeenns 3
SELECT CASE Statement.......cccccccuvveveeeeeeeeenn. 50
Selector LiStS....cccuueerueeeriieerieee e 51
Side Effects....ccccoeeevenvienieniniinicreeieeeeee 126
Side-€ffecCt.....cuuecuueeieacriieieecieeieeieere e, 126
SIN(W) .ttt 200
Single Dimension Arrays.......ccceecveeeeeesceveeeeenn. 99
Solid-State DIive........cccceeveercieereeeiieeriieeenieeeenne 3
SOUTCe file...ccovieeiieiieeieeeece e 8
SQRT(W).eeeiiieiieenteneteeeeeeeeeieeee e 200
Static Array Declaration.........ccccceeeevvvveeeeennnnns 100
Static Declaration............ccevveueeereeeevennnnn.. 100, 114
Stop Statement.......cccuveeereriveeeiriineeeneieee e 92
STNG..eeeeieeiieeeeeeeeeee e 31
SHINGS.ceiiiiiieeieiteeeeeeeree e 15
Subprogram TYPeS.......ccceevveerueerverieerieesnineennns 123

225

Chapter <« Index

SUDPIOGIramS......ceeverrererieeriienrerrieesieesieesaeenns 123
SUDIOULINES.....vvveeieiiiiieiierieeeec e, 127
SUDSCIIPL.cvteeiierieeieeste ettt 99
Y0107 (a8 (0) 1 VRN 24
SUMU(ALD) ettt eee e e vee e 201
SUM(ARRI)..c..oiitieiecreeceeeiee e 103
System Services.........cceeeevuveeeeeieeeernnneeeerennnnne 175
TAN(X) e eotteetieeieeeieeeeeereeeereeeecve e e srree e eveees 200
Terminal Window.........ccceeeeeeevieeeeciveeeeenneee. 191
TIME.oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 175
TRIM(STR)..oceecieeeieeeteeeeeeeee e, 87, 201
Type ChecKing........ccceevueeerviieiiiiieeiieeerieeeeieeennn 16
Type declaration............cceecveeveercureernnieennnieennns 16
Unit DUMDET.......ovvvveiieeiiiieceeeeee e 91
Use Statement.......ccceeeeeeereieieieieieieieeceececeneeeens 152
User-Defined Functions...........ccccceeeeeeeeeeeeenne. 126
Using Functions and Subroutines.................... 124
Values array......ccceecveeeeveeenveeesveeesnneeeeessenvnnnns 175
Variable Ranges.........cccoccveveiernieniiennieniieeeenennn 16
Variable Scope........cccoveeeiiencieinieereeeeeeenn 124
Whole number...........ccovveeeeviieeeeeiieeeeeeeeeeeee, 14
Write Statement..........eeeeeeveeeeeeeeeeeeeeeeeeeeeeereeeeennns 31
D Calo e [T OOSR N 188, 192
D (0o 16 (TR 190
o) 1 (T 175
=Y 3 ¢ PO TSR RUURRRRN 44
< O PRSP PPPPPPPPPP 43
e ettt et e e s b e e e e e e eeee s 43
N E S PP PSP RRRPPPPPPP 43
B 43
e 43
N 31T U U USROS 43
8 310 ] P U U UUU U 44
o) VTSSO RPURURPRt 44
T eeter ettt e e e e e e eea——— e e e e —ree e e arareeenarareeeenrees 43
ettt eeee et e e et e e ee et e e e e e raae e e eenaaeeeeeateeeeenraranes 43
o ettt et e e et e e e et e e e e e e e e e e e aaarrrraaaraaaas 43
T tteeererrreeessareeesearreeesebareeeseessssssssarrraararereeees 43
> e eee— e e e e e e e eee——eeeee bt e eeeaaaeeeentraeeeennrraaes 43
et e e e e e e e e et e e e e a—baarraaaaaes 43



	1 Introduction
	1.1 Why Learn Programming
	1.2 Fortran
	1.3 Complete Fortran 95/2003/2008 Documentation
	1.4 What Is A Program
	1.5 Operating System

	2 Computer Organization
	2.1 Architecture Overview
	2.2 Compiler
	2.3 Information Representation
	2.3.1 Decimal Numbers
	2.3.2 Binary Numbers
	2.3.3 Character Representation

	2.4 Exercises
	2.4.1 Quiz Questions


	3 Getting Started
	3.1 Required Skills
	3.2 Program Formats
	3.2.1 Program Statement
	3.2.2 Comments
	3.2.3 Simple Output
	3.2.4 Example – First Program

	3.3 Text Editor
	3.4 Compiling
	3.4.1 Advanced Compiler Options

	3.5 Executing
	3.6 Exercises
	3.6.1 Quiz Questions
	3.6.2 Suggested Projects


	4 Fortran 95/2003/2008 – Basic Elements
	4.1 Variables
	4.1.1 Variable Names
	4.1.2 Keywords

	4.2 Data Types
	4.2.1 Integer
	4.2.2 Real
	4.2.3 Complex
	4.2.4 Character
	4.2.5 Logical
	4.2.6 Historical Data Typing

	4.3 Declarations
	4.3.1 Declaring Variables
	4.3.2 Variable Ranges
	4.3.3 Type Checking
	4.3.4 Initialization
	4.3.5 Constants

	4.4 Comments
	4.5 Continuation Lines
	4.5.1 Example

	4.6 Declarations, Extended Size Variables
	4.6.1 Integers
	4.6.2 Real

	4.7 Exercises
	4.7.1 Quiz Questions
	4.7.2 Suggested Projects


	5 Expressions
	5.1 Literals
	5.1.1 Integer Literals
	5.1.2 Real Literals
	5.1.2.1 E-Notation

	5.1.3 Complex Literals
	5.1.4 Character Literals
	5.1.5 Logical Constants

	5.2 Arithmetic Operations
	5.2.1 Assignment
	5.2.2 Addition
	5.2.3 Subtraction
	5.2.4 Multiplication
	5.2.5 Division
	5.2.6 Exponentiation

	5.3 Order of Operations
	5.4 Intrinsic Functions
	5.4.1 Mathematical Intrinsic Functions
	5.4.2 Conversion Functions
	5.4.3 Summary

	5.5 Mixed Mode
	5.6 Examples
	5.7 Exercises
	5.7.1 Quiz Questions
	5.7.2 Suggested Projects


	6 Simple Input and Output
	6.1 Output – Write
	6.1.1 Output – Print

	6.2 Input – Read
	6.3 Example
	6.4 Exercises
	6.4.1 Quiz Questions
	6.4.2 Suggested Projects


	7 Program Development
	7.1 Understand the Problem
	7.2 Create the Algorithm
	7.3 Implement the Program
	7.4 Test/Debug the Program
	7.4.1 Error Terminology
	7.4.1.1 Compiler Error
	7.4.1.2 Run-time Error
	7.4.1.3 Logic Error


	7.5 Exercises
	7.5.1 Quiz Questions
	7.5.2 Suggested Projects


	8 Selection Statements
	8.1 Conditional Expressions
	8.2 Logical Operators
	8.3 IF Statements
	8.3.1 IF THEN Statement
	8.3.1.1 IF THEN Statement, Simple Form

	8.3.2 IF THEN ELSE Statement
	8.3.3 IF THEN ELSE IF Statement

	8.4 Example One
	8.4.1 Understand the Problem
	8.4.2 Create the Algorithm
	8.4.3 Implement the Program
	8.4.4 Test/Debug the Program

	8.5 SELECT CASE Statement
	8.6 Example Two
	8.6.1 Understand the Problem
	8.6.2 Create the Algorithm
	8.6.3 Implement the Program
	8.6.4 Test/Debug the Program

	8.7 Exercises
	8.7.1 Quiz Questions
	8.7.2 Suggested Projects


	9 Looping
	9.1 Counter Controlled Looping
	9.2 EXIT and CYCLE Statements
	9.3 Counter Controlled Example
	9.3.1 Understand the Problem
	9.3.2 Create the Algorithm
	9.3.3 Implement the Program
	9.3.4 Test/Debug the Program

	9.4 Conditional Controlled Looping
	9.5 Conditionally Controlled Loop Example
	9.5.1 Understand the Problem
	9.5.2 Create the Algorithm
	9.5.3 Implement the Program
	9.5.4 Test/Debug the Program

	9.6 Exercises
	9.6.1 Quiz Questions
	9.6.2 Suggested Projects


	10 Formatted Input/Output
	10.1 Format
	10.2 Format Specifiers
	10.3 Integer Format Specifier
	10.4 Real Format Specifier
	10.5 Horizontal Positioning Specifiers
	10.6 Logical Format Specifier
	10.7 Character Format Specifier
	10.8 Advance Clause
	10.9 Example
	10.9.1 Understand the Problem
	10.9.2 Create the Algorithm
	10.9.3 Implement the Program
	10.9.4 Test/Debug the Program

	10.10 Exercises
	10.10.1 Quiz Questions
	10.10.2 Suggested Projects


	11 Characters and Strings
	11.1 Character and String Constants
	11.2 Character Variable Declaration
	11.3 Character Variable Initialization
	11.4 Character Constants
	11.5 Character Assignment
	11.6 Character Operators
	11.7 Character Substrings
	11.8 Character Comparisons
	11.9 Intrinsic Character Operations
	11.10 Example
	11.10.1 Understand the Problem
	11.10.2 Create the Algorithm
	11.10.3 Implement the Program
	11.10.4 Test/Debug the Program

	11.11 Exercises
	11.11.1 Quiz Questions
	11.11.2 Suggested Projects


	12 File Operations
	12.1 File Open
	12.2 File Write
	12.3 Stop Statement
	12.4 File Read
	12.5 Rewind
	12.6 Backspace
	12.7 Close File
	12.8 Example
	12.8.1 Understand the Problem
	12.8.2 Create the Algorithm
	12.8.3 Implement the Program
	12.8.4 Test/Debug the Program

	12.9 Exercises
	12.9.1 Quiz Questions
	12.9.2 Suggested Projects


	13 Single Dimension Arrays
	13.1 Array Declaration
	13.1.1 Static Declaration
	13.1.2 Static Array Declaration
	13.1.3 Dynamic Array Declaration
	13.1.3.1 Dynamic Array Allocation


	13.2 Accessing Array Elements
	13.2.1 Array Bounds

	13.3 Implied Do-Loop
	13.4 Intrinsic Functions
	13.5 Initializing Arrays
	13.6 Example
	13.6.1 Understand the Problem
	13.6.2 Create the Algorithm
	13.6.3 Implement the Program
	13.6.4 Test/Debug the Program

	13.7 Arrays of Strings
	13.8 Exercises
	13.8.1 Quiz Questions
	13.8.2 Suggested Projects


	14 Multidimensional Arrays
	14.1 Array Declaration
	14.1.1 Static Declaration
	14.1.2 Dynamic Declaration
	14.1.3 Dynamic Array Allocation

	14.2 Accessing Array Elements
	14.3 Example
	14.3.1 Understand the Problem
	14.3.2 Create the Algorithm
	14.3.3 Implement the Program
	14.3.4 Test/Debug the Program

	14.4 Exercises
	14.4.1 Quiz Questions
	14.4.2 Suggested Projects


	15 Subprograms
	15.1 Subprogram Types
	15.2 Program Layout
	15.2.1 Internal Routines
	15.2.2 External Routines

	15.3 Arguments
	15.3.1 Argument Intent

	15.4 Variable Scope
	15.5 Using Functions and Subroutines
	15.5.1 Argument Passing

	15.6 Functions
	15.6.1 Intrinsic Functions
	15.6.2 User-Defined Functions
	15.6.2.1 Side Effects


	15.7 Subroutines
	15.8 Example
	15.8.1 Understand the Problem
	15.8.2 Create the Algorithm
	15.8.3 Implement the Program
	15.8.4 Test/Debug the Program

	15.9 Exercises
	15.9.1 Quiz Questions
	15.9.2 Suggested Projects


	16 Derived Data Types
	16.1 Definition
	16.2 Declaration
	16.3 Accessing Components
	16.4 Example One
	16.4.1 Understand the Problem
	16.4.2 Create the Algorithm
	16.4.3 Implement the Program
	16.4.4 Test/Debug the Program

	16.5 Arrays of Derived Data
	16.6 Example Two
	16.6.1 Understand the Problem
	16.6.2 Create the Algorithm
	16.6.3 Implement the Program
	16.6.4 Test/Debug the Program

	16.7 Exercises
	16.7.1 Quiz Questions
	16.7.2 Suggested Projects


	17 Modules
	17.1 Module Declaration
	17.2 Use Statement
	17.3 Updated Compilation Commands
	17.4 Module Example Program
	17.4.1 Understand the Problem
	17.4.2 Create the Algorithm
	17.4.3 Implement the Program
	17.4.3.1 Main Program
	17.4.3.2 Module Routines

	17.4.4 Compile the Program
	17.4.5 Test/Debug the Program

	17.5 Exercises
	17.5.1 Quiz Questions
	17.5.2 Suggested Projects


	18 Recursion
	18.1 Recursive Subroutines
	18.2 Recursive Print Binary Example
	18.2.1 Understand the Problem
	18.2.2 Create the Algorithm
	18.2.3 Implement the Program
	18.2.4 Test/Debug the Program

	18.3 Recursive Functions
	18.4 Recursive Factorial Example
	18.4.1 Understand the Problem
	18.4.2 Create the Algorithm
	18.4.3 Implement the Program
	18.4.4 Test/Debug the Program

	18.5 Recursive Factorial Function Call Tree
	18.6 Exercises
	18.6.1 Quiz Questions
	18.6.2 Suggested Projects


	19 Character String / Numeric Conversions
	19.1 Character String to Numeric Conversion
	19.2 Numeric to Character String Conversion
	19.3 Exercises
	19.3.1 Quiz Questions
	19.3.2 Suggested Projects


	20 System Services
	20.1 Date and Time
	20.1.1 Date and Time Options
	20.1.2 Date and Time Example Program

	20.2 Command Line Arguments
	20.2.1 Argument Count
	20.2.2 Get Arguments
	20.2.3 Command Line Arguments, Example Program

	20.3 Exercises
	20.3.1 Quiz Questions
	20.3.2 Suggested Projects


	21 Appendix A – ASCII Table
	22 Appendix B – Start-Up Instructions
	22.1 Working Files
	22.2 Obtaining The Compiler
	22.2.1 Windows Download and Install
	22.2.2 MacOS Download and Install

	22.3 Windows Compilation
	22.3.1 Command Prompt Window
	22.3.2 Device and Directory
	22.3.3 Compiler Installation Verification
	22.3.4 Compilation
	22.3.5 Executing
	22.3.6 Example

	22.4 MacOS Compilation
	22.4.1 Terminal Window
	22.4.2 Device and Directory
	22.4.3 Compiler Installation Verification
	22.4.4 Compilation
	22.4.5 Executing
	22.4.6 Example


	23 Appendix C – Random Number Generation
	23.1 Initialization
	23.2 Generating Random Number
	23.3 Example
	23.4 Example

	24 Appendix D – Intrinsic Functions
	24.1 Conversion Functions
	24.2 Integer Functions
	24.3 Real Functions
	24.4 Character Functions
	24.5 Complex Functions
	24.6 Array Functions
	24.7 System Information Functions

	25 Appendix E – Visualization with GNUplot
	25.1 Obtaining GNUplot
	25.2 Formatting Plot Files
	25.2.1 Header
	25.2.2 Footer

	25.3 Plotting Files
	25.4 Example
	25.4.1 Plot Program
	25.4.2 Plot File
	25.4.3 Plot Output


	26 Appendix F – Quiz Question Answers
	26.1 Quiz Question Answers, Chapter 1
	26.2 Quiz Question Answers, Chapter 2
	26.3 Quiz Question Answers, Chapter 3
	26.4 Quiz Question Answers, Chapter 4
	26.5 Quiz Question Answers, Chapter 5
	26.6 Quiz Question Answers, Chapter 6
	26.7 Quiz Question Answers, Chapter 7
	26.8 Quiz Question Answers, Chapter 8
	26.9 Quiz Question Answers, Chapter 9
	26.10 Quiz Question Answers, Chapter 10
	26.11 Quiz Question Answers, Chapter 11
	26.12 Quiz Question Answers, Chapter 12
	26.13 Quiz Question Answers, Chapter 13
	26.14 Quiz Question Answers, Chapter 14
	26.15 Quiz Question Answers, Chapter 15
	26.16 Quiz Question Answers, Chapter 16
	26.17 Quiz Question Answers, Chapter 17
	26.18 Quiz Question Answers, Chapter 18
	26.19 Quiz Question Answers, Chapter 19
	26.20 Quiz Question Answers, Chapter 20

	27 Appendix G – Fortran 95/2003/2008 Keywords
	Index

