# EE 741

# Power Quality & System Reliability

# Definition

- **Power Quality** can be defined as the goodness of the electric power supply in terms of its voltage and current wave-shapes, its voltage regulation, continuity of power supply and its frequency.
- **Perfect Power** refers to an ideal case where the voltage and current waveforms are balanced and sinusoidal, with constant amplitude and constant frequency.
- Power Quality Problem refers to deviations of the above variables that result in failure or unsatisfactory operation of the customer's equipment.

## Types of Disturbances: Harmonic Distortion



# Impact of Harmonics

- Source of Harmonics: Mainly modern electronic loads
- Impact of Harmonics: capacitor overload by harmonic currents, additional losses (heat) in transformers, motors, cables, etc..., neutral conductor overloading, ....
- Transformer Derating:
  - K-Factor

Derating Factor

 $K = \frac{(\sum_{i=1,3,...} i^2 I_i^2)}{(\sum_{i=1,3,...} I_i^2)}$ 

$$TD = \sqrt{\frac{(1+P_{ec})}{(1+KP_{ec})}}$$

 $P_{ec}$  = transformer eddy current loss

- K-factor transformers: The K-factor rating is an index of the transformer's ability to withstand harmonic content while operating within the temperature limits of its insulating system (see UL1561).
- Harmonic Amplification (resonance): Parallel resonance of shunt capacitors with source impedance magnifies can cause excessive distortion in the voltage.

## Harmonic Currents Cause Harmonic Voltages



Power Definitions in Non-Sinusoidal Cases

$$P = \sum_{i=1,3,5,...} V_i I_i \cos(\theta_i - \varphi_i)$$
  

$$Q = \sum_{i=1,3,5,...} V_i I_i \sin(\theta_i - \varphi_i)$$
  

$$S = V_{rms} I_{rms} = \sqrt{\sum_{i=1,3,5,...} V_i^2 \sum_{i=1,3,5,...} V_i^2} = \sqrt{P^2 + Q^2 + D^2}$$
  

$$TPF = \frac{P}{S},$$
  

$$DPF = \frac{P_1}{S_1} = \cos(\theta_1 - \varphi_1)$$

# Harmonic Distortion Limits (IEEE Std. 519)

Harmonic Current Limits for Non-Linear Load at the Point-of-Common-Coupling with Other Loads, for voltages 120 - 69,000 volts

Maximum Odd Harmonic Current Distortion in % of Fundamental Harmonic Order

| ISC/IL   | <11 | 11<17 | 17<23 | 23<35 | 35  | TDD |
|----------|-----|-------|-------|-------|-----|-----|
| <20*     | 4   | 2     | 1.5   | 0.6   | 0.3 | 5   |
| 20<50    | 7   | 3.5   | 2.5   | 1     | 0.5 | 8   |
| 50<100   | 10  | 4.5   | 4     | 1.5   | 0.7 | 12  |
| 100<1000 | 12  | 5.5   | 5     | 2     | 1   | 15  |
| >1000    | 15  | 7     | 6     | 2.5   | 1.4 | 20  |

| Bus Voltage at Point of Common Coupling                                                                                                                       | Individual<br>Voltage<br>Distortion (%) | Total VoltageDistortion<br>THD (%) |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|--|--|
| Below 69 kV                                                                                                                                                   | 3                                       | 5                                  |  |  |
| 69 kV to 137.9 kV                                                                                                                                             | 1.5                                     | 2.5                                |  |  |
| 138 kV and above                                                                                                                                              | 1                                       | 1.5                                |  |  |
| Note: High Voltage systems can have up to 2.0% THD where the cause is a High Voltage DC terminal<br>which will attenuate by the time it is tapped for a user. |                                         |                                    |  |  |

# IEEE Standard 519-2014

Compliances, Updates, Solutions and Case Studies

• See link below.

http://www.schneider-

electric.com.tw/documents/Event/2016\_electrical\_engineering \_seminar/IEEE\_STD\_519\_1992vs2014.pdf

# Types of Disturbances: Sags & Swells



sags and swells – depends on duration: see (ITI Curve) to the right.



#### Types of Disturbances: Imbalance



#### % voltage imbalance = Maximum deviation from the average ÷ average × 100

| % Voltage Imbalance | % Motor Winding Temperature<br>Increase |
|---------------------|-----------------------------------------|
| 2%                  | 8%                                      |
| 3%                  | 18%                                     |
| 4%                  | 32%                                     |
| 5%                  | 50%                                     |
| 6%                  | 72%                                     |
| 7%                  | 98%                                     |
| 8%                  | 128%                                    |

#### Other Disturbances: Momentary Transients









### Harmonic Filtering (Passive)



## Harmonic Filtering (Active)







FIGURE 8. Active filter.

#### Worst Type of Disturbance: Power Outage







**Causes of outages:** Lightning, tree contact, animals, ice/snow, vandalism, construction activity, vehicle accident, wind, equipment failure, etc...

**Sustained interruption:** lasting more than 5 min **Momentary interruption:** lasting less than 5 min

# (Sustained) Distribution Reliability Indices

 SAIFI (System Average Interruption Frequency Index). This is the average frequency of sustained interruptions per customer.

 $SAIFI = \frac{Total Number of Customer Interruptions}{Total Number of Customers Served} = \frac{\sum N_i}{N_T}$ 

SAIDI (System Average Interruption Duration Index). Average time the customers are interrupted.

 $SAIDI = \frac{Total \, Duration of \, Customer \, Interruptions}{Total \, Number \, of \, Customers \, Served} = \frac{\sum r_i N_i}{N_T}$ 

Where r<sub>i</sub> is the restoration time of i-th interruption

- ASAI (Average Service Availability Index)

 $ASAI = \frac{Customer Hours Service Availability}{Customer Hours Service Demand} = \frac{N_T \cdot 8760 - \sum r_i N_i}{N_T \cdot 8760}$ 

# (Sustained) Distribution Reliability Indices

 CAIDI (Customer Average Interruption Duration Index). Average time required to restore service to the average customer per interruption.

 $CAIDI = \frac{Total \ Duration \ of \ Customer \ Interruptions}{Total \ Number \ of \ Customer \ Interruptions} = \frac{\sum r_i N_i}{\sum N_i} = \frac{SAIDI}{SAIFI}$ 

CAIFI (Customer Average Interruption Frequency Index)

 $CAIFI = \frac{Total \, Number \, of \, Customer \, Interruptions}{Total \, Number \, of \, Customers \, Interrupted} = \frac{\sum N_i}{CN}$ 

#### Example

| Table 1<br>Calculation of Customer-Hours |       |           |          |                    |  |
|------------------------------------------|-------|-----------|----------|--------------------|--|
| Date                                     | Time  | Customers | Duration | Customer<br>-hours |  |
| 28th                                     | 9:53  | 10        | 90       | 15.00              |  |
| 28th                                     | 11:02 | 1,000     | 20       | 333.33             |  |
| 28th                                     | 13:15 | 2         | 175      | 5.83               |  |
| 28th                                     | 20:48 | 1         | 120      | 2.00               |  |
| 28th                                     | 22:35 | 1         | 38       | 0.63               |  |
|                                          |       | -         |          |                    |  |

| 1,014 445 550.80 |  | 1,014 | 443 | 356.80 |
|------------------|--|-------|-----|--------|
|------------------|--|-------|-----|--------|

Let total number of customers served  $N_T = 50,000$ 

SAIDI = 356.8\*60/50000 = 0.43 min CAIDI = 356.8\*60/1014 = 21.1 min SAIFI = 1014/50000 = .02 CAIFI = 5/1014 = .005 ASAI = 99.97%

#### Series Unrepairable Components



#### **Unrepairable Parallel Components**



#### **Repairable Series Components**



Failure rate : 
$$\lambda_{sys} = \sum_{i=1}^{n} \lambda_i$$
  
Mean time to repair:  $r_{sys} = \frac{1}{\lambda_{sys}} \sum_{i=1}^{n} \lambda_i r_i$ 

#### **Repairable Parallel Components**

Failure rate: 
$$\lambda_{sys} = \frac{\lambda_1 \lambda_2 (r_1 + r_2)}{1 + \lambda_1 r_1 + \lambda_2 r_2}$$

Mean time to repair:  $r_{sys} = \frac{r_1 r_2}{r_1 + r_2}$ 

#### Use binomial distribution for n > 2

