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Chap. 5: Electromechanical Dynamics



introduction

* |In this chapter, a longer time scale is considered during
which the rotor speed will vary (order of seconds — 10s’
of seconds - transient period).

 The change in rotor speed interacts with the electro-
magnetic changes to produce electro-mechanical
dynamic effects.

 Some important stability concepts will be introduced
mathematically with physical implications.



Swing equation

e Rotor dynamic equation (Newton’s Law on motion):
A,

dt

J + Dyjwy, =1, — Te, (3.1)

where J is the total moment of inertia of the turbine and generator rotor (kg m?), w,, is the rotor shaft
velocity (mechanical rad/s), 1 1s the torque produced by the turbine (N m), t. is the counteracting

electromagnetic torque and Dy is the damping-torque coefficient (N ms) and accounts for the
mechanical rotational loss due to windage and friction.

* At steady state, w, = w,,, and

sm’

T =T+ Dy OF Ty =T — Dy = T, (3.2)

where 1., i1s the net mechanical shaft torque, that is the turbine torque less the rotational losses at
Wy, = Wey. [t1s this torque that 1s converted into electromagnetic torque. If, due to some disturbance,
T, > T. then the rotor accelerates: if T, < 7. then 1t decelerates.

* Rotor speed:

d I1|;ﬁ'lm

- (5.3)

Wy = Wsm + ﬂll':"-*"m = Wsm +

where &, 1s the rotor angle expressed in mechanical radians and Aw,, = dd,,/d is the speed deviation
in mechanical radians per second.



Swing Equation

e After substitution,

dz IEF:'Lm dﬁm ST sm
+ sm Dd — @ Pm — @

¢ Om P 5.6
ds? dt Wy m ( )

Jwg,

where P, is the net shaft power input to the generator and P, is the electrical air-gap power, both
expressed in watts. During a disturbance the speed of a synchronous machine is normally quite
close to synchronous speed so that w,, =~ w,, and Equation (5.6) becomes

dz am dﬁm
Jmsm i1 Wsm D
12 * 4 di

— P, — P. (5.7)

The coefficient Jow.,, 1s the angular momentum of the rotor at synchronous speed and, when given
the symbol M, allows Equation (3.7) to be written as

d*s, ddm
M == Pm - PE' - Dm [
dt

Todr2

(5.8)

where D, = w,, Dy 1s the damping coefficient. Equation (3.8) is called the swing equation and is the
fundamental equation governing the rotor dynamics.



Swing Equation
* I|nertia constant:

The inertia constant is given the symbol H defined as the stored kinetic energy in
megajoules at synchronous speed divided by the machine rating S, in megavolt-amperes so that

0.5J? 2H
e R P ) (5.9)
mErﬂ

The units of H are seconds.

the power angle and angular speed can be expressed in electrical ra-
lians and electrical radians per second respectively, rather than their mechanical equivalent, by
ubstituting

Em d_ mﬁ]‘ﬂ
= and g = ;
p/2 p/2

vhere p 1s the number of poles. Introducing the inertia constant and substituting Equations (5.11)
nto Equation (5.8) allows the swing equation to be written as

é

(5.11)

EH& d- +DE — Pm — Pe
w, dr? dt

where D, the damping coefficient, 1s D = 2D, /p.



Swing Equation

The equations in (3.12) can be rationalized by

defining an inertia coefficient M and damping power Pp such that
_2HS, TS, s

— . D — Ty s

Wy (W dt
when the swing equation takes the common form

2

M —
di?

Pm - Pe_ PD - -Hil.'x.".-

(5.13)

(5.14)

where P,.. 1s the net accelerating power. The time derivative of the rotor angle dé/dt = Aw =
w — ws 18 the rotor speed deviation in electrical radians per second. Often it is more convenient to

replace the second-order differential equation (3.14) by two first-order equations:

dAw
—:-P].‘I'L_PE_P:PH.CC
dt P

ds

— = Aw.
dt @

(5.15)



Damping Power

* Assumptions:
(1) the resistances of both the armature and the field winding are neglected;
(1) damping is produced only by the damper windings;
(111) the leakage reactance of the armature winding can be neglected;
(1v) excitation does not affect the damping torque.

* Generator equivalent circuit resembles that of an induction motor:
— When ignoring rotor saliency, S = Aw/w;
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Damping power

— With rotor saliency, the following formula is derived when using d-q axis
decomposition — note the dependency on rotor angle 6.

f 4 X -X' X T'A
Ph=V Xy = & X:{ 1iAw _sin®§ 4+ —1 1 c: q 2% _cos” 8 |.
(X+ X3)" Xi 1+ (T Aw)’ (X+ X)) 44 1+ (7 Aw)”
* For small speed deviations, the above expression can be approximated by
X, —X; X Xy — Xy X,
Po=1V > ‘iT’sm 54 qT’cﬂs 5| Aw
(X+ Xx,)” Xd (X+Xx,)" X

Py = [Dysin® § + D, cos’ §]Aw = D(§)Aw,

where D(8) = Dgsin® 8 + D, cos’8 and Dy, D, are damping coefficients in both axes.

Di D(9)




Damping power

For large speed deviation values, it is convenient to rewrite P as
Py = Ppy sin® & + Pg{q,CDSE 3,

Critical speed deviation in each axis:

o Awegy 1 - Aleriq) _
l'{d:l — _ ' 1 gq) — — i b
C ] TE W, crig o) TEE g
e Critical damping power in each axis:
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Equilibrium points

Recall the generator power-angle characteristic at steady-state (chap. 3):
E V., . V2 xg — .
97 gins + -5 9 xqs.mZS,
Xg 2 XgXy

— For salient pole:
P. = P_Eq =

EV, .
P.(8) = Pg,(8) = ——sin.
Xd

— For round rotor:
The swing equation can be rewritten as:

wdla = P, — P.(9) p%
Tder T e Ty
At equilibrium, 98| _, . 4 98 _,
dt |5_; de? |;_;
5=5 5=4 P Po> Pr_or

Hence, P.= P.(5).

Using power-angle curve for simplicity:
— No equilibrium point when P, > critical power
— one equilibrium point when P,, = critical power
— two equilibrium points when P, < critical power




Steady-state stability of unregulated generator

We first ignore the controls of the generator and turbine (i.e., the

mechanical power and excitation voltage are constant).

Small-disturbance or small-signal stability: is system is said to be
steady-state stable for a specific operating condition if, following a
small disturbance, it reaches a steady-state operating point at or close

to the pre-disturbance condition.

Herein, the power system may be linearized near the operating point

for analytical purposes.

The generator-infinite bus bar system is stable only in the left-hand

side of the power-angle curve
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Steady-state stability of unregulated generator

that is, when the slope K, of the characteristic is positive

OF, 0 5.33
KEE':TE_E}. {..)

K, 1s referred to as the steady-state synchronizing power coefficient and the critical power Pg,  1s
often referred to as the pull-out power

. The value of Pg_ ., 1s also referred to as the steady-state stability
limit and can be used to determine the steady-state stability margin as

PE cr Pin
CE, = qPE , (5.34)
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Transient power-angle characteristic

It should be emphasized that the pull-out power is determined by the steady-state characteristic
Pr, (8) and the dynamic response of the generator to a disturbance is determined by the transient
power—angle characteristic

 Rotor oscillations occur in the same time scale as the transient
period - generator model during transient state:

— For generator model with constant flux linkage, see Fig. below (Chap. 4)

axis k] xg Round Salient-pole
v~ rotor | / rotor
q—ﬂ}{ls | j‘; Iq

i g%




Transient power-angle characteristic

— Constant flux linkage model:
EVa Vg

Po=F=Vala+ Vigly = — 24 —
d£d _I_ q4q ,‘I.,"é _I_ x:;l xé ,‘I.,"crl
EYV.  EY 2 -
P, = Pp(8) = ——sind + % cosd — = L fdsmlﬁ.
X x; 2 Xq Xg
EII’E . g -rr . l 'xr o 'xJ .
P.= Pp(§)= —— |sind’ [cos’a + S sin*e |+ = | — ) cosé’ sin 2a
b o Xq 2 X
2 x — X,
— =0 Ssin2(8 + ). §=08+a,
2 X4X,

For a generator with a salient-pole rotor, X; =X «=0andé =3.
the above transient power expression simplifies to

E.V, V2 x, —x,
P. = Pp (8" = — " sind — — *a - d sin 2§’
Ul X 2 XX



Transient power-angle characteristic

— Classical generator model: the constant flux linkage model can be

simplified further by ignoring the transient saliency, i.e., assuming
that x; = I;I. The transient power equation becomes equal to
E'V,

Fo= Pp()| .. ~ — - sind’
d

— Note that
ds ds’ d2s d2s’

5= 2 and _ -
T a ™M T e

This allows 4’ to be used in the swing equation instead of § when Equation (5.14) becomes

d?§’ E'V; dé’
M— =P, — sind’ — D—.
dt? x) dt




Examples 5.1

The round-rotor generator considered in Example 4.1 is connected to the power system (infinite
busbar) via a transformer with series reactance X1 = (.13 pu and a transmission line with series
reactance X = 0.17 pu. Find, and plot, the steady-state and the transient characteristics using
both the constant flux linkage and the classical generator model. As in Example 4.1, the generator
real power output is 1 pu, the reactive power output is 0.5 pu and the terminal voltage is 1.1 pu.

I, = 1.016/ — 26.6°,
Eq=2.336/38.5°

Iy = —0.922
I = 0.428
E,, = —0.522
E, =1.073

E'=1.193L12.5°

Xq =Xq=1.9

X4 =0.53

X'q=0.68

V=V j(X+ X )I=1.01L-15.8°
0, =38.5+15.8 =54.3°,

0, =12.5+15.8 = 28.3°

®, = 26.6-15.8 =10.8°

V4 =-1sin 54.3° = -.814

a = atan(E’y/E’,) = 26° Vgq = 1cos 54.3° = 0.584

33
Py, (5) = BV s = 23360 X s — 123sins.
1.07 x 1 —0.5224 x 1 12 0.68 — 0.53
P (5) — : _ OO0 28
p(8) = —g53—sin 068 % T 2068x053 "
= 2.02sind — 0.768 cosd — 0.208 sin 24.
Po(s)~ 2B X s — 231 sins

0.53

\ linkage model

constant flux

\ classical model

\/—




Examples 5.2

Recalculate all the characteristics from Example 5.1 for the salient-pole generator considered
previously in Example 4.2.

EV, .  Vxa—x, . 1735x1 . 1123-099
Pe(8) = “97 ging 4+ = 28 = X s e T Gn 2
BO)= s 123 T 3123% 099"

=1.41s5mnd+0.099s5mn285 = 1.41 siné.

1.241 x 1 . 12099 — 0.6 . : .
Pe(8) = o6 sind — 5099 <06 sin2d = 2.07sind — 0.322 sin 28
classical constant flux
Pp(8') ~ % sind’ = 2.108sin4'. Pt model _ linkage model




Impact of increase in load

The increase in load modifies the transient characteristic as shown
below (results in smaller transient emf E’, hence smaller peak value of
the transient power curve).

The transient synchronizing power coefficient

AP

28 a*:é;_!

is steeper than its steady-state counterpart

JLP

5 =0 ] \' ]

s(3)

d.py O

s(1) %(2)

(a) (b)



Rotor Swing and equal area criterion

Consider the effect of disturbing the rotor angle & from its equilibrium
point 5 to a new value (8s + Ady).

The disturbance performs work on the rotor. It increases the system

potential energy by 5+ A
W, = f [Pe(8) — P,]déd =areal — 2 — 4.
At point 2, P < P 5

— the machine decelerates.
At point 1, the above potential

energy is converted to kinetic
energy, pushing the rotor past the

equilibrium point, but starts to
accelerate.

At point 3, area 1-2-4 = area 1-3-5.
The process repeats indefinitely

when no damping is present.



Effect of damper winding

For small deviations in speed, the damper winding produces damping
power that is proportional to speed deviation and adds up to the air-gap
power. The sign of P, depends on the sign of Aw.
d*é
Mdrz = Bn — [F(8) + Pp],

The rotor will therefore move along a modified power-angle trajectory.

Starting from point 2, the rotor
P.(6) tp
begins to decelerate and reaches p @)

minimum speed at point 6.

Past point 6, the rotor accelerates  ;7\8 P 7\
and reaches sychronous speed 6 4 v u
when area 2-4-6 = area 6-3-5 AS S

i 0

The rotor oscillations are damped
and the system quickly reaches
the equilibrium point 1. f



Effect of rotor flux linkage variation
In reality, E’ is not constant (as the armature flux enters the rotor
winding , the rotor flux linkage changes with time).
To simplify the analysis, only the salient pole machine is considered
(i.,e., E = E and E} = 0,)
Linearize the transient power equation at the initial operating point:
d?Aé
dr?
where Ky, = dF./35 and Dy = dF./E,

AE, can be in phase with the speed deviation Aw - in this case, it
mduces an additional damping torque, (see first figure below).

]

AE, = 0,




Effect of rotor flux linkage variation

Updated necessary condition for steady state stability (i.e., AEy to be
in phase with the speed deviation Aw):

dP dPp
Ki, = a?:}{} and Kgf:a—;}ﬁ'fq.

In case of large network resistance, AE, can be 180° out of phase with
the speed deviation, - generator instability can occur if this negative
damping is larger that the positive damping produced by the damper
winding (see second figure below).

(c)



Rotor swings around the equilibrium point

2
e Linearized swing equation: Mddiﬁ + D% + K AS =0,
- . D D\ Kg
* Roots of characteristic equation: ho=—5-% (m) -

 Three possible solutions: under-damped, critically damped and over-
damped.

As the values of the roots 4, ; depends on the actual values of K, D and M, so too does the type
of response. The inertia coefficient M is constant while both D and Ky depend on the generator
loading. Figure 5.3 shows that the damping coefficient D increases with load and Figure 5.10b
shows that the transient synchronizing power coefficient K decreases with load.




Mechanical analogues of generator-infinite bus-
bar system

 Dynamic equation of mass-spring-damper system

d2A. dA
v + a:'—x + kAx = 0.

" dr? dt

S

Le

m




Steady-state stability of regulated system
(when action of AVR is included)

e Study restricted to generator with round rotor and negligible resistance.

X\’ Xa+X_ 7T
(E;.ﬁfl’f,;) +E§b=[ "X J{g} . (5.76)

This equation describes a circle of radius p = (X4/ X + 1) ¥, with centre lying on the a-axis at a
distance 4 = — Xy V;/ X from the origin. This means that with V', = constant and V. = constant,
the tip of E; moves on this circle.

'y

(a)



* Solve for Eg in terms of Vs, Vg, and 6:

X+ X 1\ Xy
E":‘/( ) (5

e Substitute in the power equation:

V. . Xg+ X
PL’E(E]ZXd+X51n§\/( dX V.

The AVR increases the amplitude
of the power curve significantly




* Generator power is proportional to E , (= E sind)

PL’E {3) — Y XEqb:

 Maximum power occurs when
Xd o Xd + XV,
E.,=p=|-S24+1)V. at 8y = arctan (—) — arctan | — 8

= P (X+)E M y ( X, V;)

IV

_ __ _E "5

PF:'_I M = PIE (5J|E=EM e X

Dashed curves 1-6 represent
Pe4(0) for higher values of E,,.




The slow-acting AVR (one with a large time constant) will not be able

to respond during the transient period, hence the stability limit
corresponds to 6 = /2.

For a fast-acting AVR (with short time constant), the stability limit

corresponds to & > /2. This value depends on the system and AVR
parameters (i.e., conditional stability).

The influence of field current limiter is illustrated in the figure below.
The field current limit is reached before Pyg ax if X is small.

— Below the limiting point, the generator steady-state characteristic follows Py.
— Above the limiting point, the generator steady-state characteristic follows P,




Transient power-angle characteristics of regulated
generator

We consider AVR with large time constant. In here, the transient
characteristics is the same as the unregulated system except,

— thevalue of E; is higher (hence higher amplitude of P.(8’)) since the increased
loading in the regulated system causes an increase in the steady-state field current.

— In addition, the angle & reaches /2 before & reached its critical value.

Note that when the 6 reached its critical value, 6’ > /2, hence K¢ is
negative. So at which point on the P,,(5) curve where K¢ = 07?

E b b




* Using classical model and phasor diagram in Fig. 20b,

X, \ X,+Xx 7T
(20 %) +8=[Fn]

X+X \ (X X

) E'_\/( ¥ F’E)—(Tﬂsm.ﬁ)—fﬁ’;casﬁ.
Ve 2 A%

o e B (nl)

P — Puis) _r”;l’él X NS
—> oo = Ve lg=nn = Ty C\X 4+ X Vel

* Ratio of power at which K¢ = 0 to the power at which Ky, = O:

o — Ppg{ﬁjZHKZ)_ Pij-;.n:'r _‘/1_( le )2 (E)2
Pr(d =0m) Py Xg+x) \v% /)

(=




* aisstrongly dependent on the system reactance X.

» Refer to the figures below:
— At operating point A (light load) , 0 < Kg, < Kg < Ky,
— At operating point B (medium load), 0 = K¢, while 0 < Kg <Ky,
— At operating point C (heavy load), 0> K¢, , K¢ =0, and 0 <Ky,

After a disturbance the rotor swings follow the transient power—-angle characteristic Px(8"). The

system is unstable above the point Py, .. where Ky = dPp /08 < 0 and no deceleration area 1s
available. Therefore the necessary stability condition is

(5.89)

&
T .,

(b)



Effect or rotor flux variation

Determine the phase shift between speed change and ﬂ.E’;mEf} (see Section
5.5.3 for details)

The phasors below represent two types of AVRs:
— For static exciter AE; is in phase with AV
— For rotating machine exciter, AE; lags AV by 10s’ of degrees.

relative to Aw reduces damping (i.e.,

the out-of-phase component ﬁﬁzmgﬂ

increases chances of instability).

NETWORK AVRH+EXCITER  GENERATOR
M| W lAv| oo |AEr|_ B AEqaE,)
T Kamas =5 AVR | 1+ BTs
VAP (a5 VAP (A5
} A Ad
ﬂ/ I ar ﬂ/ AV
Lﬁgr AE,
Aw Aw
-— L AR’ - -— ! .
AEq(a8) ~a(AEY) ALgas - '

(a) (b) 1



Effect of AVR action on damper winding

* Change in speed induces a voltage ep,,) in damper winding
proportional to Aw. The induced current ip,,, lags by and angle due to
high winding inductance.

— In-phase component of current with Aw gives rise to the natural damping torque

— The quadrature component of current enhances the synchronizing power coefficient.

* Achange in field winding voltage AE;, induces an additional current ip(ag

in

damper winding (transformer action).

— The horizontal component of this current is 180° of-of-phase with respect to Aw.

— = the voltage regulator weakens the natural damping above.

— This detrimental effect can be compensated by a supplementary control loop (PSS).

—cm.a Rp

0 l ﬂuﬁ -
/ d-axis damper
winding
L]

‘D(Aw)__ |
€D~ I I field winding
‘-—|;;.———

positive damping
component

1&:‘3 e (AD)

i = f
Aw ep

== ———— ]
positive negative
damping components



