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introduction 

• In this chapter, a longer time scale is considered during 
which the rotor speed will vary (order of seconds – 10s’ 
of seconds - transient period). 

• The change in rotor speed interacts with the electro-
magnetic changes to produce electro-mechanical 
dynamic effects. 

• Some important stability concepts will be introduced 
mathematically with physical implications. 



Swing equation 
• Rotor dynamic equation (Newton’s Law on motion): 

 

 

 

 

• At steady state, ωm = ωsm, and  

 

 

 

 

• Rotor speed: 



Swing Equation 

• After substitution,  



Swing Equation 
• Inertia constant: 

 

 

 

 

 

 

 

 

 



Swing Equation 



Damping Power 
• Assumptions: 

 

 

 

• Generator equivalent circuit resembles that of an induction motor: 
– When ignoring rotor saliency, 

 

 

 

where 

 

and 

 

s = Δω/ω𝑠 



Damping power 
– With rotor saliency, the following formula is derived when using d-q axis 

decomposition – note the dependency on rotor angle δ. 

 

 

• For small speed deviations, the above expression can be approximated by 



Damping power 

• For large speed deviation values, it is convenient to rewrite PD as 

 

• Critical speed deviation in each axis: 

 

 

• Critical damping power in each axis: 

 



Equilibrium points 
• Recall the generator power-angle characteristic at steady-state (chap. 3): 

– For salient pole: 

 

 

– For round rotor:                                                                

• The swing equation can be rewritten as: 

 

 

• At equilibrium, 

 

• Hence,   

• Using power-angle curve for simplicity: 
– No equilibrium point when Pm > critical power 

– one equilibrium point when Pm = critical power 

– two equilibrium points when Pm < critical power 

 

 

 



Steady-state stability of unregulated generator 

• We first ignore the controls of the generator and turbine (i.e., the 
mechanical power and excitation voltage are constant). 

• Small-disturbance or small-signal stability: is system is said to be 
steady-state stable for a specific operating condition if, following a 
small disturbance, it reaches a steady-state operating point at or close 
to the pre-disturbance condition.  

• Herein, the power system may be linearized near the operating point 
for analytical purposes. 

• The generator-infinite bus bar system is stable only in the left-hand 
side of the power-angle curve 



Steady-state stability of unregulated generator 

 

 

 

 

 



Transient power-angle characteristic 

 

 

 

• Rotor oscillations occur in the same time scale as the transient 
period →  generator model during transient state: 
– For generator model with constant flux linkage, see Fig. below (Chap. 4) 

Round  

rotor 
Salient-pole  

rotor 



Transient power-angle characteristic 
– Constant flux linkage model: 

 

 

 

 

 

 

 

 

 For a generator with a salient-pole rotor,  

the above transient power expression simplifies to  

 

 

 

 

 

 

 

 

 



Transient power-angle characteristic 
– Classical generator model:  the constant flux linkage model can be 

simplified further by ignoring the transient saliency, i.e., assuming 
that                    The transient power equation becomes equal to 

 

 

 

 

 

 

– Note that  



Examples 5.1 

E’ = 1.193∟12.5o  

α = atan(E’d/E’q) = 26o 

xd = xq = 1.9 

x’d =0.53 

x’q = 0.68 

Vs=Vg-j(XT+XL)I = 1.0∟-15.8o 

δo =38.5+15.8 =54.3o,  

δ’o =12.5+15.8 = 28.3o 

Φo = 26.6-15.8 = 10.8o 

Vsd = -1sin 54.3o = -.814 

Vsq = 1cos 54.3o = 0.584 



Examples 5.2 



Impact of increase in load 
• The increase in load  modifies the transient characteristic as shown 

below (results in smaller transient emf E’, hence smaller peak value of 
the transient power curve). 

• The transient synchronizing power coefficient 

 

 

    is steeper than its steady-state counterpart 



Rotor Swing and equal area criterion 
• Consider the effect of disturbing the rotor angle δ from its equilibrium 

point        to a new value 

• The disturbance performs  work on the rotor. It increases the system 
potential energy by 

 

•  At point 2, Pm < PE’  

      →  the machine decelerates. 

• At point 1, the above potential  

     energy is converted to kinetic 

     energy, pushing the rotor past the  

     equilibrium point, but starts to  

     accelerate. 

• At point 3, area 1-2-4 = area 1-3-5. 

• The process repeats indefinitely  

      when no damping is present. 

 

 

 

 



Effect of damper winding 
• For small deviations in speed, the damper winding produces damping 

power that is proportional to speed deviation and adds up to the air-gap 
power. The sign of PD depends on the sign of Δω. 

 

 

• The rotor will therefore move along a modified power-angle trajectory. 

• Starting from point 2, the rotor  

     begins to decelerate and reaches 

     minimum speed at point 6. 

• Past point 6, the rotor accelerates 

     and reaches sychronous  speed  

     when area 2-4-6 = area 6-3-5 

• The rotor oscillations are damped  

     and the system quickly reaches  

     the equilibrium point 1. 

 

 



Effect of rotor flux linkage variation  
• In reality, E’ is not constant  (as the armature flux enters the rotor 

winding , the rotor flux linkage changes with time). 

• To simplify the analysis, only the salient pole machine is considered 
(i.e.,                                 )) 

• Linearize the transient power equation at the initial operating point:  

 

 

     where  

• ΔEq’ can be  in phase with the speed deviation Δω  → in this case, it 
induces an additional damping torque, (see first figure below). 



Effect of rotor flux linkage variation  
• Updated necessary condition for steady state stability (i.e.,  ΔEq’ to be  

in phase with the speed deviation Δω): 

 

 

• In case of large network resistance, ΔEq’ can be 180o out of phase with 
the speed deviation, →  generator instability  can occur if this negative 
damping is larger that the positive damping produced by the damper 
winding (see second figure below). 



Rotor swings around the equilibrium point 

• Linearized swing equation: 

 

• Roots of characteristic equation: 

• Three possible solutions: under-damped, critically damped and over-
damped. 

 



Mechanical analogues of generator-infinite bus-
bar system 

• Dynamic equation of mass-spring-damper system 

 

 

 



Steady-state stability of regulated system 
(when action of AVR is included) 

• Study restricted to generator with round rotor and negligible resistance. 



• Solve for Eq in terms of Vs, Vg, and δ: 

 

 

• Substitute in the power equation: 

The AVR increases the amplitude  

of the power curve significantly 



• Generator power is proportional to Eqb (= Eq sinδ) 

 

 

• Maximum power occurs when 

 

 

 

 

Dashed curves 1-6 represent  

PEq(δ) for higher values of Eq. 



• The slow-acting AVR (one with a large time constant) will not be able 
to respond during the transient period, hence the stability limit 
corresponds to δ = π/2. 

• For  a fast-acting AVR (with short time constant), the stability limit 
corresponds to δ > π/2. This value depends on the system and AVR 
parameters (i.e., conditional stability). 

• The influence of field current limiter  is illustrated in the figure below. 
The field current limit is reached before  PVg MAX  if X is small. 
– Below the limiting point, the generator steady-state characteristic follows PVg. 

– Above the limiting point, the generator steady-state characteristic follows PEq. 



Transient power-angle characteristics of regulated 
generator 

• We consider AVR with large time constant. In here, the transient 
characteristics is the same as the unregulated system except,   
– the value of Eq’  is higher (hence higher amplitude of PE’(δ’)) since the increased 

loading in the regulated system causes an increase in the steady-state field current. 

– In addition, the angle δ’ reaches π/2 before δ reached its critical value. 

• Note that  when the δ reached its critical value, δ’ > π/2 , hence KE’ is 
negative. So at which point on the PVg(δ) curve where KE’ = 0? 



• Using classical model and phasor diagram in Fig. 20b, 

 

 

 

 

 

 

 

 

• Ratio of power at which KE’ = 0 to the power at which KVg = 0: 

 

 

 

 

 



• α is strongly dependent on the system reactance X. 

• Refer to the figures below: 
– At operating point A (light load) , 0 <  KEq  < KE’ < KVg   

– At operating point B (medium load), 0 =  KEq   while  0 < KE’ < KVg  

– At operating point C (heavy load) , 0 >  KEq   ,  KE’   = 0, and 0 < KVg  



Effect or rotor flux variation 
• Determine the phase shift between speed change and                (see Section 

5.5.3 for details)  

• The phasors below represent two types of AVRs: 

– For static exciter ΔEf is in phase with ΔV  

– For rotating machine exciter, ΔEf lags ΔV by 10s’ of degrees. 

• the out-of-phase component                relative to Δω reduces damping (i.e., 
increases chances of instability). 



Effect of AVR action on damper winding 
• Change in speed induces  a voltage  eD(Δω)  in damper winding 

proportional to Δω. The induced current iD(Δω)  lags by and angle due to 
high winding inductance. 
– In-phase  component of current with Δω gives rise to the natural damping torque 

– The quadrature component of current enhances the synchronizing power coefficient. 

• A change in field winding voltage ΔEf, induces an additional current iD(ΔEf) 

in damper winding (transformer action).  
– The horizontal component of this current is 180o of-of-phase with respect to Δω. 

– → the voltage regulator weakens the natural damping above. 

– This detrimental effect can be compensated by a supplementary control loop (PSS). 
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