EE 742
Chap. 5: Electromechanical Dynamics
Y. Baghzouz
introduction

• In this chapter, a longer time scale is considered during which the rotor speed will vary (order of seconds – 10s’ of seconds - transient period).

• The change in rotor speed interacts with the electro-magnetic changes to produce electro-mechanical dynamic effects.

• Some important stability concepts will be introduced mathematically with physical implications.
Swing equation

- Rotor dynamic equation (Newton’s Law on motion):

\[J \frac{d\omega_m}{dt} + D_d \omega_m = \tau_t - \tau_e, \quad (5.1) \]

where \(J \) is the total moment of inertia of the turbine and generator rotor (kg m\(^2\)), \(\omega_m \) is the rotor shaft velocity (mechanical rad/s), \(\tau_t \) is the torque produced by the turbine (N m), \(\tau_e \) is the counteracting electromagnetic torque and \(D_d \) is the damping-torque coefficient (N m s) and accounts for the mechanical rotational loss due to windage and friction.

- At steady state, \(\omega_m = \omega_{sm} \), and

\[\tau_t = \tau_e + D_d \omega_{sm} \quad \text{or} \quad \tau_m = \tau_t - D_d \omega_{sm} = \tau_e, \quad (5.2) \]

where \(\tau_m \) is the net mechanical shaft torque, that is the turbine torque less the rotational losses at \(\omega_m = \omega_{sm} \). It is this torque that is converted into electromagnetic torque. If, due to some disturbance, \(\tau_m > \tau_e \) then the rotor accelerates; if \(\tau_m < \tau_e \) then it decelerates.

- Rotor speed:

\[\omega_m = \omega_{sm} + \Delta \omega_m = \omega_{sm} + \frac{d\delta_m}{dt}, \quad (5.3) \]

where \(\delta_m \) is the rotor angle expressed in mechanical radians and \(\Delta \omega_m = \frac{d\delta_m}{dt} \) is the speed deviation in mechanical radians per second.
Swing Equation

• After substitution,

$$J \omega_{sm} \frac{d^2 \delta_m}{dt^2} + \omega_{sm} D_d \frac{d \delta_m}{dt} = \frac{\omega_{sm}}{\omega_m} P_m - \frac{\omega_{sm}}{\omega_m} P_e,$$

where P_m is the net shaft power input to the generator and P_e is the electrical air-gap power, both expressed in watts. During a disturbance the speed of a synchronous machine is normally quite close to synchronous speed so that $\omega_m \approx \omega_{sm}$ and Equation (5.6) becomes

$$J \omega_{sm} \frac{d^2 \delta_m}{dt^2} + \omega_{sm} D_d \frac{d \delta_m}{dt} = P_m - P_e.$$

The coefficient $J \omega_{sm}$ is the angular momentum of the rotor at synchronous speed and, when given the symbol M_m, allows Equation (5.7) to be written as

$$M_m \frac{d^2 \delta_m}{dt^2} = P_m - P_e - D_m \frac{d \delta_m}{dt},$$

where $D_m = \omega_{sm} D_d$ is the damping coefficient. Equation (5.8) is called the swing equation and is the fundamental equation governing the rotor dynamics.
Swing Equation

- Inertia constant:

The inertia constant is given the symbol H defined as the stored kinetic energy in megajoules at synchronous speed divided by the machine rating S_n in megavolt-amperes so that

$$H = \frac{0.5J\omega_{sm}^2}{S_n} \quad \text{and} \quad M_m = \frac{2HS_n}{\omega_{sm}}. \quad (5.9)$$

The units of H are seconds.

the power angle and angular speed can be expressed in electrical radians and electrical radians per second respectively, rather than their mechanical equivalent, by substituting

$$\delta = \frac{\delta_m}{p/2} \quad \text{and} \quad \omega_s = \frac{\omega_{sm}}{p/2}, \quad (5.11)$$

where p is the number of poles. Introducing the inertia constant and substituting Equations (5.11) into Equation (5.8) allows the swing equation to be written as

$$\frac{2HS_n}{\omega_s} \frac{d^2\delta}{dt^2} + D \frac{d\delta}{dt} = P_m - P_e$$

where D, the damping coefficient, is $D = 2D_m/p$.
The equations in (5.12) can be rationalized by defining an *inertia coefficient* M and *damping power* P_D such that

$$M = \frac{2HS_n}{\omega_s} = \frac{T_m S_n}{\omega_s}, \quad P_D = D \frac{d\delta}{dt},$$

(5.13)

when the swing equation takes the common form

$$M \frac{d^2 \delta}{dt^2} = P_m - P_e - P_D = P_{acc},$$

(5.14)

where P_{acc} is the net accelerating power. The time derivative of the rotor angle $d\delta/dt = \Delta \omega = \omega - \omega_s$ is the *rotor speed deviation* in electrical radians per second. Often it is more convenient to replace the second-order differential equation (5.14) by two first-order equations:

$$M \frac{d \Delta \omega}{dt} = P_m - P_e - P_D = P_{acc}$$

$$\frac{d\delta}{dt} = \Delta \omega.$$
Damping Power

• Assumptions:

 (i) the resistances of both the armature and the field winding are neglected;
 (ii) damping is produced only by the damper windings;
 (iii) the leakage reactance of the armature winding can be neglected;
 (iv) excitation does not affect the damping torque.

• Generator equivalent circuit resembles that of an induction motor:

 When ignoring rotor saliency, $s = \Delta \omega / \omega_s$

$$P_D = I_D^2 \frac{R_D}{s} \approx V_s^2 \frac{X'_d - X''_d}{(X + X'_d)^2} \frac{X'_d}{X''_d} \frac{T''_d \Delta \omega}{1 + (T''_d \Delta \omega)^2}.$$

where $X'_d \equiv \frac{1}{\frac{1}{X_f} + \frac{1}{X_a}}$, $X''_d \equiv \frac{1}{\frac{1}{X_f} + \frac{1}{X_a} + \frac{1}{X_D}}$, $T''_d = \frac{X_D}{\omega_s R_D} \approx \frac{X'_d X''_d}{\omega_s R_D (X'_d - X''_d)}$,

and

$$X_D \approx \frac{X'_d X''_d}{X'_d - X''_d}.$$
Damping power

- With rotor saliency, the following formula is derived when using d-q axis decomposition – note the dependency on rotor angle δ.

\[
P_D = V_s^2 \left[\frac{X_d' - X_d''}{X_d'} \frac{X_d'}{X_d''} \frac{T_d'' \Delta \omega}{1 + (T_d'' \Delta \omega)^2} \sin^2 \delta + \frac{X_q' - X_q''}{X_q'} \frac{X_q'}{X_q''} \frac{T_q'' \Delta \omega}{1 + (T_q'' \Delta \omega)^2} \cos^2 \delta \right].
\]

- For small speed deviations, the above expression can be approximated by

\[
P_D = V_s^2 \left[\frac{X_d' - X_d''}{X_d'} \frac{X_d'}{X_d''} T_d'' \sin^2 \delta + \frac{X_q' - X_q''}{X_q'} \frac{X_q'}{X_q''} T_q'' \cos^2 \delta \right] \Delta \omega.
\]

\[
P_D = [D_d \sin^2 \delta + D_q \cos^2 \delta] \Delta \omega = D(\delta) \Delta \omega,
\]

where $D(\delta) = D_d \sin^2 \delta + D_a \cos^2 \delta$ and D_d, D_a are damping coefficients in both axes.
Damping power

- For large speed deviation values, it is convenient to rewrite \(P_D \) as
 \[
 P_D = P_{D(d)} \sin^2 \delta + P_{D(q)} \cos^2 \delta,
 \]

- Critical speed deviation in each axis:
 \[
 s_{cr(d)} = \frac{\Delta \omega_{cr(d)}}{\omega_s} = \frac{1}{T_d'' \omega_s}, \quad s_{cr(q)} = \frac{\Delta \omega_{cr(q)}}{\omega_s} = \frac{1}{T_q'' \omega_s},
 \]

- Critical damping power in each axis:
 \[
 P_{D(d)cr} = \frac{V_s^2}{2} \frac{X_d' - X_d''}{(X + X_d')^2} \frac{X_d'}{X_d''}, \quad P_{D(q)cr} = \frac{V_s^2}{2} \frac{X_d' - X_d''}{(X + X_d')^2} \frac{X_d'}{X_d''}.
 \]
Equilibrium points

Recall the generator power-angle characteristic at steady-state (chap. 3):

- For salient pole:
 \[P_e = P_{E_q} = \frac{E_q V_s}{x_d} \sin \delta + \frac{V_s^2}{2} \frac{x_d - x_q}{x_q x_d} \sin 2\delta, \]

- For round rotor:
 \[P_e(\delta) = P_{E_q}(\delta) = \frac{E_q V_s}{x_d} \sin \delta. \]

The swing equation can be rewritten as:

\[M \frac{d^2\delta}{dt^2} = P_m - P_e(\delta) - D \frac{d\delta}{dt}, \]

At equilibrium,

\[\frac{d\delta}{dt} \bigg|_{\delta = \delta} = 0 \quad \text{and} \quad \frac{d^2\delta}{dt^2} \bigg|_{\delta = \delta} = 0, \]

Hence, \(P_m = P_e(\hat{\delta}). \)

Using power-angle curve for simplicity:

- No equilibrium point when \(P_m > \text{critical power} \)
- One equilibrium point when \(P_m = \text{critical power} \)
- Two equilibrium points when \(P_m < \text{critical power} \)
Steady-state stability of unregulated generator

• We first ignore the controls of the generator and turbine (i.e., the mechanical power and excitation voltage are constant).

• Small-disturbance or small-signal stability: is system is said to be steady-state stable for a specific operating condition if, following a small disturbance, it reaches a steady-state operating point at or close to the pre-disturbance condition.

• Herein, the power system may be linearized near the operating point for analytical purposes.

• The generator-infinite bus bar system is stable only in the left-hand side of the power-angle curve
Steady-state stability of unregulated generator

that is, when the slope K_{E_q} of the characteristic is positive

$$K_{E_q} = \left. \frac{\partial P_{E_q}}{\partial \delta} \right|_{\delta = \delta_s} > 0.$$ (5.33)

K_{E_q} is referred to as the *steady-state synchronizing power coefficient* and the critical power $P_{E_q \text{ cr}}$ is often referred to as the *pull-out power*. The value of $P_{E_q \text{ cr}}$ is also referred to as the *steady-state stability limit* and can be used to determine the *steady-state stability margin* as

$$c_{E_q} = \frac{P_{E_q \text{ cr}} - P_m}{P_{E_q \text{ cr}}},$$ (5.34)
Transient power-angle characteristic

It should be emphasized that the pull-out power is determined by the steady-state characteristic $P_{Eq}(\delta)$ and the dynamic response of the generator to a disturbance is determined by the transient power–angle characteristic.

- Rotor oscillations occur in the same time scale as the transient period \rightarrow generator model during transient state:
 - For generator model with constant flux linkage, see Fig. below (Chap. 4)
Transient power-angle characteristic

– Constant flux linkage model:

\[P_e = P_s = V_{sd} I_d + V_{sq} I_q = \frac{E_q' V_{sd}}{x_d'} + \frac{V_{sd} V_{sq}}{x_d'} + \frac{E_d' V_{sq}}{x_q'} - \frac{V_{sd} V_{sq}}{x_q'} \]

\[P_e = P_{E_e}(\delta) = \frac{E_q' V_s}{x_d'} \sin \delta + \frac{E_d' V_s}{x_q'} \cos \delta - \frac{V_s^2}{2} \frac{x_q' - x_d'}{x_q' x_d'} \sin 2\delta. \]

\[P_e = P_{E_e}(\delta') = \frac{E_q' V_s}{x_d'} \left[\sin \delta' \left(\cos^2 \alpha + \frac{x_d'}{x_q'} \sin^2 \alpha \right) + \frac{1}{2} \left(\frac{x_q' - x_d'}{x_q'} \right) \cos \delta' \sin 2\alpha \right] \]

\[- \frac{V_s^2}{2} \frac{x_q' - x_d'}{x_d' x_q'} \sin 2(\delta' + \alpha). \]

\[\delta = \delta' + \alpha, \quad x_q' = x_q, \quad \alpha = 0 \text{ and } \delta' = \delta. \]

For a generator with a salient-pole rotor, the above transient power expression simplifies to

\[P_e = P_{E_{eq}}(\delta') \bigg|_{x_q' = x_q} = \frac{E_q' V_s}{x_d'} \sin \delta' - \frac{V_s^2}{2} \frac{x_q' - x_d'}{x_q x_d'} \sin 2\delta'. \]
Transient power-angle characteristic

- **Classical generator model**: the constant flux linkage model can be simplified further by ignoring the transient saliency, i.e., assuming that $x_d' \approx x_q'$. The transient power equation becomes equal to

\[P_e = P_{E'}(\delta') \bigg|_{x_d \approx x_q' \approx \frac{E'V_s}{x_d'}} \approx \frac{E'V_s}{x_d'} \sin \delta'. \]

- Note that

\[\delta = \delta' + \alpha, \quad \frac{d\delta}{dt} = \frac{d\delta'}{dt} \quad \text{and} \quad \frac{d^2\delta}{dt^2} = \frac{d^2\delta'}{dt^2}. \]

This allows δ' to be used in the swing equation instead of δ when Equation (5.14) becomes

\[M \frac{d^2\delta'}{dt^2} = P_m - \frac{E'V_s}{x_d'} \sin \delta' - D \frac{d\delta'}{dt}. \]
Examples 5.1

The round-rotor generator considered in Example 4.1 is connected to the power system (infinite busbar) via a transformer with series reactance \(X_T = 0.13\) pu and a transmission line with series reactance \(X_L = 0.17\) pu. Find, and plot, the steady-state and the transient characteristics using both the constant flux linkage and the classical generator model. As in Example 4.1, the generator real power output is 1 pu, the reactive power output is 0.5 pu and the terminal voltage is 1.1 pu.

\[
I_n = 1.016\angle -26.6^\circ, \quad x_d = x_q = 1.9
\]
\[
E_{q0} = 2.336\angle 38.5^\circ
\]
\[
I_{d0} = -0.922 \quad x_d' = 0.53
\]
\[
I_{q0} = 0.428 \quad x_q' = 0.68
\]
\[
E_{d0}' = -0.522
\]
\[
E_{q0}' = 1.073
\]
\[
E' = 1.193\angle 12.5^\circ\]
\[
\alpha = \text{atan}(E'_d/E'_q) = 26^\circ
\]
\[
\delta_0 = 38.5 + 15.8 = 54.3^\circ,
\]
\[
\delta'_0 = 12.5 + 15.8 = 28.3^\circ
\]
\[
\Phi_0 = 26.6 - 15.8 = 10.8^\circ
\]
\[
V_{sd} = -1\sin 54.3^\circ = -0.814
\]
\[
V_{sq} = 1\cos 54.3^\circ = 0.584
\]

\[
\begin{align*}
P_{E_q}(\delta) &= \frac{E_d V_s}{x_d} \sin \delta = \frac{2.336 \times 1}{1.9} \sin \delta = 1.23 \sin \delta. \\
P_{E_q}'(\delta) &= \frac{1.07 \times 1}{0.53} \sin \delta + \frac{-0.5224 \times 1}{0.68} \cos \delta - \frac{1^2}{2} \frac{0.68 - 0.53}{0.68 \times 0.53} \sin 2\delta \\
&= 2.02 \sin \delta - 0.768 \cos \delta - 0.208 \sin 2\delta. \\
P_E(\delta') &\approx \frac{1.223 \times 1}{0.53} \sin \delta' = 2.31 \sin \delta'.
\end{align*}
\]
Examples 5.2

Recalculate all the characteristics from Example 5.1 for the salient-pole generator considered previously in Example 4.2.

\[
P_{Eq}(\delta) = \frac{E_q V_s}{x_d} \sin \delta + \frac{V_s^2}{2} \frac{x_d - x_q}{x_d x_q} \sin 2\delta = \frac{1.735 \times 1}{1.23} \sin \delta + \frac{11.23 - 0.99}{2 \times 1.23 \times 0.99} \sin 2\delta
\]

\[
= 1.41 \sin \delta + 0.099 \sin 2\delta \cong 1.41 \sin \delta.
\]

\[
P_{E'}(\delta) = \frac{1.241 \times 1}{0.6} \sin \delta - \frac{1^2 0.99 - 0.6}{2 \times 0.99 \times 0.6} \sin 2\delta = 2.07 \sin \delta - 0.322 \sin 2\delta
\]

\[
P_{E'}(\delta') \approx \frac{1.265 \times 1}{0.6} \sin \delta' = 2.108 \sin \delta'.
\]
Impact of increase in load

- The increase in load modifies the transient characteristic as shown below (results in smaller transient emf E', hence smaller peak value of the transient power curve).
- The *transient synchronizing power coefficient*

$$K_{E'} = \frac{\partial P_{E'}}{\partial \delta'} \bigg|_{\delta' = \hat{\delta}_s},$$

is steeper than its steady-state counterpart.
Rotor Swing and equal area criterion

- Consider the effect of disturbing the rotor angle δ from its equilibrium point $\hat{\delta}_s$ to a new value $(\hat{\delta}_s + \Delta\delta_0)$.

- The disturbance performs work on the rotor. It increases the system potential energy by

\[
W_{1-2} = \int_{\hat{\delta}_s}^{\hat{\delta}_s+\Delta\delta_0} [P_E'(\delta) - P_m] \, d\delta = \text{area 1} - \text{2} - \text{4}.
\]

- At point 2, $P_m < P_{E'}$ → the machine decelerates.

- At point 1, the above potential energy is converted to kinetic energy, pushing the rotor past the equilibrium point, but starts to accelerate.

- At point 3, area 1-2-4 = area 1-3-5.

- The process repeats indefinitely when no damping is present.
Effect of damper winding

- For small deviations in speed, the damper winding produces damping power that is proportional to speed deviation and adds up to the air-gap power. The sign of P_D depends on the sign of $\Delta \omega$.

$$M \frac{d^2 \delta}{dt^2} = P_m - [P_e(\delta) + P_D],$$

- The rotor will therefore move along a modified power-angle trajectory.
- Starting from point 2, the rotor begins to decelerate and reaches minimum speed at point 6.
- Past point 6, the rotor accelerates and reaches synchronous speed when area 2-4-6 = area 6-3-5.
- The rotor oscillations are damped and the system quickly reaches the equilibrium point 1.
Effect of rotor flux linkage variation

• In reality, E' is not constant (as the armature flux enters the rotor winding, the rotor flux linkage changes with time).
• To simplify the analysis, only the salient pole machine is considered (i.e., $E' = E'_q$ and $E'_d = 0$).
• Linearize the transient power equation at the initial operating point:

$$M \frac{d^2 \Delta \delta}{dt^2} + D \Delta \omega + K_{E'_q} \Delta \delta + D_{\delta'} \Delta E'_q = 0,$$

where $K_{E'_q} = \frac{\partial P_e}{\partial \delta'}$ and $D_{\delta'} = \frac{\partial P_e}{\partial E'_q}$

• $\Delta E'_q$ can be in phase with the speed deviation $\Delta \omega$ → in this case, it induces an additional damping torque, (see first figure below).
Effect of rotor flux linkage variation

- Updated necessary condition for steady state stability (i.e., $\Delta E_{q'}$ to be in phase with the speed deviation $\Delta \omega$):

$$K_{Eq} = \frac{\partial P_{Eq}}{\partial \delta} > 0 \quad \text{and} \quad K_{E'} = \frac{\partial P_{E'}}{\partial \delta} > K_{Eq}.$$

- In case of large network resistance, $\Delta E_{q'}$ can be 180$^\circ$ out of phase with the speed deviation, \rightarrow generator instability can occur if this negative damping is larger than the positive damping produced by the damper winding (see second figure below).
Rotor swings around the equilibrium point

- Linearized swing equation:
 \[M \frac{d^2 \Delta \delta}{dt^2} + D \frac{d \Delta \delta}{dt} + K_{E'} \Delta \delta = 0, \]

- Roots of characteristic equation:
 \[\lambda_{1,2} = -\frac{D}{2M} \pm \sqrt{\left(\frac{D}{2M}\right)^2 - \frac{K_{E'}}{M}}. \]

- Three possible solutions: under-damped, critically damped and over-damped.

As the values of the roots \(\lambda_{1,2} \) depends on the actual values of \(K_{E'} \), \(D \) and \(M \), so too does the type of response. The inertia coefficient \(M \) is constant while both \(D \) and \(K_{E'} \) depend on the generator loading. Figure 5.3 shows that the damping coefficient \(D \) increases with load and Figure 5.10b shows that the transient synchronizing power coefficient \(K_{E'} \) decreases with load.
Mechanical analogues of generator-infinite bus-bar system

- Dynamic equation of mass-spring-damper system

\[m \frac{d^2 \Delta x}{dt^2} + c \frac{d\Delta x}{dt} + k \Delta x = 0. \]
Steady-state stability of regulated system (when action of AVR is included)

- Study restricted to generator with round rotor and negligible resistance.

\[
\left(E_{qa} + \frac{X_d}{X} V_s \right)^2 + E_{qb}^2 = \left[\frac{X_d + X}{X} V_g \right]^2.
\] \hspace{1cm} (5.76)

This equation describes a circle of radius \(\rho = (X_d / X + 1) V_g \) with centre lying on the a-axis at a distance \(A = -X_d V_s / X \) from the origin. This means that with \(V_g \) constant and \(V_s \) constant, the tip of \(E_q \) moves on this circle.
• Solve for Eq in terms of Vs, Vg, and δ:

\[E_q = \sqrt{\left(\frac{X_d + X}{X} V_g \right)^2 - \left(\frac{X_d}{X} V_s \sin \delta \right)^2 - \frac{X_d}{X} V_s \cos \delta}, \]

• Substitute in the power equation:

\[P_{V_g}(\delta) = \frac{V_s}{X_d + X} \sin \delta \sqrt{\left(\frac{X_d + X}{X} V_g \right)^2 - \left(\frac{X_d}{X} V_s \sin \delta \right)^2 - \frac{1}{2} \frac{X_d}{X} \frac{V_s^2}{X_d + X} \sin 2\delta}. \]

The AVR increases the amplitude of the power curve significantly.
• Generator power is proportional to $E_{qb} (= E_q \sin \delta)$

\[P_{V_g} (\delta) = \frac{V_s}{X_d + X} E_{qb}, \]

• Maximum power occurs when

\[E_{qb} = \rho = \left(\frac{X_d}{X} + 1 \right) V_g \quad \text{at} \quad \delta_M = \arctan \left(\frac{\rho}{A} \right) = \arctan \left(-\frac{X_d + X}{V_s} \frac{V_g}{V_s} \right). \]

\[P_{V_g M} = P_{V_g} (\delta) \bigg|_{\delta=\delta_M} = \frac{V_g V_s}{X}, \]

Dashed curves 1-6 represent $P_{Eq}(\delta)$ for higher values of E_q.
• The slow-acting AVR (one with a large time constant) will not be able to respond during the transient period, hence the stability limit corresponds to $\delta = \pi/2$.
• For a fast-acting AVR (with short time constant), the stability limit corresponds to $\delta > \pi/2$. This value depends on the system and AVR parameters (i.e., conditional stability).
• The influence of field current limiter is illustrated in the figure below. The field current limit is reached before $P_{Vg\, MAX}$ if X is small:
 – Below the limiting point, the generator steady-state characteristic follows P_{Vg}.
 – Above the limiting point, the generator steady-state characteristic follows P_{Eq}.
Transient power-angle characteristics of regulated generator

• We consider AVR with large time constant. In here, the transient characteristics is the same as the unregulated system except,
 – the value of E_q' is higher (hence higher amplitude of $P_{E'}(\delta')$) since the increased loading in the regulated system causes an increase in the steady-state field current.
 – In addition, the angle δ' reaches $\pi/2$ before δ reached its critical value.

• Note that when the δ reached its critical value, $\delta' > \pi/2$, hence $K_{E'}$ is negative. So at which point on the $P_{Vg}(\delta)$ curve where $K_{E'} = 0$?
• Using classical model and phasor diagram in Fig. 20b,

\[
\left(E_a' + \frac{X_d'}{X} V_s \right)^2 + E_b'^2 = \left[\frac{X_d' + X}{X} V_g \right]^2.
\]

\[
E' = \sqrt{\left(\frac{X_d' + X}{X} V_g \right)^2 - \left(\frac{X_d'}{X} V_s \sin \delta \right)^2} - \frac{X_d'}{X} V_s \cos \delta.
\]

\[
E'\big|_{\delta' = \pi/2} = \frac{V_g}{X} \sqrt{\left(X_d' + X \right)^2 - \left(\frac{X_d'}{V_g} \right)^2}.
\]

\[
P_{V_g, cr} = P_{V_g}(\delta')\big|_{\delta' = \pi/2} = \frac{V_s V_g}{X} \sqrt{1 - \left(\frac{X_d'}{X_d' + X} \right)^2 \left(\frac{V_s}{V_g} \right)^2}.
\]

• Ratio of power at which \(K_{E'} = 0 \) to the power at which \(K_{Vg} = 0 \):

\[
\alpha = \frac{P_{V_g}(\delta' = \pi/2)}{P_{V_g}(\delta = \delta_M)} = \frac{P_{V_g, cr}}{P_{V_g, M}} = \sqrt{1 - \left(\frac{X_d'}{X_d' + X} \right)^2 \left(\frac{V_s}{V_g} \right)^2}.
\]
• α is strongly dependent on the system reactance X.

• Refer to the figures below:

 - At operating point A (light load), $0 < K_{\text{Eq}} < K_{E'} < K_{Vg}$
 - At operating point B (medium load), $0 = K_{\text{Eq}}$ while $0 < K_{E'} < K_{Vg}$
 - At operating point C (heavy load), $0 > K_{\text{Eq}}$, $K_{E'} = 0$, and $0 < K_{Vg}$

After a disturbance the rotor swings follow the transient power–angle characteristic $P_{E'}(\delta')$. The system is unstable above the point $P_{Vg_{\text{cr}}}$ where $K_{E'} = \partial P_{E'}/\partial \delta < 0$ and no deceleration area is available. Therefore the necessary stability condition is

$$K_{E'} = \frac{\partial P_{E'}}{\partial \delta} > 0.$$ \hspace{1cm} (5.89)
Effect or rotor flux variation

• Determine the phase shift between speed change and $\Delta E'_{q(\Delta E_f)}$ (see Section 5.5.3 for details)

• The phasors below represent two types of AVRs:
 – For static exciter ΔE_f is in phase with ΔV
 – For rotating machine exciter, ΔE_f lags ΔV by 10s’ of degrees.

• the out-of-phase component $\Delta E'_{q(\Delta E_f)}$ relative to $\Delta \omega$ reduces damping (i.e., increases chances of instability).
Effect of AVR action on damper winding

• Change in speed induces a voltage $e_{D(\Delta \omega)}$ in damper winding proportional to $\Delta \omega$. The induced current $i_{D(\Delta \omega)}$ lags by an angle due to high winding inductance.
 – In-phase component of current with $\Delta \omega$ gives rise to the natural damping torque
 – The quadrature component of current enhances the synchronizing power coefficient.

• A change in field winding voltage ΔE_f, induces an additional current $i_{D(\Delta E_f)}$ in damper winding (transformer action).
 – The horizontal component of this current is 180° of-of-phase with respect to $\Delta \omega$.
 – \rightarrow the voltage regulator weakens the natural damping above.
 – This detrimental effect can be compensated by a supplementary control loop (PSS).