EE 742 Chap. 5: Electromechanical Dynamics

Y. Baghzouz

introduction

- In this chapter, a longer time scale is considered during which the rotor speed will vary (order of seconds – 10s' of seconds - transient period).
- The change in rotor speed interacts with the electromagnetic changes to produce electro-mechanical dynamic effects.
- Some important stability concepts will be introduced mathematically with physical implications.

Swing equation

• Rotor dynamic equation (Newton's Law on motion):

$$J\frac{\mathrm{d}\omega_{\mathrm{m}}}{\mathrm{d}t} + D_{\mathrm{d}}\,\omega_{\mathrm{m}} = \tau_{\mathrm{t}} - \tau_{\mathrm{e}},\tag{5.1}$$

where J is the total moment of inertia of the turbine and generator rotor (kg m²), ω_m is the rotor shaft velocity (mechanical rad/s), τ_t is the torque produced by the turbine (N m), τ_e is the counteracting electromagnetic torque and D_d is the damping-torque coefficient (N m s) and accounts for the mechanical rotational loss due to windage and friction.

• At steady state, $\omega_m = \omega_{sm}$, and

$$\tau_{\rm t} = \tau_{\rm e} + D_{\rm d}\omega_{\rm sm}$$
 or $\tau_{\rm m} = \tau_{\rm t} - D_{\rm d}\omega_{\rm sm} = \tau_{\rm e},$ (5.2)

where $\tau_{\rm m}$ is the net mechanical shaft torque, that is the turbine torque less the rotational losses at $\omega_{\rm m} = \omega_{\rm sm}$. It is this torque that is converted into electromagnetic torque. If, due to some disturbance, $\tau_{\rm m} > \tau_{\rm e}$ then the rotor accelerates; if $\tau_{\rm m} < \tau_{\rm e}$ then it decelerates.

• Rotor speed:

$$\omega_{\rm m} = \omega_{\rm sm} + \Delta \omega_{\rm m} = \omega_{\rm sm} + \frac{\mathrm{d}\delta_{\rm m}}{\mathrm{d}t},\tag{5.3}$$

where δ_m is the rotor angle expressed in mechanical radians and $\Delta \omega_m = d\delta_m/dt$ is the *speed deviation* in mechanical radians per second.

Swing Equation

• After substitution,

$$J\omega_{\rm sm}\frac{{\rm d}^2\delta_{\rm m}}{{\rm d}t^2} + \omega_{\rm sm}D_{\rm d}\frac{{\rm d}\delta_{\rm m}}{{\rm d}t} = \frac{\omega_{\rm sm}}{\omega_{\rm m}}P_{\rm m} - \frac{\omega_{\rm sm}}{\omega_{\rm m}}P_{\rm e}, \qquad (5.6)$$

where $P_{\rm m}$ is the net shaft power input to the generator and $P_{\rm e}$ is the electrical air-gap power, both expressed in watts. During a disturbance the speed of a synchronous machine is normally quite close to synchronous speed so that $\omega_{\rm m} \approx \omega_{\rm sm}$ and Equation (5.6) becomes

$$J\omega_{\rm sm}\frac{{\rm d}^2\delta_{\rm m}}{{\rm d}t^2} + \omega_{\rm sm}D_{\rm d}\frac{{\rm d}\delta_{\rm m}}{{\rm d}t} = P_{\rm m} - P_{\rm e}.$$
(5.7)

The coefficient $J\omega_{sm}$ is the *angular momentum* of the rotor at synchronous speed and, when given the symbol M_m , allows Equation (5.7) to be written as

$$M_{\rm m}\frac{{\rm d}^2\delta_{\rm m}}{{\rm d}t^2} = P_{\rm m} - P_{\rm e} - D_{\rm m}\frac{{\rm d}\delta_{\rm m}}{{\rm d}t}, \qquad (5.8)$$

where $D_{\rm m} = \omega_{\rm sm} D_{\rm d}$ is the damping coefficient. Equation (5.8) is called the *swing equation* and is the fundamental equation governing the rotor dynamics.

Swing Equation

• Inertia constant:

The inertia constant is given the symbol H defined as the stored kinetic energy in megajoules at synchronous speed divided by the machine rating S_n in megavolt-amperes so that

$$H = \frac{0.5 J \omega_{\rm sm}^2}{S_{\rm n}} \quad \text{and} \quad M_{\rm m} = \frac{2 H S_{\rm n}}{\omega_{\rm sm}}.$$
(5.9)

The units of H are seconds.

the power angle and angular speed can be expressed in electrical ralians and electrical radians per second respectively, rather than their mechanical equivalent, by ubstituting

$$\delta = \frac{\delta_{\rm m}}{p/2}$$
 and $\omega_{\rm s} = \frac{\omega_{\rm sm}}{p/2}$, (5.11)

where p is the number of poles. Introducing the inertia constant and substituting Equations (5.11) nto Equation (5.8) allows the swing equation to be written as

$$\frac{2HS_{\rm n}}{\omega_{\rm s}}\frac{{\rm d}^2\delta}{{\rm d}t^2} + D\frac{{\rm d}\delta}{{\rm d}t} = P_{\rm m} - P_{\rm e}$$

where D, the damping coefficient, is $D = 2D_m/p$.

Swing Equation

The equations in (5.12) can be rationalized by defining an *inertia coefficient M* and *damping power* P_D such that

$$M = \frac{2HS_{\rm n}}{\omega_{\rm s}} = \frac{T_{\rm m}S_{\rm n}}{\omega_{\rm s}}, \quad P_{\rm D} = D\frac{\mathrm{d}\delta}{\mathrm{d}t}, \tag{5.13}$$

when the swing equation takes the common form

$$M\frac{d^{2}\delta}{dt^{2}} = P_{\rm m} - P_{\rm e} - P_{\rm D} = P_{\rm acc}, \qquad (5.14)$$

where P_{acc} is the net accelerating power. The time derivative of the rotor angle $d\delta/dt = \Delta \omega = \omega - \omega_s$ is the *rotor speed deviation* in electrical radians per second. Often it is more convenient to replace the second-order differential equation (5.14) by two first-order equations:

$$M\frac{d\Delta\omega}{dt} = P_{\rm m} - P_{\rm e} - P_{\rm D} = P_{\rm acc}$$

$$\frac{d\delta}{dt} = \Delta\omega.$$
(5.15)

Damping Power

• Assumptions:

- (i) the resistances of both the armature and the field winding are neglected;
- (ii) damping is produced only by the damper windings;
- (iii) the leakage reactance of the armature winding can be neglected;

(iv) excitation does not affect the damping torque.

• Generator equivalent circuit resembles that of an induction motor:

– When ignoring rotor saliency, $s = \Delta \omega / \omega_s$

$$P_{\rm D} = I_{\rm D}^2 \frac{R_{\rm D}}{s} \cong V_{\rm s}^2 \frac{X_{\rm d}' - X_{\rm d}''}{\left(X + X_{\rm d}'\right)^2} \frac{X_{\rm d}'}{X_{\rm d}'} \frac{T_{\rm d}'' \Delta \omega}{1 + \left(T_{\rm d}'' \Delta \omega\right)^2}.$$
where $X_{\rm d}' \cong \frac{1}{\frac{1}{X_{\rm f}} + \frac{1}{X_{\rm a}}}, \quad X_{\rm d}'' \cong \frac{1}{\frac{1}{X_{\rm f}} + \frac{1}{X_{\rm a}} + \frac{1}{X_{\rm D}}}, \quad T_{\rm d}'' = \frac{X_{\rm D}}{\omega_{\rm s} R_{\rm D}} \cong \frac{X_{\rm d}' X_{\rm d}''}{\omega_{\rm s} R_{\rm D} \left(X_{\rm d}' - X_{\rm d}''\right)},$
and
$$X_{\rm D} \cong \frac{X_{\rm d}' X_{\rm d}''}{X_{\rm d}' - X_{\rm d}''}.$$

$$\begin{bmatrix} a_{\rm d} & X_{\rm d} & X_{\rm d} \\ X_{\rm D} \cong \frac{X_{\rm d}' X_{\rm d}''}{X_{\rm d}' - X_{\rm d}''}. \end{bmatrix}$$

Damping power

- With rotor saliency, the following formula is derived when using d-q axis decomposition – note the dependency on rotor angle δ .

$$P_{\rm D} = V_{\rm s}^2 \left[\frac{X_{\rm d}' - X_{\rm d}''}{\left(X + X_{\rm d}'\right)^2} \frac{X_{\rm d}'}{X_{\rm d}''} \frac{T_{\rm d}'' \Delta \omega}{1 + \left(T_{\rm d}'' \Delta \omega\right)^2} \sin^2 \delta + \frac{X_{\rm q}' - X_{\rm q}''}{\left(X + X_{\rm q}'\right)^2} \frac{X_{\rm q}'}{X_{\rm q}''} \frac{T_{\rm q}'' \Delta \omega}{1 + \left(T_{\rm q}'' \Delta \omega\right)^2} \cos^2 \delta \right].$$

• For small speed deviations, the above expression can be approximated by

$$P_{\rm D} = V_{\rm s}^2 \left[\frac{X_{\rm d}' - X_{\rm d}''}{\left(X + X_{\rm d}'\right)^2} \frac{X_{\rm d}'}{X_{\rm d}''} T_{\rm d}'' \sin^2 \delta + \frac{X_{\rm q}' - X_{\rm q}''}{\left(X + X_{\rm q}'\right)^2} \frac{X_{\rm q}'}{X_{\rm q}''} T_{\rm q}'' \cos^2 \delta \right] \Delta \omega.$$
$$P_{\rm D} = [D_{\rm d} \sin^2 \delta + D_{\rm q} \cos^2 \delta] \Delta \omega = D(\delta) \Delta \omega,$$

where $D(\delta) = D_d \sin^2 \delta + D_q \cos^2 \delta$ and D_d , D_q are damping coefficients in both axes.

Damping power

- For large speed deviation values, it is convenient to rewrite P_D as $P_{\rm D} = P_{\rm D(d)} \sin^2 \delta + P_{\rm D(q)} \cos^2 \delta,$
- Critical speed deviation in each axis:

$$s_{\rm cr(d)} = \frac{\Delta\omega_{\rm cr(d)}}{\omega_{\rm s}} = \frac{1}{T_{\rm d}^{\prime\prime}\omega_{\rm s}}, \quad s_{\rm cr(q)} = \frac{\Delta\omega_{\rm cr(q)}}{\omega_{\rm s}} = \frac{1}{T_{\rm q}^{\prime\prime}\omega_{\rm s}},$$

• Critical damping power in each axis:

Equilibrium points

- Recall the generator power-angle characteristic at steady-state (chap. 3):
 - For salient pole: $P_{\rm e} = P_{E_{\rm q}} = \frac{E_{\rm q} V_{\rm s}}{x_{\rm d}} \sin \delta + \frac{V_{\rm s}^2}{2} \frac{x_{\rm d} - x_{\rm q}}{x_{\rm o} x_{\rm d}} \sin 2\delta,$

The swing equation can be rewritten as:

$$M\frac{\mathrm{d}^2\delta}{\mathrm{d}t^2} = P_{\mathrm{m}} - P_{\mathrm{e}}(\delta) - D\frac{\mathrm{d}\delta}{\mathrm{d}t},$$

- At equilibrium, $\left. \frac{\mathrm{d}\delta}{\mathrm{d}t} \right|_{\delta=\hat{\delta}} = 0$ and $\left. \frac{\mathrm{d}^2\delta}{\mathrm{d}t^2} \right|_{\delta=\hat{\delta}} = 0$, P
- Hence, $P_{\rm m} = P_{\rm e}(\hat{\delta}).$
- Using power-angle curve for simplicity:
 - No equilibrium point when $P_m > critical power$
 - one equilibrium point when P_m = critical power
 - two equilibrium points when P_m < critical power

 $P_{\rm e}(\delta) = P_{E_{\rm q}}(\delta) = \frac{E_{\rm q} V_{\rm s}}{\chi_{\rm s}} \sin \delta.$

Steady-state stability of unregulated generator

- We first ignore the controls of the generator and turbine (i.e., the mechanical power and excitation voltage are constant).
- Small-disturbance or small-signal stability: is system is said to be steady-state stable for a specific operating condition if, following a small disturbance, it reaches a steady-state operating point at or close to the pre-disturbance condition.
- Herein, the power system may be linearized near the operating point for analytical purposes.
- The generator-infinite bus bar system is stable only in the left-hand side of the power-angle curve P_{\downarrow} P_{\downarrow} $P_{F_{e}}$ P_{\downarrow}

Steady-state stability of unregulated generator

that is, when the slope K_{E_q} of the characteristic is positive

$$K_{E_{q}} = \left. \frac{\partial P_{E_{q}}}{\partial \delta} \right|_{\delta = \hat{\delta}_{s}} > 0.$$
(5.33)

 K_{E_q} is referred to as the *steady-state synchronizing power coefficient* and the critical power $P_{E_q cr}$ is often referred to as the *pull-out power*

The value of $P_{E_q cr}$ is also referred to as the *steady-state stability limit* and can be used to determine the *steady-state stability margin* as

Transient power-angle characteristic

It should be emphasized that the pull-out power is determined by the steady-state characteristic $P_{E_q}(\delta)$ and the dynamic response of the generator to a disturbance is determined by the transient power-angle characteristic

- Rotor oscillations occur in the same time scale as the transient period → generator model during transient state:
 - For generator model with constant flux linkage, see Fig. below (Chap. 4)

Transient power-angle characteristic

- Constant flux linkage model:

$$\begin{split} P_{\rm e} &= P_{\rm s} = V_{\rm sd} I_{\rm d} + V_{\rm sq} I_{\rm q} = -\frac{E_{\rm q}' V_{\rm sd}}{x_{\rm d}'} + \frac{V_{\rm sd} V_{\rm sq}}{x_{\rm d}'} + \frac{E_{\rm d}' V_{\rm sq}}{x_{\rm q}'} - \frac{V_{\rm sd} V_{\rm sq}}{x_{\rm q}'} \\ P_{\rm e} &= P_{E'}(\delta) = \frac{E_{\rm q}' V_{\rm s}}{x_{\rm d}'} \sin \delta + \frac{E_{\rm d}' V_{\rm s}}{x_{\rm q}'} \cos \delta - \frac{V_{\rm s}^2}{2} \frac{x_{\rm q}' - x_{\rm d}'}{x_{\rm q}' x_{\rm d}'} \sin 2\delta. \\ P_{\rm e} &= P_{E'}(\delta') = \frac{E' V_{\rm s}}{x_{\rm d}'} \left[\sin \delta' \left(\cos^2 \alpha + \frac{x_{\rm d}'}{x_{\rm q}'} \sin^2 \alpha \right) + \frac{1}{2} \left(\frac{x_{\rm q}' - x_{\rm d}'}{x_{\rm q}'} \right) \cos \delta' \sin 2\alpha \right] \\ &- \frac{V_{\rm s}^2}{2} \frac{x_{\rm q}' - x_{\rm d}'}{x_{\rm d}' x_{\rm q}'} \sin 2(\delta' + \alpha). \\ \end{split}$$

For a generator with a salient-pole rotor, $x'_q = x_q$ $\alpha = 0$ and $\delta' = \delta$. the above transient power expression simplifies to

$$P_{\rm e} = \left. P_{E'_{\rm q}}(\delta') \right|_{x'_{\rm q}=x_q} = \frac{E'_{\rm q} V_{\rm s}}{x'_{\rm d}} \sin \delta' - \frac{V_{\rm s}^2}{2} \frac{x_{\rm q} - x'_{\rm d}}{x_{\rm q} x'_{\rm d}} \sin 2\delta'.$$

Transient power-angle characteristic

- Classical generator model: the constant flux linkage model can be simplified further by ignoring the transient saliency, i.e., assuming that $x'_{d} \approx x'_{q}$. The transient power equation becomes equal to

$$P_{\rm e} = \left. P_{E'}(\delta') \right|_{x'_{\rm d} \approx x'_{\rm q}} \approx \frac{E'V_{\rm s}}{x'_{\rm d}} \sin \delta'$$

$$\underbrace{\int \sum_{E'} \sum_{i=1}^{x'_{\rm d}} I_{\rm s}}_{I_{\rm s}}$$

Note that

$$\delta = \delta' + \alpha$$
, $\frac{d\delta}{dt} = \frac{d\delta'}{dt}$ and $\frac{d^2\delta}{dt^2} = \frac{d^2\delta'}{dt^2}$.

This allows δ' to be used in the swing equation instead of δ when Equation (5.14) becomes

$$M\frac{\mathrm{d}^2\delta'}{\mathrm{d}t^2} = P_\mathrm{m} - \frac{E'V_\mathrm{s}}{x'_\mathrm{d}}\sin\delta' - D\frac{\mathrm{d}\delta'}{\mathrm{d}t}.$$

Examples 5.1

The round-rotor generator considered in Example 4.1 is connected to the power system (infinite busbar) via a transformer with series reactance $X_{\rm T} = 0.13$ pu and a transmission line with series reactance $X_{\rm L} = 0.17$ pu. Find, and plot, the steady-state and the transient characteristics using both the constant flux linkage and the classical generator model. As in Example 4.1, the generator real power output is 1 pu, the reactive power output is 0.5 pu and the terminal voltage is 1.1 pu.

$$\begin{split} \underline{I}_{0} &= 1.016 \angle - 26.6^{\circ}, & x_{d} &= x_{q} &= 1.9 \\ E_{q0} &= 2.336 \angle 38.5^{\circ}, & x'_{d} &= 0.53 \\ I_{d0} &= -0.922 & x'_{q} &= 0.68 \\ I_{q0} &= 0.428 & \nabla_{s} &= \nabla_{g} \cdot j(X_{T} + X_{L})I &= 1.0 \bot \cdot 15.8^{\circ} \\ E'_{d0} &= -0.522 & \delta'_{o} &= 12.5 + 15.8 &= 54.3^{\circ}, \\ E'_{q0} &= 1.073 & \Phi_{o} &= 26.6 - 15.8 &= 10.8^{\circ} \\ E' &= 1.193 \bot 12.5^{\circ} & \nabla_{sd} &= -1\sin 54.3^{\circ} &= -.814 \\ \alpha &= \operatorname{atan}(E'_{d}/E'_{q}) &= 26^{\circ} & \nabla_{sq} &= 1\cos 54.3^{\circ} &= 0.584 \\ \end{split}$$

$$P_{E_{q}}(\delta) &= \frac{E_{d} V_{s}}{x_{d}} \sin \delta &= \frac{2.336 \times 1}{1.9} \sin \delta &= 1.23 \sin \delta. \\ P_{E'}(\delta) &= \frac{1.07 \times 1}{0.53} \sin \delta + \frac{-0.5224 \times 1}{0.68} \cos \delta - \frac{1^{2}}{2} \frac{0.68 - 0.53}{0.68 \times 0.53} \sin 2\delta \\ &= 2.02 \sin \delta - 0.768 \cos \delta - 0.208 \sin 2\delta. \\ P_{E'}(\delta') &\approx \frac{1.223 \times 1}{0.53} \sin \delta' &= 2.31 \sin \delta'. \end{split}$$

 $P_{E'}(\delta') \approx -$

Examples 5.2

Recalculate all the characteristics from Example 5.1 for the salient-pole generator considered previously in Example 4.2.

$$P_{E_{q}}(\delta) = \frac{E_{q}V_{s}}{x_{d}}\sin\delta + \frac{V_{s}^{2}}{2}\frac{x_{d} - x_{q}}{x_{d}x_{q}}\sin 2\delta = \frac{1.735 \times 1}{1.23}\sin\delta + \frac{1}{2}\frac{1.23 - 0.99}{1.23 \times 0.99}\sin 2\delta$$

= 1.41 sin δ + 0.099 sin $2\delta \cong 1.41$ sin δ .
$$P_{E'}(\delta) = \frac{1.241 \times 1}{0.6}\sin\delta - \frac{1^{2}}{2}\frac{0.99 - 0.6}{0.99 \times 0.6}\sin 2\delta = 2.07\sin\delta - 0.322\sin 2\delta$$
$$P_{E'}(\delta') \approx \frac{1.265 \times 1}{0.6}\sin\delta' = 2.108\sin\delta'.$$

 $\pi/2$

0

Impact of increase in load

- The increase in load modifies the transient characteristic as shown below (results in smaller transient emf E', hence smaller peak value of the transient power curve).
- The transient synchronizing power coefficient

$$K_{E'} = \left. \frac{\partial P_{E'}}{\partial \delta'} \right|_{\delta' = \hat{\delta}'_{\mathrm{s}}},$$

is steeper than its steady-state counterpart

Rotor Swing and equal area criterion

- Consider the effect of disturbing the rotor angle δ from its equilibrium point $\hat{\delta}_s$ to a new value $(\hat{\delta}_s + \Delta \delta_0)$.
- The disturbance performs work on the rotor. It increases the system potential energy by $\hat{\delta}_{s+\Delta\delta_0}$
- At point 2, $P_m < P_{E'}$ → the machine decelerates.
- At point 1, the above potential energy is converted to kinetic energy, pushing the rotor past the equilibrium point, but starts to accelerate.
- At point 3, area 1-2-4 = area 1-3-5.
- The process repeats indefinitely when no damping is present.

Effect of damper winding

• For small deviations in speed, the damper winding produces damping power that is proportional to speed deviation and adds up to the air-gap power. The sign of P_D depends on the sign of $\Delta \omega$.

$$M\frac{\mathrm{d}^2\delta}{\mathrm{d}t^2} = P_\mathrm{m} - \left[P_\mathrm{e}(\delta) + P_\mathrm{D}\right],$$

- The rotor will therefore move along a modified power-angle trajectory.
- Starting from point 2, the rotor begins to decelerate and reaches minimum speed at point 6.
- Past point 6, the rotor accelerates and reaches sychronous speed when area 2-4-6 = area 6-3-5
- The rotor oscillations are damped and the system quickly reaches the equilibrium point 1.

Effect of rotor flux linkage variation

- In reality, E' is not constant (as the armature flux enters the rotor winding , the rotor flux linkage changes with time).
- To simplify the analysis, only the salient pole machine is considered (i.e., $E' = E'_q$ and $E'_d = 0$,)
- Linearize the transient power equation at the initial operating point:

$$M\frac{\mathrm{d}^{2}\Delta\delta}{\mathrm{d}t^{2}} + D\Delta\omega + K_{E_{\mathrm{q}}^{\prime}}\Delta\delta + D_{\delta^{\prime}}\Delta E_{\mathrm{q}}^{\prime} = 0,$$

where $K_{E'_{\rm q}} = \partial P_{\rm e}/\partial \delta'$ and $D_{\delta'} = \partial P_{\rm e}/\partial E'_{\rm q}$

• $\Delta E_{q'}$ can be in phase with the speed deviation $\Delta \omega \rightarrow$ in this case, it induces an additional damping torque, (see first figure below).

Effect of rotor flux linkage variation

• Updated necessary condition for steady state stability (i.e., $\Delta E_{q'}$ to be in phase with the speed deviation $\Delta \omega$):

$$K_{E_q} = \frac{\partial P_{E_q}}{\partial \delta} > 0 \quad \text{and} \quad K_{E'} = \frac{\partial P_{E'}}{\partial \delta} > K_{E_q}.$$

 In case of large network resistance, ΔE_q can be 180° out of phase with the speed deviation, → generator instability can occur if this negative damping is larger that the positive damping produced by the damper winding (see second figure below).

Rotor swings around the equilibrium point

- Linearized swing equation: $M \frac{d^2 \Delta \delta}{dt^2} + D \frac{d\Delta \delta}{dt} + K_{E'} \Delta \delta = 0,$
- Roots of characteristic equation: $\lambda_{1,2} = -\frac{D}{2M} \pm \sqrt{\left(\frac{D}{2M}\right)^2 \frac{K_{E'}}{M}}.$
- Three possible solutions: under-damped, critically damped and overdamped.

As the values of the roots $\lambda_{1,2}$ depends on the actual values of $K_{E'}$, D and M, so too does the type of response. The inertia coefficient M is constant while both D and $K_{E'}$ depend on the generator loading. Figure 5.3 shows that the damping coefficient D increases with load and Figure 5.10b shows that the transient synchronizing power coefficient $K_{E'}$ decreases with load.

Mechanical analogues of generator-infinite busbar system

• Dynamic equation of mass-spring-damper system

$$m\frac{\mathrm{d}^2\Delta x}{\mathrm{d}t^2} + c\frac{\mathrm{d}\Delta x}{\mathrm{d}t} + k\Delta x = 0.$$

Steady-state stability of regulated system (when action of AVR is included)

• Study restricted to generator with round rotor and negligible resistance.

$$\left(E_{qa} + \frac{X_{d}}{X}V_{s}\right)^{2} + E_{qb}^{2} = \left[\frac{X_{d} + X}{X}V_{g}\right]^{2}.$$
(5.76)

This equation describes a circle of radius $\rho = (X_d/X + 1) V_g$ with centre lying on the a-axis at a distance $A = -X_d V_s/X$ from the origin. This means that with V_g = constant and V_s = constant, the tip of E_q moves on this circle.

• Solve for Eq in terms of Vs, Vg, and δ:

$$E_{\rm q} = \sqrt{\left(\frac{X_{\rm d} + X}{X} V_{\rm g}\right)^2 - \left(\frac{X_{\rm d}}{X} V_{\rm s} \sin \delta\right)^2 - \frac{X_{\rm d}}{X} V_{\rm s} \cos \delta},$$

• Substitute in the power equation:

$$P_{V_{g}}(\delta) = \frac{V_{s}}{X_{d} + X} \sin \delta \sqrt{\left(\frac{X_{d} + X}{X}V_{g}\right)^{2} - \left(\frac{X_{d}}{X}V_{s}\sin\delta\right)^{2}} - \frac{1}{2}\frac{X_{d}}{X}\frac{V_{s}^{2}}{X_{d} + X}\sin 2\delta.$$

• Generator power is proportional to E_{qb} (= $E_q \sin \delta$)

$$P_{V_{\rm g}}(\delta) = \frac{V_{\rm s}}{X_{\rm d} + X} E_{\rm qb},$$

• Maximum power occurs when

$$E_{qb} = \rho = \left(\frac{X_{d}}{X} + 1\right) V_{g} \quad \text{at} \quad \delta_{M} = \arctan\left(\frac{\rho}{A}\right) = \arctan\left(-\frac{X_{d} + X}{X_{d}}\frac{V_{g}}{V_{s}}\right)$$
$$P_{V_{g}M} = \left.P_{V_{g}}\left(\delta\right)\right|_{\delta = \delta_{M}} = \frac{V_{g}V_{s}}{X},$$

Dashed curves 1-6 represent $P_{Eq}(\delta)$ for higher values of E_q .

- The slow-acting AVR (one with a large time constant) will not be able to respond during the transient period, hence the stability limit corresponds to $\delta = \pi/2$.
- For a fast-acting AVR (with short time constant), the stability limit corresponds to δ > π/2. This value depends on the system and AVR parameters (i.e., conditional stability).
- The influence of field current limiter is illustrated in the figure below. The field current limit is reached before $P_{Vg MAX}$ if X is small.
 - Below the limiting point, the generator steady-state characteristic follows P_{Vg} .
 - Above the limiting point, the generator steady-state characteristic follows P_{Eq}.

Transient power-angle characteristics of regulated generator

- We consider AVR with large time constant. In here, the transient characteristics is the same as the unregulated system except,
 - the value of E_{q}' is higher (hence higher amplitude of $P_{E'}(\delta')$) since the increased loading in the regulated system causes an increase in the steady-state field current.
 - In addition, the angle δ' reaches $\pi/2$ before δ reached its critical value.
- Note that when the δ reached its critical value, $\delta' > \pi/2$, hence $K_{E'}$ is negative. So at which point on the $P_{Vg}(\delta)$ curve where $K_{E'} = 0$?

• Using classical model and phasor diagram in Fig. 20b,

$$\left(E_{a}' + \frac{X_{d}'}{X}V_{s}\right)^{2} + E_{b}'^{2} = \left[\frac{X_{d}' + X}{X}V_{g}\right]^{2}.$$

$$E' = \sqrt{\left(\frac{X_{d}' + X}{X}V_{g}\right)^{2} - \left(\frac{X_{d}'}{X}V_{s}\sin\delta\right)^{2}} - \frac{X_{d}'}{X}V_{s}\cos\delta.$$

$$E'|_{\delta'=\pi/2} = \frac{V_{g}}{X}\sqrt{\left(X_{d}' + X\right)^{2} - \left(X_{d}'\frac{V_{s}}{V_{g}}\right)^{2}}.$$

$$P_{V_{g}\,cr} = P_{V_{g}}(\delta')|_{\delta'=\pi/2} = \frac{V_{s}V_{g}}{X}\sqrt{1 - \left(\frac{X_{d}'}{X_{d}' + X}\right)^{2}\left(\frac{V_{s}}{V_{g}}\right)^{2}}.$$

• Ratio of power at which $K_{E'} = 0$ to the power at which $K_{Vg} = 0$:

$$\alpha = \frac{P_{V_{g}}(\delta' = \pi/2)}{P_{V_{g}}(\delta = \delta_{M})} = \frac{P_{V_{g cr}}}{P_{V_{g M}}} = \sqrt{1 - \left(\frac{X'_{d}}{X'_{d} + X}\right)^{2} \left(\frac{V_{s}}{V_{g}}\right)^{2}}$$

- α is strongly dependent on the system reactance X.
- Refer to the figures below:
 - At operating point A (light load) , 0 < K_{Eq} < $K_{E'}$ < K_{Vg}
 - At operating point B (medium load), $0 = K_{Eq}$ while $0 < K_{E'} < K_{Vg}$
 - At operating point C (heavy load) , 0 > K_{Eq} , $K_{E'}$ = 0, and 0 < K_{Vg}

After a disturbance the rotor swings follow the transient power-angle characteristic $P_{E'}(\delta')$. The system is unstable above the point $P_{V_g \text{ cr}}$ where $K_{E'} = \partial P_{E'}/\partial \delta < 0$ and no deceleration area is available. Therefore the necessary stability condition is

Effect or rotor flux variation

- Determine the phase shift between speed change and $\Delta E'_{q_{(\Delta E_f)}}$ (see Section 5.5.3 for details)
- The phasors below represent two types of AVRs:
 - For static exciter ΔE_f is in phase with ΔV
 - For rotating machine exciter, $\Delta E_f \text{ lags } \Delta V$ by 10s' of degrees.
- the out-of-phase component $\Delta E'_{q(\Delta E_f)}$ relative to $\Delta \omega$ reduces damping (i.e., increases chances of instability).

Effect of AVR action on damper winding

- Change in speed induces a voltage $e_{D(\Delta\omega)}$ in damper winding proportional to $\Delta\omega$. The induced current $i_{D(\Delta\omega)}$ lags by and angle due to high winding inductance.
 - In-phase component of current with $\Delta \omega$ gives rise to the natural damping torque
 - The quadrature component of current enhances the synchronizing power coefficient.
- A change in field winding voltage ΔE_f , induces an additional current $i_{D(\Delta Ef)}$ in damper winding (transformer action).
 - The horizontal component of this current is 180° of-of-phase with respect to $\Delta\omega$.
 - \rightarrow the voltage regulator weakens the natural damping above.
 - This detrimental effect can be compensated by a supplementary control loop (PSS).

