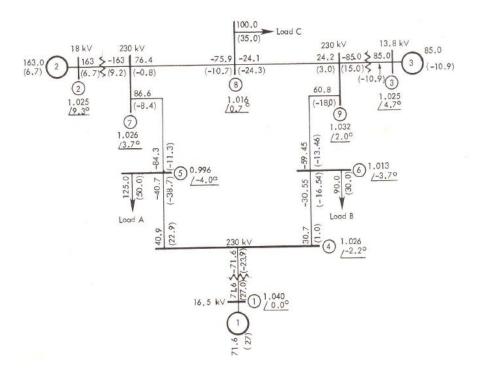

Name:.....

Consider the power system below with 3 generators, 9 buses, 3 load centers, 3 transformers, 6 transmission lines. The data and pre-conditions are also given below. It is desired to conduct a voltage stability study using PowerWorld software. The slides found in the links below are helpful when performing such a study.

- 1) Derive the P-V curve at unity power factor for busses 5, 6, and 8.
 - a. Let the load on the other busses be fixed to the specified values.
 - b. Let the specified generator voltages be fixed at the specified values.
 - c. Let the power generated by generators 2 and 3 vary in the same proportion as the base case.
- 2) Derive the P-V curve for the same buses above.
 - a. Let the load on the other busses be fixed to the specified values.
 - b. Let the real power of the load at the bus under study be fixed at the specified value.
 - c. Let the specified generator voltages be fixed at the specified values.


http://www.powerworld.com/files/S06PVCurves.pdf http://www.powerworld.com/files/S07QVCuvers.pdf

	Bus no.	Impedance		Admittance	
		R	X	G	В
Generators*					0.4450
No.1	1-4	0	0.1184	0	-8.4459
No. 2	2-7	0	0.1823	0	-5.4855
No. 3	3-9	0	0.2399	0	-4.1684
Transmission lines					50 5244
114113111133131111111111111111111111111	4-5	0.0100	0.0850	1.3652	-11.6041
	4-6	0.0170	0.0920	1.9422	-10.5107
	5-7	0.0320	0.1610	1.1876	-5.9751
	6-9	0.0390	0.1700	1.2820	-5.5882
	7-8	0.0085	0.0720	1.6171	-13.6980
	8-9	0.0119	0.1008	1.1551	-9.7843
Shunt admittances†					
Load A	5-0			1.2610	-0.2634
Load B	6-0			0.8777	-0.0346
Load C	8-0			0.9690	-0.1601
Load C	4-0				0.1670
	7-0				0.2275
	9-0				0.2835

^{*}For each generator the transformer reactance is added to the generator x_d' , †The line shunt susceptances are added to the loads.

Generator	1	2	3
Rated MVA	247.5	192.0	128.0
kV	16.5	18.0	13.8
Power factor	1.0	0.85	0.85
Type	hydro	steam	steam
Speed	180 r/min	3600 r/min	3600 r/mir
x_d	0.1460	0.8958	1.3125
x'_d	0.0608	0.1198	0.1813
X_{q}	0.0969	0.8645	1.2578
$X_q \\ X_q'$	0.0969	0.1969	0.25
x_{ℓ} (leakage)	0.0336	0.0521	0.0742
τ'_{d0}	8.96	6.00	5.89
τ'_{q0}	0	0.535	0.600
Stored energy			
at rated speed	2364 MW·s	640 MW · s	301 MW · s

