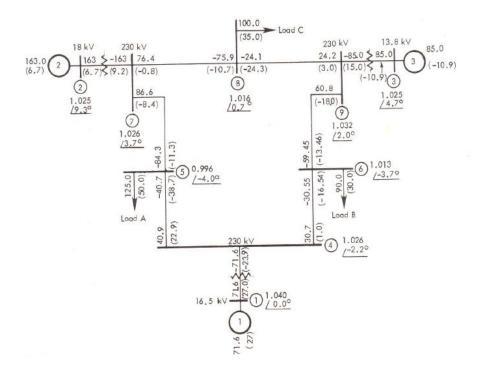

Name:....


Consider the power system below with 3 generators, 9 buses, 3 load centers, 3 transformers, 6 transmission lines. The data and pre-conditions are also given below.

- 1) Verify the power flow displayed in the last figure use bus 1 as a reference.
- 2) Suppose a 3-phase fault occurs near bus 7 of the transmission line 5-7. The fault lasts for 5 cycles, then it is cleared by removing the faulted line. Will the system remain stable? Plot the 3 power angles for a period of 2 seconds.
- 3) Repeat 2) if the fault lasts for 10 cycles before it is cleared.

	Bus no.	Impedance		Admittance	
		R	X	G	В
Generators*					0.4450
No. 1	1-4	0	0.1184	0	-8.4459
No. 2	2-7	0	0.1823	0	-5.4855
No. 3	3-9	0	0.2399	0	-4.1684
Transmission lines				1 2652	-11.6041
	4-5	0.0100	0.0850	1.3652	
	,4-6	0.0170	0.0920	1.9422	-10.5107
	5-7	0.0320	0.1610	1.1876	-5.9751
	6-9	0.0390	0.1700	1.2820	-5.5882
	7-8	0.0085	0.0720	1.6171	-13.6980
	8-9	0.0119	0.1008	1.1551	-9.7843
Shunt admittances†				1 4 7 1 4	0.2624
Load A	5-0			1.2610	-0.2634
Load B	6-0			0.8777	-0.0346
Load C	8-0			0.9690	-0.1601
	4-0				0.1670
	7-0				0.2275
	9-0				0.2835

Table 2.1. Generator Data						
Generator	1	2	3			
Rated MVA	247.5	192.0	128.0			
kV	16.5	18.0	13.8			
Power factor	1.0	0.85	0.85			
Type	hydro	steam	steam			
Speed	180 r/min	3600 r/min	3600 r/min			
x_d	0.1460	0.8958	1.3125			
X_d^{\prime}	0.0608	0.1198	0.1813			
x_a	0.0969	0.8645	1.2578			
$x_q \\ x'_q$	0.0969	0.1969	0.25			
x_{ℓ} (leakage)	0.0336	0.0521	0.0742			
	8.96	6.00	5.89			
τ'_{d0} τ'_{q0}	0	0.535	0.600			
Stored energy						
at rated speed	2364 MW·s	640 MW·s	301 MW · s			

