DC-DC Switch-Mode Converters

EE 442/642

Block Diagram of DC-DC Converters

Stepping Down a DC Voltage – Basic Concept

Switch Duty Ratio: $D = \frac{t_{on}}{T_s}$ Average Output Voltage: $V_o = \frac{t_{on}}{T_s}V_d = DV_d$

Any parasitic inductance in the above circuit will cause damage to the switch In addition, the output voltage contains significant ripple..

Pulse-Width Modulation in DC-DC Converters

Step-Down (Buck) DC-DC Converter

Step-Down DC-DC Converter: Continuous Conduction Mode

Step-Down DC-DC Converter: boundary of Continuous/Discontinuous Conduction Mode

Output Voltage:

$$V_o = DV_d$$

Critical current below which inductor current becomes discontinuous:

$$I_{LB} = I_{oB} = \frac{1}{2}i_{L,peak} = \frac{t_{on}}{2L}(V_d - V_o) = \frac{DT_s}{2L}(V_d - V_o)$$
$$= \frac{DT_s}{2L}(1 - D)V_d$$

Step-Down DC-DC Converter: Discontinuous Conduction Mode (Constant V_d)

$$(V_d - V_o)DT_s + (-V_o)\Delta_1 T_s = 0$$
$$\Delta_1 = \frac{I_o}{4DI_{LB,\text{max}}}$$

Output Voltage: $\frac{V_o}{V_d} = \frac{D^2}{D^2 + I_o / (4I_{LB,max})}$ where $I_{LB,max} = \frac{T_s V_d}{8L}$

Step-Down DC-DC Converter: Limits of Cont./Discont. Conduction Mode (Constant V_d)

Step-Down DC-DC Converter: Limits of Cont./Discont. Conduction mode (Constant V_o)

If output voltage is kept constant,

Duty ratio for a given current:

$$I_{LB} = \frac{T_s V_o}{2L} (1 - D) \implies I_{LB,\max} = \frac{T_s V_o}{2L_s}$$
$$D = \frac{V_o}{V_d} \left(\frac{I_o / I_{LB,\max}}{1 - (V_o / V_D)} \right)^{1/2}$$

Step-Down Converter: Output Voltage Ripple

 v_L

Consider continuous conduction mode.

Assume all the inductor ripple current flows through the capacitor (with the average current flows through the resistive load. Then

$$\begin{split} \Delta V_o &= \frac{\Delta Q_c}{C} = \frac{1}{C} \left(\frac{1}{2} \frac{\Delta I_L}{2} \frac{T_s}{2} \right), \\ \Delta I_L &= \frac{T_s V_o}{L} (1 - D), \\ \Rightarrow \frac{\Delta V_o}{V_o} &= \frac{T_s^2}{8LC} (1 - D) = \frac{\pi^2}{2} (1 - D) \left(\frac{f_c}{f_s} \right)^2 \end{split}$$

 V_{o}

 $(V_d - v_o)$

Step-Up (Boost) DC-DC Converter

• Output voltage must be greater than the input

Step-Up DC-DC Converter: Continuous Conduction

Step-Up DC-DC Converter: Effect of Parasitics

Parasitic elements are due to losses in the inductor, capacitor, switch, and diode.

The duty-ratio is generally limited before the parasitic effects become significant.

Step-Up DC-DC Converter: Limits of Cont./Discont. Conduction

$$I_{LB} = I_{dB} = \frac{1}{2}i_{L,peak} = \frac{t_{on}}{2L}V_d = \frac{T_sV_o}{2L}D(1-D), \quad \Rightarrow I_{LB,\max} = \frac{T_sV_o}{8L}$$
$$I_{oB} = (1-D)I_{dB} = \frac{T_sV_o}{2L}D(1-D)^2, \quad \Rightarrow I_{oB,\max} = \frac{2}{27}\frac{T_sV_o}{L}$$

Step-Up DC-DC Converter: Discontinuous Conduction (constant V_o)

$$V_d DT_s + (V_d - V_o)\Delta_1 T_s = 0$$
$$\Delta_1 = \frac{I_o}{D(T_s V_d / 2L)}$$

For constant V_o and variable V_d,

$$D = \left(\frac{4}{27} \frac{V_o}{V_d} \left(\frac{V_o}{V_d} - 1\right) \frac{I_o}{I_{oB,\text{max}}}\right)^{1/2}$$

Step-Up DC-DC Converter: Limits of Cont./Discont. Conduction (constant V_o)

Step-Up DC-DC Converter Output Ripple

Consider continuous conduction mode.

Assume all the inductor ripple current flows through the capacitor (with the average current flows through the resistive load. Then

$$\Delta V_o = \frac{\Delta Q_c}{C} = \frac{I_o DT_s}{C} = \frac{V_o}{R} \frac{DT_s}{C},$$
$$\Rightarrow \frac{\Delta V_o}{V_o} = \frac{DT_s}{RC} = D\frac{T_s}{\tau}$$

Step-Down/Up (Buck/Boost) DC-DC Converter

- The output voltage can be higher or lower than the input voltage.
- Note the reverse polarity of the output voltage.

Buck-Boost Converter: Cont. Conduction Mode

$$V_d t_{on} + (-V_o) t_{off} = 0$$

$$\Rightarrow V_o = V_d D / (1 - D)$$

$$V_d I_d = V_o I_o$$

$$I_o = I_d (1 - D) / D$$

(a)

(b)

Buck-Boost Converter: Limits of Cont./Discont. Conduction

$$I_{LB} = \frac{T_s V_o}{2L} (1 - D), \quad \Rightarrow I_{LB,\max} = \frac{T_s V_o}{2L}$$
$$I_{oB} = \frac{T_s V_o}{2L} (1 - D)^2, \quad \Rightarrow I_{oB,\max} = \frac{T_s V_o}{2L}$$

Buck-Boost Converter: Disc. Conduction Mode

For constant V_o and variable V_d ,

$$D = \frac{V_o}{V_d} \left(\frac{I_o}{I_{oB,\max}}\right)^{1/2}$$

Buck-Boost Converter: Limits of Cont./Discont. Conduction

Buck-Boost Converter: Effect of Parasitics

In practice, the duty-ratio is limited to avoid these parasitic effects from becoming significant.

Buck-Boost Converter: Output Voltage Ripple

Assume all the ripple current component of the diode current flows through the capacitor and its average value flows through the load resistor.

Cuk DC-DC Converter (Buck-Boost Converter)

Figure 7-26 Cúk converter waveforms: (a) switch off; (b) switch on.

Full-Bridge DC-DC Converter: Possible Operation in all Four Quadrants

Applications:

- DC Motor Drives
- DC-AC Conversion at power frequency (UPS)
- DC-AC Conversion at high frequency (switch-mode power supplies)

Converter Waveforms: PWM with Bi-polar Voltage Switching

← triangular (rather than saw-tooth) waveform is compared to v_{control}.

When $v_{control} > v_{tri}$, TA+, TB- are switched ON, and (TB+, TA-) are switched OFF.

Duty cycle of (TA+,TB-): $D_1 = t_{on}/T_s$ =0.5(1+v_{control}/V_{tri}) Duty cycle of (TB+,TA-): D_2 = (1- D_1)

- ← Case where the average power flows from Vd to Vo.
- ← Case where the average power flows from Vo to Vd.

Converter Waveforms: Uni-polar Voltage Switching

← triangular waveform is compared to v_{control} and -v_{control}.

When $v_{control} > v_{tri}$, TA+, TB- are switched ON. When $-v_{control} > v_{tri}$, TB+, TA- are switched ON.

Duty cycle of (TA+,TB-): $D_1 = t_{on}/T_s$ Duty cycle of (TB+,TA-): $D_2=(1-D_1)$

 $Vo = VAN - VBN = D_1 Vd - D_2 Vd$ = (2 D_1 - 1) Vd = k.v_{control} where k = Vd/V_{tri}

- ← Case where the average power flows from Vd to Vo.
- ← Case where the average power flows from Vo to Vd.

Output Ripple in Full Bridge Converter

Switch Utilization in DC-DC Converters

Switch Utilization Ratio:

$$P_o / P_T = (V_o I_o) / (V_T I_T)$$

where V_T and I_T are the peak voltage and current ratings of the switch.