DC-DC Switch-Mode Converters

EE 442/642

Block Diagram of DC-DC Converters

Stepping Down a DC Voltage - Basic Concept

(b)

Switch Duty Ratio: $D=\frac{t_{o n}}{T_{s}}$
Average Output Voltage: $V_{o}=\frac{t_{o n}}{T_{s}} V_{d}=D V_{d}$
Any parasitic inductance in the above circuit will cause damage to the switch In addition, the output voltage contains significant ripple..

Pulse-Width Modulation in DC-DC Converters

(a)

Duty Ratio: $D=\frac{t_{o n}}{T_{s}}$

(b)

Step-Down (Buck) DC-DC Converter

Output Voltage: $V_{o}=\frac{t_{o n}}{T_{s}} V_{d}=D V_{d}$

(b)

Filter corner frequency (f_{c}) should Be much lower than the Switching frequency (f_{s})

Step-Down DC-DC Converter: Continuous Conduction Mode

$$
\begin{aligned}
& V_{o}=D V_{d} \\
& V_{d} I_{d}=V_{o} I_{o} \\
& I_{o}=\frac{I_{d}}{D}
\end{aligned}
$$

Step-Down DC-DC Converter: boundary of Continuous/Discontinuous Conduction Mode

(b)

Output Voltage:

$$
V_{o}=D V_{d}
$$

Critical current below which inductor current becomes discontinuous:

$$
\begin{aligned}
I_{L B} & =I_{o B}=\frac{1}{2} i_{L, p e a k}=\frac{t_{o n}}{2 L}\left(V_{d}-V_{o}\right)=\frac{D T_{s}}{2 L}\left(V_{d}-V_{o}\right) \\
& =\frac{D T_{s}}{2 L}(1-D) V_{d}
\end{aligned}
$$

Step-Down DC-DC Converter: Discontinuous Conduction Mode (Constant V_{d})

$$
\begin{aligned}
& \left(V_{d}-V_{o}\right) D T_{s}+\left(-V_{o}\right) \Delta_{1} T_{s}=0 \\
& \Delta_{1}=\frac{I_{o}}{4 D I_{L B, \max }}
\end{aligned}
$$

Output Voltage: $\quad \frac{V_{o}}{V_{d}}=\frac{D^{2}}{D^{2}+I_{o} /\left(4 I_{L B, \max }\right)}$
where

$$
I_{L B, \max }=\frac{T_{s} V_{d}}{8 L}
$$

Step-Down DC-DC Converter: Limits of Cont./Discont. Conduction Mode (Constant V_{d})

Step-Down DC-DC Converter: Limits of Cont./Discont. Conduction mode (Constant V_{0})

If output voltage is kept constant, $\quad I_{L B}=\frac{T_{s} V_{o}}{2 L}(1-D) \Rightarrow I_{L B, \max }=\frac{T_{s} V_{o}}{2 L_{s}}$

Duty ratio for a given current:

$$
D=\frac{V_{o}}{V_{d}}\left(\frac{I_{o} / I_{L B, \text { max }}}{1-\left(V_{o} / V_{D}\right)}\right)^{1 / 2}
$$

Step-Down Converter: Output Voltage Ripple

Consider continuous conduction mode.
Assume all the inductor ripple current flows through the capacitor (with the average current flows through the resistive load. Then

$$
\begin{aligned}
& \Delta V_{o}=\frac{\Delta Q_{c}}{C}=\frac{1}{C}\left(\frac{1}{2} \frac{\Delta I_{L}}{2} \frac{T_{s}}{2}\right), \\
& \Delta I_{L}=\frac{T_{s} V_{o}}{L}(1-D),
\end{aligned}
$$

$\Rightarrow \frac{\Delta V_{o}}{V_{o}}=\frac{T_{s}^{2}}{8 L C}(1-D)=\frac{\pi^{2}}{2}(1-D)\left(\frac{f_{c}}{f_{s}}\right)^{2}$

Step-Up (Boost) DC-DC Converter

- Output voltage must be greater than the input

Step-Up DC-DC Converter: Continuous Conduction

$$
\begin{gathered}
V_{d} t_{o n}=\left(V_{d}-V_{o}\right) t_{o f f} \\
\Rightarrow V_{o}=V_{d} /(1-D) \\
V_{d} I_{d}=V_{o} I_{o} \\
I_{o}=I_{d}(1-D)
\end{gathered}
$$

Step-Up DC-DC Converter: Effect of Parasitics

Parasitic elements are due to losses in the inductor, capacitor, switch, and diode.

The duty-ratio is generally limited before the parasitic effects become significant.

Step-Up DC-DC Converter: Limits of Cont./Discont. Conduction

$$
\begin{aligned}
& \text { (a) } \\
& \text { (b) } \\
& I_{L B}=I_{d B}=\frac{1}{2} i_{L, p e a k}=\frac{t_{o n}}{2 L} V_{d}=\frac{T_{s} V_{o}}{2 L} D(1-D), \quad \Rightarrow I_{L B, \text { max }}=\frac{T_{s} V_{o}}{8 L} \\
& I_{o B}=(1-D) I_{d B}=\frac{T_{S} V_{o}}{2 L} D(1-D)^{2}, \quad \Rightarrow I_{o B, \text { max }}=\frac{2}{27} \frac{T_{s} V_{o}}{L}
\end{aligned}
$$

Step-Up DC-DC Converter: Discontinuous Conduction (constant V_{0})

For constant V_{o} and variable $\mathrm{V}_{\mathrm{d}}, \quad D=\left(\frac{4}{27} \frac{V_{o}}{V_{d}}\left(\frac{V_{o}}{V_{d}}-1\right) \frac{I_{o}}{I_{o B, \max }}\right)^{1 / 2}$

Step-Up DC-DC Converter: Limits of Cont./Discont. Conduction (constant V_{0})

Step-Up DC-DC Converter Output Ripple

Consider continuous conduction mode.
Assume all the inductor ripple current flows through the capacitor (with the average current flows through the resistive load. Then

$$
\begin{aligned}
& \Delta V_{o}=\frac{\Delta Q_{c}}{C}=\frac{I_{o} D T_{s}}{C}=\frac{V_{o}}{R} \frac{D T_{s}}{C}, \\
& \Rightarrow \frac{\Delta V_{o}}{V_{o}}=\frac{D T_{s}}{R C}=D \frac{T_{s}}{\tau}
\end{aligned}
$$

Step-Down/Up (Buck/Boost) DC-DC Converter

- The output voltage can be higher or lower than the input voltage.
- Note the reverse polarity of the output voltage.

Buck-Boost Converter: Cont. Conduction Mode

(a)

$$
\begin{aligned}
& V_{d} t_{o n}+\left(-V_{o}\right) t_{o f f}=0 \\
& \Rightarrow V_{o}=V_{d} D /(1-D) \\
& \quad V_{d} I_{d}=V_{o} I_{o} \\
& \quad I_{o}=I_{d}(1-D) / D
\end{aligned}
$$

Note:
$I_{L}=I_{d}+I_{o}$

Buck-Boost Converter: Limits of Cont./Discont. Conduction

(b)

$$
\begin{aligned}
& I_{L B}=\frac{T_{s} V_{o}}{2 L}(1-D), \quad \Rightarrow I_{L B, \text { max }}=\frac{T_{s} V_{o}}{2 L} \\
& I_{o B}=\frac{T_{s} V_{o}}{2 L}(1-D)^{2}, \quad \Rightarrow I_{o B, \text { max }}=\frac{T_{s} V_{o}}{2 L}
\end{aligned}
$$

Buck-Boost Converter: Disc. Conduction Mode

$$
\begin{aligned}
& V_{d} D T_{s}+\left(-V_{o}\right) \Delta_{1} T_{s}=0 \\
& \Delta_{1}=\frac{D I_{o}}{I_{d}} \\
& I_{L}=\frac{V_{d}}{2 L} D T_{s}\left(D+\Delta_{1}\right)
\end{aligned}
$$

For constant V_{o} and variable V_{d},

$$
D=\frac{V_{o}}{V_{d}}\left(\frac{I_{o}}{I_{o B, \max }}\right)^{1 / 2}
$$

Buck-Boost Converter: Limits of Cont./Discont. Conduction

Buck-Boost Converter: Effect of Parasitics

In practice, the duty-ratio is limited to avoid these parasitic effects from becoming significant.

Buck-Boost Converter: Output Voltage Ripple

Assume all the ripple current component of the diode current flows through the capacitor and its average value flows through the load resistor.

Cuk DC-DC Converter (Buck-Boost Converter)

Figure 7-26 Cúk converter waveforms: (a) switch off; (b) switch on.

Full-Bridge DC-DC Converter: Possible Operation in all Four Quadrants

Applications:

- DC Motor Drives
- DC-AC Conversion at power frequency (UPS)
- DC-AC Conversion at high frequency (switch-mode power supplies)

Converter Waveforms: PWM with Bi-polar Voltage Switching

\leftarrow triangular (rather than saw-tooth) waveform is compared to $\mathrm{v}_{\text {control }}$.

When $v_{\text {control }}>v_{\text {tri }}, T A+$,TB- are switched ON, and (TB+,TA-) are switched OFF.

Duty cycle of (TA + ,TB-): $D_{1}=t_{o n} / T_{s}$

$$
=0.5\left(1+\mathrm{V}_{\text {control }} / \mathrm{V}_{\text {tri }}\right)
$$

Duty cycle of $(T B+, T A-)$: $D_{2}=\left(1-D_{1}\right)$
$\mathrm{Vo}=\mathrm{VAN}-\mathrm{VBN}=\mathrm{D}_{1} \mathrm{Vd}-\mathrm{D}_{2} \mathrm{Vd}$
$=\left(2 D_{1}-1\right) V d=k \cdot v_{\text {control }}$
where $\mathrm{k}=\mathrm{Vd} / \mathrm{V}_{\text {tri }}$
As D1: $0 \rightarrow 1$, Vo: $-\mathrm{Vd} \rightarrow \mathrm{Vd}$.
\leftarrow Case where the average power flows from Vd to Vo.
\leftarrow Case where the average power flows from Vo to Vd.

Converter Waveforms: Uni-polar Voltage Switching

\leftarrow triangular waveform is compared to $\mathrm{v}_{\text {control }}$ and $-\mathrm{v}_{\text {control }}$.

When $\mathrm{v}_{\text {control }}>\mathrm{v}_{\text {tri }}, \mathrm{TA}+$,TB- are switched ON. When $-\mathrm{v}_{\text {control }}>\mathrm{v}_{\text {tri }}, \mathrm{TB}+$,TA- are switched ON.

Duty cycle of (TA + ,TB-): $D_{1}=t_{\text {on }} / T_{s}$ Duty cycle of (TB+,TA-): $D_{2}=\left(1-D_{1}\right)$
$\mathrm{Vo}=\mathrm{VAN}-\mathrm{VBN}=\mathrm{D}_{1} \mathrm{Vd}-\mathrm{D}_{2} \mathrm{Vd}$ $=\left(2 D_{1}-1\right) V d=k . v_{\text {control }}$
where $\mathrm{k}=\mathrm{Vd} / \mathrm{V}_{\text {tri }}$
\leftarrow Case where the average power flows from Vd to Vo .
\leftarrow Case where the average power flows from Vo to Vd.

Output Ripple in Full Bridge Converter

(a)Bipolar switching: $\quad V_{r, r m s}=\sqrt{V_{o, r m s}^{2}-V_{o}^{2}}=2 V_{d} \sqrt{D_{1}-D_{1}^{2}}$
(b)Unipolar switching: $V_{r, r m s}=\sqrt{V_{o, r m s}^{2}-V_{o}^{2}}=\sqrt{6 D_{1}-4 D_{1}^{2}-2 V_{d}}$

Switch Utilization in DC-DC Converters

Switch Utilization Ratio: $\quad P_{o} / P_{T}=\left(V_{o} I_{o}\right) /\left(V_{T} I_{T}\right)$
where V_{T} and I_{T} are the peak voltage and current ratings of the switch.

