Review of Basic Electrical and
Magnetic Circuit Concepts



Sinusoidal Linear Circuits:
Instantaneous voltage, current and power, rms values
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Average (real) power, reactive power, apparent power,
power factor
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Instantaneous power in pure resistive and inductive
circuits
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Phasor notation, impedance and admittance

Transformation of a sinusoidal signal to and from the time

domain to the phasor domain:

V(t) = v2V|cos(at +6,) <
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Resistive-Inductive, resistive-capacitive Load
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Power in inductive and capacitive circuits
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Complex Power, power triangle
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Example: Power Factor Correction

The power triangle below shows that the power factor is
corrected by a shunt capacitor from 65% to 90% (lag).

Qc
(271 var)

Sm(600 VA)

oL
(185 var)




Conservation of power

o At every node (bus) in the system,

o the sum of real powers entering the node must be equal to the
sum of real powers leaving that node.

o The same applies for reactive power,
o The same applies for complex power
o The same does not apply for apparent power

o The above is a direct consequence of Kirchhoff’s current law,
which states that the sum of the currents flowing into a node
must equal the sum of the currents flowing out of that node.



Balanced 3 Phase Circuits

1 Bulk power systems are almost exclusively 3-phase. Single phase is
used primarily only in low voltage, low power settings, such as
residential and some commercial customers.

(d Some advantages of three-phase system:

— Can transmit more power for the same amount of wire (twice as
much as single phase)

— Torque produced by 3¢ machines is constant, easy start.

— Three phase machines use less material for same power rating

] Real, reactive and complex power in balanced 3-phase circuits
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Example: power factor correction In three-phase circuit
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Power electronic circuits are non-linear

* Periodic waveforms but often not sinusoidal — analytical

expressions in terms of Fourier components




Fourier Analysis

Table 3-1 Use of Symmetry in Fourier Analysis

Symmetry Condition Required a, and b,
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Example of simple non-sinusoidal periodic signals
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Current decomposition

* Current decomposition of into fundamental (i;;) and distortion
current (i)

i (1) =iy (1) + D i (1) = gy (1) + i (8)
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RMS Value and Total Harmonic Distortion

* The rms value of a distorted waveform is equal to the square-
root of the sum of the square of the rms value of each
harmonic component (including the fundamental).
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Power and Power Factor

Average (real) power and reactive powers: P = thlsh cos(¢,)

h=0,1,....
Apparent Power: S :VSIS — \/P2 _I_QZ n D2 Q — hzoz’l:’.thsh Sln(¢h)
: P
Power factor: pg = _
S

Case of sinusoidal voltage and non-sinusoidal current:
P=Vglg COS(¢1)’ Q :Vsllslsin(¢1)

pp = Vala€OS@) _la ooy lappp_ 1 ppp

Vslls Is Is \/1+(THD)2

Displacement Power Factor: DPF = cos(¢,)



Example

A 460V, 60 Hz AC source supplies powertoa 14.1 Q
resistive load. The load current is delayed by 81
degrees by a back-to-back thyristor circuit as shown
to the right. Compute the following:

a) rms values of the current

b) magnitude and phase angle of the 60 Hz current
component.

c) Magnitude of the 3 and 5™ harmonic
components,

d) Active power, fundamental reactive power.

e) Displacement power factor and overall power
factor.

Solution:

a) 25.26 A,

b) 22 A, - 27 deg,
c)8.9A,3.7A,

d) 9 kW, 4.6 kVAR,
e) 89% and 77.4%



* Ripp

Ripple of DC Signal

e factor may be defined as the ratio of the root

mean square (rms) value of the ripple signal to the

abso
usua

* Ripp

ute value of the DC component of the signal,
ly expressed as a percentage.

eis also commonly expressed as the peak-to-peak

value relative to the DC value.

Rectified ripple

Smoothed ripple
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Current-voltage in an inductor and capacitor

* Inan inductor, the voltage is proportional to the rate of change of current.
* In a capacitor, the current is proportional to the rate of change of voltage.
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Inductor response in steady-state

to+T
* Atsteady-state, i(t +T) =i(t) — .L vdt=0
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Capacitor response in steady-state

to+T |
e Atsteady-state, v(t+T) =v(t) — 1dt=0
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Ampere’s Law

 Ampere's circuital law, discovered by André-Marie
Ampere in 1826, relates the integrated magnetic field
around a closed loop to the electric current passing
through the loop.

§H.d|:|n

where H is the magnetic field intensity

et

e At adistance r from the wire, B

§H.d|=H.(27zr)=|
-6V


http://upload.wikimedia.org/wikipedia/commons/9/91/Electromagnetism.svg

Magnetic Flux Density

* Relation between magnetic field intensity H and
magnetic field density B:

B =uH = (&, 14)H

where

— W, is the relative permeability of the medium (unit-
ess),

— W, is the permeability of free space (= 4nx107 H/m)



B-H Curve in air and non-ferromagnetic material
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Magnetic Flux

 Magnetic flux is the total flux within a given area. It
is obtained by integrating the flux density over this

b = j BdA

* If the flux density is constant throughout the area,
then,

6 = BA



Ampere’s Law applied to a magnetic circuit
(Solid Core)

Ampere’s law:

§H.d|=H|:E|:N|
y7i

Where [ is the average length of the
flux path. The Magnetic flux is:

¢ = BdA=BA

I
Where A is the cross sectional area of
the core. Hence, N 1
I
NI =og(—) = PR
o=

Crossection = 2 cm X 2.5 cm



Analogous electrical and magnetic circuit

guantities
Electrical Magnetic Magnetic Units
Voltage v Magnetomotive force & = Ni Amp-turns
Current 1 Magnetic flux ¢ Webers Wb
Resistance R Reluctance R Amp-turns/Wb
Conductivity 1/p Permeability p Wb/A-t-m
Current density J Magnetic flux density B Wb/m? = teslas T
Electric field E Magnetic field intensity H Amp-turn/m
Electrical Magnetic
EQUIVALENT CIRCUITS
| —- ¢| —
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Ampere’s Law applied to a magnetic circuit
(core with air gap - ignore leakage flux and fringing effect)
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B-H Curve of Ferromagnetic materials
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Orientation of magnetic domains without and with the
presence of an external magnetic field

Without external magnetic field With external magnetic fiedl
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Saturation curves of magnetic and nonmagnetic materials
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Residual induction and Coercive Force

—— '___ . magnetic field intensity #

coercive
force




Hysteresis Loop traced by the flux in a core
under AC current
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Eddy currents are induced in a solid metal plate
under the presence of a varying magnetic field

eddy currents metal plate
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Solid iron core carrying an AC flux
(significant eddy current flow and power loss)

coil carrying an ac current

iron core
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Core built up of insulated laminations minimizes
eddy currents (and eddy current losses)

eddy current In
one lamination



Faraday’s Law

* Faraday's law of induction is a basic law of
electromagnetism relating to the operating principles
of transformers, electrical motors and generators. The

law states that:

“The induced electromotive force (EMF) in any closed
circuit is equal to the time rate of change of the
magnetic flux through the circuit”

Or alternatively, “the EMF generated is proportional to
the rate of change of the magnetic flux”.
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Voltage induced in a coil when it links a variable flux in the
form of a sinusoid
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Induced voltage in a conductor moving in a magnetic field

 The voltage induced in a conductor of length / that is moving
in a magnetic field with flux density B, at a speed v is given by

e =(vBsin &)l cos ¢
where 0 is the angle between vxB and the velocity vector, and

¢ is the angle between vxB and the wire. The polarity of the
induced voltage is determined by Lenz’s Law.

..-"""f.
.-"-f--
.-"f "___.-—'_____-\-"‘\-.:I
.-._,-"' .____.-"'-'
- Flux density (&)
v

#=90deg. and ¢=0deg—=-e=DBvl



Induced voltage in a coil by a rotating magnet
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Lenz’s Law

* The polarity of the induced voltage is such that it
produced a current whose magnetic field opposes
the change which produces it.
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e:Lﬂ
dt

Inductance of a coil

fl current
source
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Induced force on a current-carrying conductor

 The force on a wire of length [ and carrying a current i under
the presence of a magnetic flux B is given by

F=BIilsing

where 0O is the angle between the wire and flux density
vector. The direction of the force is determined by the right
hand rule

Left Hand Rule

Direction —
of Force

I (7] —
}- Magnetic
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Dlrectlon
of Current




Transformers
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Figure 3-18 (a) Cross section of a transformer. (b) The B—H characteristics of the core.
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Figure 3-19 Equivalent circuit for (a) a physically realizable

transformer wound on a lossless core and (b) an ideal
transformer.



High-frequency vs. Low-frequency transformers

* For agiven supply voltage, the flux density B in a transformer core is:
— Inversely proportional to supply frequency
— Inversely proportional to the cross-sectional area of the core.

e As the operating frequency increases, we can use less turns and a smaller
core cross-sectional area. So a high-frequency transformer is smaller than a
low frequency transformer of the same power rating.

 However, hysteresis losses in the core will increase with frequency if the flux
density is kept constant. So for high frequency transformers, we “ditch” the
laminated iron core and use a ferrite material. This needs to be operated at a
lower flux density than iron but exhibits low hysteresis losses.

Example:

« 60 Hz, 120/24V, 36 VA,B=1.5T, core loss =
1 W, N1/N2 = 600/120, weight = 500 g.

« 6 kHz, 120/24, 480 VA, B =0.2 T, core loss =
1 W, N1/N2 = 45/9, weight = 100 g.




