Energy storage in Electric Power Systems

Yahia Baghzouz, Ph.D., P.E. Electrical & Computer Engineering Dept.

Overview

- Impact of variable generation on load curve
- Energy storage technologies
- Battery Energy Storage Systems
 - Residential application
 - Commercial application
- Mobile applications

Adding variable generation (VG) to the mix

- Solar and wind are excellent sources of clean, renewable energy, but as they contribute a larger share to the generation fleet, their integration will become increasingly challenging.
- The reason: solar and wind cannot be dispatched in the same way as other sources of energy, such as nuclear, hydro, and fossil fuels.
- Because the grid must operate "just in time," with generation continually matching demand, special accommodation is required to integrate a significant contribution from the sun or the wind.

Classification of Energy Storage Systems

https://www.energystorageexchange.org/projects

Traditional energy storage: pumped hydro

Classes of Energy Storage

 The choice of an energy storage device depends on its application in either the current grid or in the renewables/VG-driven grid; these applications are largely determined by the length of discharge.

Common Name	Example Applications	Discharge Time Required		
Power Quality	Transient Stability, Frequency	Seconds to Minutes		
	Regulation			
Bridging Power	Contingency Reserves,	Minutes to ~1 hour		
	Ramping			
Energy Management	Load Leveling, Firm Capacity,	Hours		
	T&D Deferral			

Advantages of expanded use of energy storage

- Energy storage can be employed by utilities to facilitate the integration of photovoltaic (PV) generation and mitigate possible negative impacts on the distribution system by:
 - avoiding system upgrades required for PV integration
 - mitigating voltage fluctuations at the primary distribution side resulting from intermittent distributed PV generation
 - reducing distribution system losses through improved utilization of distributed generation
 - deferring upgrade of substation equipment by time-shifting peak PV generation to coincide with system load peak

Energy Storage Applications

		Category 1 — Electric Supply
		1. Electric Energy Time-shift
		2. Electric Supply Capacity
	•	Category 2 — Ancillary Services
		3. Load Following
		4. Area Regulation
		5. Electric Supply Reserve Capacity
		6. Voltage Support
		Category 3 — Grid System
		7. Transmission Support
		8. Transmission Congestion Relief
	Incidental Benefits	9. Transmission & Distribution (T&D) Upgrade Deferral
18.	Increased Asset Utilization	10. Substation On-site Power
19	Avoided Transmission and Distribution Energy Losses	Category 4 — End User/Utility Customer
20	Avoided Transmission Access Charges	11. Time-of-use (TOU) Energy Cost Management
20.	Reduced Transmission and Distribution Investment Risk	12. Demand Charge Management
21.	Duransia Or section Denofts	13. Electric Service Reliability
22.	Dynamic Operating Benefits	14. Electric Service Power Quality
23.	Power Factor Correction	Category 5 — Renewables Integration
24.	Reduced Generation Fossil Fuel Use	15. Renewables Energy Time-shift
25.	Reduced Air Emissions from Generation	16. Renewables Capacity Firming
26.	Flexibility	17. Wind Generation Grid Integration

Deferral of Distribution Feeder investment

Expected Growth in U.S. Annual Energy Storage Deployments

Energy Storage Policies in US

 Several states have recently introduced policies related to the support and development of energy storage technology markets

A 34-MW, 245-MWh Na-S battery installation in Japan

15445 Innovation Drive San Diego, CA 92128

www.edf-re.com

Tehachapi wind farm (Capacity: 4,500 MW)

Large-Scale BESS Installations

32 MWH BESS features lithium-ion batteries housed inside a substation in Tehachapi, CA.

Distributed Energy BESS

Community Energy Storage (multiple customers)

Typical CES Power and Energy Ratings

- 25 kW
- 50 kWh

Residential Applications (single customer)

- Typical Power and Energy Ratings:
 - 2-5 kW
 - 5-15 kWh

Bombard – Adera Power (Las Vegas, NV)

PV-BESS expected to expand as power exported to the grid is becoming less and less costly.

Testing of a BES for Residential Applications

Part of DOE Smart Grid Demo Projects

Collaborators: NV Energy and Pulte Homes

Adding a Battery Energy Storage System to the Mix

- Biggest challenge with solar energy: intermittency
- Solution: combine energy storage and load management capability.
- BESS Applications include:
 - Peak shaving
 - Load shifting
 - PV power generation smoothing
 - Align PV generation with load consumption
- Silent Powe

4.5 kW/10 kWh Residential BESS

• Etc...

Charge/Discharge Test

NVE ODEA System Test

Daily ODEA Electric Discharge Energy
Next Day ODEA Electric Charge Energy

Round trip efficiency

Application 1: Customer enrolled in TOU pricing

 Battery saves money by reducing consumption during periods when total demand for electricity is highest (1:00pm-7:00pm, June-September)

Application 2: Keep Maximum Demand Below 3 kW

- Use battery to provide power demand above 3 kW limit.
- Use excess PV power to charge battery

Charging/discharging optimization^[x]

Different electricity rate plans

Payback period exceeds over 10 years (without incentives)

Plan A	On_	Off On neak demand charge			Service	45.00			On-peak		
(Peak: 1-	peak	peak (\$/kW)		Charge 4500		/					
8 p.m.)	\$/kWh	\$/kWh	0-3	3-10	>10	/Mon	4000				
Summer	\$0.0486	\$0.0371	\$8.03	\$14.63	\$27.77	\$30.94	3500			A	
Summer	\$0.0633	\$0.0423	\$9.59	\$17.82	\$34.19	\$30.94	3000				
Peak							W 2500			D	
Winter	\$0.0430	\$0.0390	\$3.55	\$5.68	\$9.74	\$32.44	2000				-
Plan B		\$/kWh		FIT \$/kWh		1500			в		
Winter (N	Nov-Apr)						1000				
On-peak (12-7 p.m.)		\$0	0.19847		\$0.03	3040	500				
Off-peak		\$0	0.06116		\$0.02	2831	500	_			
Summer (May-Oct)						0	123456	578910111	12 13 14 15 16 17 18 19 20 21 22	2324
On-peak (12-7 p.m.)		\$0	\$0.24477 \$0.02			2989			1	ime (h)	
Off-peak		\$0.06118 \$0.02		2897	7 🕂 Extra PV Power 🖉 On-peak Energy Consume		Energy Consumed				
							📕 Use	ed PV Energy	Load D	emand 🛛 🗕 🗕 🗕 🗕 🗕 🕹 🕹 🚽 🚽 🕹 PV Power	

[x] X. Wang, G.G. Karaday, "Hybrid Battery Charging Strategy for Maximizing PV Customers' Economic Benefits, IEEE PES GM 2016

PV Power Smoothing

- Energy storage system integration with PV can be designed to operate in many ways such as:
 - PV Power Firming: Level PV output power during cloud transients throughout the day, then gets recharged at night and be ready for the next day.
 - PV Power Smoothing: the storage system will generate and absorb energy to smooth out PV array power fluctuations.
- The next slides evaluate the placement of an BES at the PCC of a commercial-size Concentrating PV system for the purpose of reducing the ramp rate, or "power smoothing".

PV Plant Description

- Power rating: 55 kW.
- Surface 300 m²
- No. of cells: 5,600
- Type of cell: III-V multijunction
- Concentration factor: 500
- Cell efficiency: 25%

Power production during 20-minute period of passing clouds

POWER RAMP RATE (KW/SEC)

Power Smoothing by BES

- Reducing power fluctuations depends to several factors such as desired power quality, PV system location in the feeder and specific controls of voltage regulation equipment.
- Ramp rate control (or smoothing) by means of a BES is achieved by <u>continuously monitoring</u> the PV power output and <u>commanding</u> the BES to charge or discharge in a way that limits the combined PV-BES power.

Power Smoothing by BES

- For ramp rate control, the method based on moving average (MA) provides satisfactory results as it defines the current direction with a lag because it is based on past power values.
- The BES is to supply a power P_{e,n+1} that is equal to the deference between the updated moving average and the new PV power generated, i.e.,

$$\overline{P}_{e,n+1} = \overline{P}_{s,n+1} - P_{s,n+1} = \overline{P}_{sn} + \frac{(1-n)P_{s,n+1} - P_{s1}}{n}$$
32

Power Variability of CPV-BES Combination

33

POWER RAMP RATE OF CPV-BES COMBINATION

BES SIZING

300 Wh/1.25 kW (for 1 min moving average) 160 Wh/1.5 kW (for ½ min moving average)

Typical battery charging curve

- What if recommended charge curve is not followed?
- What is the impact of shallow discharges?

Battery discharge curves

Battery capacity under variable discharge rate?

Lastlytesting a lemon battery!

