NCEES Fundamentals of Engineering (FE) Examination ELECTRICAL EXAM SPECIFICATIONS

Effective Beginning with the April 2009 Examinations

- The FE examination is an 8-hour supplied-reference examination: 120 questions in the 4-hour morning session and 60 questions in the 4-hour afternoon session.
- Examinees work all questions in the morning session and all questions in the afternoon module.
- The FE examination uses both the International System of Units (SI) and the US Customary System (USCS).

MORNING Session (120 questions in 12 topic areas)

	Topic Area	Approximate Percentage of AM Test Content
I.	Mathematics	15%
	A. Analytic geometry	
	B. Integral calculus	
	C. Matrix operations	
	D. Roots of equations	
	E. Vector analysis	
	F. Differential equations	
	G. Differential calculus	
Ш.	Engineering Probability and Statistics	7%
	A. Measures of central tendencies and dispersions (e.g., mean, mode,	
	standard deviation)	
	B. Probability distributions (e.g., discrete, continuous, normal, binomial)	
	C. Conditional probabilities	
	D. Estimation (e.g., point, confidence intervals) for a single meanE. Regression and curve fitting	
	F. Expected value (weighted average) in decision-making	
	G. Hypothesis testing	
	Chamiotry	9%
III.	Chemistry A. Nomenclature	970
	B. Oxidation and reduction	
	C. Periodic table	
	D. States of matter	
	E. Acids and bases	
	F. Equations (e.g., stoichiometry)	
	G. Equilibrium	
	H. Metals and nonmetals	
IV.	Computers	7%
	A. Terminology (e.g., memory types, CPU, baud rates, Internet)	
	B. Spreadsheets (e.g., addresses, interpretation, "what if," copying	
	formulas)	
	C. Structured programming (e.g., assignment statements, loops and branches, function calls)	

V.	 Ethics and Business Practices A. Code of ethics (professional and technical societies) B. Agreements and contracts C. Ethical versus legal D. Professional liability E. Public protection issues (e.g., licensing boards) 	7%
VI.	 Engineering Economics A. Discounted cash flow (e.g., equivalence, PW, equivalent annual FW, rate of return) B. Cost (e.g., incremental, average, sunk, estimating) C. Analyses (e.g., breakeven, benefit-cost) D. Uncertainty (e.g., expected value and risk) 	8%
VII.	 Engineering Mechanics (Statics and Dynamics) A. Statics Resultants of force systems Concurrent force systems Equilibrium of rigid bodies Frames and trusses Centroid of area Area moments of inertia Friction B. Dynamics Linear motion (e.g., force, mass, acceleration, momentum) Angular motion (e.g., torque, inertia, acceleration, momentum) Mass moments of inertia Impulse and momentum applied to: a particles rigid bodies Work, energy, and power as applied to: particles rigid bodies 	10%
VIII.	 Strength of Materials A. Shear and moment diagrams B. Stress types (e.g., normal, shear, bending, torsion) C. Stress strain caused by: axial loads bending loads torsion shear D. Deformations (e.g., axial, bending, torsion) E. Combined stresses F. Columns G. Indeterminant analysis H. Plastic versus elastic deformation 	7%

IX. Material Properties

- A. Properties
 - 1. chemical
 - 2. electrical
 - 3. mechanical
 - 4. physical
- B. Corrosion mechanisms and control

C. Materials

- 1. engineered materials
- 2. ferrous metals
- 3. nonferrous metals

X. Fluid Mechanics

- A. Flow measurement
- B. Fluid properties
- C. Fluid statics
- D. Energy, impulse, and momentum equations
- E. Pipe and other internal flow

XI. Electricity and Magnetism

- A. Charge, energy, current, voltage, power
- B. Work done in moving a charge in an electric field (relationship between voltage and work)
- C. Force between charges
- D. Current and voltage laws (Kirchhoff, Ohm)
- E. Equivalent circuits (series, parallel)
- F. Capacitance and inductance
- G. Reactance and impedance, susceptance and admittance
- H. AC circuits
- I. Basic complex algebra

XII. Thermodynamics

- A. Thermodynamic laws (e.g., 1st Law, 2nd Law)
- B. Energy, heat, and work
- C. Availability and reversibility
- D. Cycles
- E. Ideal gases
- F. Mixture of gases
- G. Phase changes
- H. Heat transfer
- I. Properties of:
 - 1. enthalpy
 - 2. entropy

7%

9%

7%

AFTERNOON Session (60 questions in 9 topic areas)

	Topic Area	Approximate Percentage of PM Test Content
I.	 Circuits A. KCL, KVL B. Series/parallel equivalent circuits C. Node and loop analysis D. Thevenin/Norton theorems E. Impedance F. Transfer functions G. Frequency/transient response H. Resonance I. Laplace transforms J. 2-port theory K. Filters (simple passive) 	16%
11.	PowerA. 3-phaseB. Transmission linesC. Voltage regulationD. Delta and wyeE. PhasorsF. MotorsG. Power electronicsH. Power factor (pf)I. Transformers	13%
III.	 Electromagnetics A. Electrostatics/magnetostatics (e.g., measurement of spatial relationships, vector analysis) B. Wave propagation C. Transmission lines (high frequency) 	7%
IV.	 Control Systems A. Block diagrams (feed forward, feedback) B. Bode plots C. Controller performance (gain, PID), steady-state errors D. Root locus E. Stability 	10%
V.	 Communications A. Basic modulation/demodulation concepts (e.g., AM, FM, PCM) B. Fourier transforms/Fourier series C. Sampling theorem D. Computer networks, including OSI model E. Multiplexing 	9%
VI.	 Signal Processing A. Analog/digital conversion B. Convolution (continuous and discrete) C. Difference equations D. Z-transforms 	8%

VII.	 Electronics A. Solid-state fundamentals (tunneling, diffusion/drift current, energy bands, doping bands, p-n theory) B. Bias circuits C. Differential amplifiers D. Discrete devices (diodes, transistors, BJT, CMOS) and models and their performance E. Operational amplifiers F. Filters (active) G. Instrumentation (measurements, data acquisition, transducers) 	15%
VIII.	Digital SystemsA. Numbering systemsB. Data path/control system designC. Boolean logicD. CountersE. Flip-flopsF. Programmable logic devices and gate arraysG. Logic gates and circuitsH. Logic minimization (SOP, POS, Karnaugh maps)I. State tables/diagramsJ. Timing diagrams	12%
IX.	 Computer Systems A. Architecture (e.g., pipelining, cache memory) B. Interfacing C. Microprocessors D. Memory technology and systems E. Software design methods (structured, top-down bottom-up, object-oriented design) F. Software implementation (structured programming, algorithms, data structures) 	10%