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Other renewable 508.5 TWh 2.2%
Solar 185.9 TWh 0.8%
Wind 706.2 TWh 3.0%

Hydro
3884.6 TWh
16.5%

Nuclear

. 2536.8 TWh
Fossil fuel 10.8%

15714.5 TWh
66.8%

Source: US Energy Information Administration (EIA)



US Sources of Electricity Generation, 2017

Total = 4.01 trillion kilowatthours

it e ' renewables 17%

wind 6.3% 0
biomass 1.6% petroleum 1%
solar 1.3%

geothermal  0.4% nuclear 200/3
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coal 30%

natural gas 32%

Note: Electricity generation from utility-scale facilities.

Source: U.S. Energy Information Administration, Electric Power Monthly, February 2018, preliminary data



U S SO u rces Of U.S. electricity generation by source, amount, and share of total in 20181

Energy source Billion kWh Share of total

EIeCtriCity Generation! Total - all sources 4175
20 18 Fossil fuels (total) 2 R4 63.5%

MNatural gas 1,468 35.1%
Coal 1,146 27 4%
Petroleum (total) 25 0.6%
Petroleum liguids 16 0.4%
Fetroleum coke 9 0.2%
Other gases 12 0.3%
Muclear 207 19.3%
Renewables (total) T3 17.1%
Hydropower 292 7.0%
Wind 275 £.6%
Biomass (total) 63 1.5%
Wiood 41 1.0%
Landfill gas 11 0.3%
Municipal solid wasie (biogenic) T 0.2%
OCther biomass wasts 3 0.1%
Solar (total) &7 1.6%
Fhotovoltaic 63 1.5%
Solar therma 4 0.1%
Geothermal 17 0.4%
Pumped storage hydropower” -6 -0.1%

Source: https://www.eia.gov/tools/faqs/fag.php?id=427&t=3 Other sources 13 0.3%



https://www.eia.gov/tools/faqs/faq.php?id=427&t=3

Efficiency of Heat Engines

Note that nearly 80% of the US electricity is

generated in power plants that convert heat :
into mechanical power. [h“h'“mp"“‘"“’}

source
A heat engine extracts heat g, from a high-
temperature source, converts part of it into
work w, and rejects the remaining heat q, into
a low-temperature sink.

Thermal efficiency — O, —G. _ W
J4 Au
Maximum possible efficiency — -
(Where Tisin OK) TH low-temperature
The average thermal efficiency of a thermal { 31‘,’1" j

power plant is around 30%, while the
maximum possible (Carnot) efficiency is
nearly double this amount.



Overview

B Solar-derived renewables
» Photovoltaic (PV)
» Concentrating Power Systems
» Biomass
» Ocean Power
» Wind Power
» Hydro Power

m Earth derived renewables
» Geothermal



Electricity production from renewables
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What is driving the fast growth?

The growth in renewables over the past decade is driven
mainly by the following:

Global concern over the environment. Furthermore,
fossil fuel resources are being drained.

Renewable technologies are becoming more efficient
and cost effective.

The Renewable Electricity Production Tax Credit, a
federal incentive, encourages the installation of
renewable energy generation systems.

Many countries have Renewable Portfolio Standards
(RPS), which require electricity providers to generate
or acquire a percentage of power generation from
renewable resources.



States with RPS

States and territories with
Renewable Portfolio Standards
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Electricity production from renewables
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Primary Resource on Photovoltaics

https://www.energy.gov/articles/energy-101-
solar-photovoltaics
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Photovoltaic Solar Resource
& United States
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Top 10 countries in 2016 based on total PV installed

e China: 78,100 MW (25.8%)

e Japan: 42,800 MW (14.1%)

e Germany: 41,200 MW (13.6%)

» United States: 40,300 MW (13.3%)
e [taly: 19,300 MW (6.4%)

» United Kingdom: 11,600 MW (3.8%)
e India: 9,000 MW (3.0%)

e France: 7,100 MW (2.3%)
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World’s Largest PV Plants

https://en.wikipedia.org/wiki/List_of photovolt
alc_power_stations



Solar Power Plants 1n US
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Trend of PV cell efficiencies

Best Research-Cell Efficiencies

B3
'.q

:NREL

Multijunction Cells (2-terminal, monolithic) ~ Thin-Film Technologies Spectrolab Fraunhofer ISE

O Four-junction or more (non-concentrator) & Multijunction polycrystalline

Boeing-

| ¥ Three-junction (concentrator) @ Cu(In,Ga)Se; (metamorphic, 299x) | (metamorphic, 454x) - gpectrofa Solar

v Three-junction (non-concentrator) o CdTe (lattice 36n‘;atched Spire Junction

A Two-junction (concentrator) © Amorphous Si:H (stabilized) Semiconductor (Iamg‘;rgi;med'
- i i " - micro- -Si Boeing-Spectrolab  Boeing-Spectrolab

A Two-junction (non-concentrator) # Nano-, micro-, poly-Si (me.,.,r?\o,é’h;c,ngx, s

Solar

) 44.0%A 4

(metamorphic,\mox)
4 NREL
| Single-Junction GaAs Emerging PV (inverted, metamorphic) \ NREL e (Iami‘;"med Ssggtlrr:)g-
ASingle crystal o Dye-sensitized cells NREL—. metamorphic, 418x) a/(s_ (K Pl m—
A Concentrator ® Organic cells (various types) Boeing- S;?eocemg 325.7x) e =
- - A Organic tandem cells Spectrolab .+=*"" SHamp (IMM, 1-sun)
¥ Thin-film crystal : NREL (inverted, sharp (MM,
# Inorganic cells NREL/ Spectrolab metamorphic, 1-sun) arp (IMM, 1-sun)
Crystalline Si Cells OQuantumdoteels = o emavm T et NPt thG ISE (1-sun)
— = Single crystal Japan  Spectolabe_ spectrolab ..t FhG-ISE
O Multicrystalli NREL Energy dbou [ESUPM. (117) At Devices
ulticrystalline Spectro adbou (1026x) /  Devices
# Thick Si film Varian (215x) (4.0 cm2, 1-sun) Univ. A /5
il (205%) ' Amonix \ FNG-ISEA
— @ Silicon heterostructures (HIT) AA  NREL A
WV Thin-film crystal St%ord R L e e i S —A At
(140x) Nopin 4 FhG- Devices Panasonic
L PEPRERES: . ~— 8% NREL ) ISE
e UNSW UNSW Cu(In,Ga)Se; G Panasonic
BM A===="" NSW/ (14X Sanyo Y & E| .
(T. J. Watson UNSW i Georgia Eurosolare R ZSW  (Flex polymer sub) Loy
— Research Center) Sandi CO Georgia Georgla Tech = > 204% e
andia N UNSW  Tech NREL Solexel, O First Solar Ep4eed &
Lab NEEL “GE Global
B University iv. Sharp First Solar _ Research
) No. Carolina So. Florida troPower Stuttgart 19 (large-area)
i NREL g Mitsubishi
Mobil State Univ. ARCO Boeing =\ NREL (small-area) 7 (@5umthin-  NREL United Solar Cheica Electronics —_—
Solar S Kodak Solarex /\ D4 o/ NRELEUTO-C'S United Solar e’ film transfer) (CdTe/CIS) (aSilncSiMncSi) Heliatek "0% 'Y
- oeing \ Sharp. a? (&?g&) ooy
Matsushita : United IBM A ik 1% ]
| Kodak  Boeing Solar NREL/ Konarka il @k %ggnom?
Boeing RCA .Uan. Lo \ Konarka — 7/ Sumi- U Mo IO
AUmversny EPFL Gronmge{ // A Univ. of
— of Maine oA o | Plextronics Univ, A Heliatek Toronto
R University Linz University Siemens Dresden NREL (PbS-QD)
RCA Linz (Zn0/PbS-QD)
| | I TN SN [N (IO (SN [N GRS (N[ /SO NN [NV | (NS NN NN [N LN N [N NN [ O (NS SN NN (NS DS (S ) (A | S |
1975 1980 1985 1990 1995 2000 2005 2010 2015



Trend of bulk PV price/watt (peak)
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Price history of silicon PV cells
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Source: Bloomberg New Energy Finance & pv.energytrend.com




SunShot Progress and Goals
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*Levelized cost of electricity (LCOE) progress and targets are calculated based on average U.S. climate and without
the ITC or state/local incentives. The residential and commercial goals have been adjusted for inflation from 2010-17.



Renewable Resources
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Linear CSP Systems

Linear CSP collectors capture the sun’s energy with large mirrors
that reflect and focus the sunlight onto a linear receiver tube.

The receiver contains a fluid that is heated by the sunlight and
then used to create steam that spins a turbine driving a generator
to produce electricity.
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Linear CSP In Nevada: NV Solar | (65 MW)




Power Tower CSP Systems

Sun-tracking mirrors (heliostats) focus sunlight onto a receiver at the
top of a tower. A heat-transfer fluid heated in the receiver is used to
generate steam, which in turn is used by turbine generator to
produce electricity.

Some power towers use water/steam as the heat transfer fluid.
Other advanced designs are experimenting with molten nitrate salt
because of its superior heat-transfer capabilities.
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World’s largest - lvanpah Solar: 350 MW
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Dish/Engine CSP Systems

A sun-tracking solar concentrator, reflects the beams sunlight
onto a thermal receiver that collects the solar heat.

The PCU includes the thermal receiver and the
engine/generator. A thermal receiver can be a bank of tubes
with a cooling fluid— usually hydrogen —that typically is the
heat transfer medium and also the working fluid for an
engine.
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Dish CSP

Currently, the most common type of heat engine used In
dish/engine systems is the Sterling engine where the
heated gas moves pistons and create mechanical power.

Grid connection is through an induction machine.

Heat engine concept

Heater tubes
Swash Plate

Drive
Combustor

Piston Regenerator
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Dish-Engine CSP Testing @ UNLV
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