

Renewable Energy Resources – an Overview Part I

Y. Baghzouz Professor of Electrical Engineering

World Electricity Generation by Source (2015)

Source: US Energy Information Administration (EIA)

US Sources of Electricity Generation, 2017

Note: Electricity generation from utility-scale facilities.

Source: U.S. Energy Information Administration, Electric Power Monthly, February 2018, preliminary data

US Sources of Electricity Generation, 2018

U.S. electricity generation by source, amount, and share of total in 2018 ¹		
Energy source	Billion kWh	Share of total
Total - all sources	4,178	
Fossil fuels (total)	2,651	63.5%
Natural gas	1,468	35.1%
Coal	1,146	27.4%
Petroleum (total)	25	0.6%
Petroleum liquids	16	0.4%
Petroleum coke	9	0.2%
Other gases	12	0.3%
Nuclear	807	19.3%
Renewables (total)	713	17.1%
Hydropower	292	7.0%
Wind	275	6.6%
Biomass (total)	63	1.5%
Wood	41	1.0%
Landfill gas	11	0.3%
Municipal solid waste (biogenic)	7	0.2%
Other biomass waste	3	0.1%
Solar (total)	67	1.6%
Photovoltaic	63	1.5%
Solar thermal	4	0.1%
Geothermal	17	0.4%
Pumped storage hydropower ³	-6	-0.1%
Other sources	13	0.3%

Source: <u>https://www.eia.gov/tools/faqs/faq.php?id=427&t=3</u>

Efficiency of Heat Engines

- Note that nearly 80% of the US electricity is generated in power plants that convert heat into mechanical power.
- A heat engine extracts heat q_H from a hightemperature source, converts part of it into work w, and rejects the remaining heat q_L into a low-temperature sink.
- Thermal efficiency $= \frac{q_H q_L}{w} = \frac{w}{w}$

$$q_H = \frac{q_H}{T_H - T_H}$$

- Maximum possible efficiency $= \frac{T_H T_L}{T_H}$ (where T is in °K)
- The average thermal efficiency of a thermal power plant is around 30%, while the maximum possible (Carnot) efficiency is nearly double this amount.

Overview

Solar-derived renewables

- > Photovoltaic (PV)
- Concentrating Power Systems
- > Biomass
- > Ocean Power
- > Wind Power
- > Hydro Power
- Earth derived renewables
 - Geothermal

Electricity production from renewables

What is driving the fast growth?

The growth in renewables over the past decade is driven mainly by the following:

- Global concern over the environment. Furthermore, fossil fuel resources are being drained.
- Renewable technologies are becoming more efficient and cost effective.
- The Renewable Electricity Production Tax Credit, a federal incentive, encourages the installation of renewable energy generation systems.
- Many countries have Renewable Portfolio Standards (RPS), which require electricity providers to generate or acquire a percentage of power generation from renewable resources.

States with RPS

States and territories with Renewable Portfolio Standards States and territories with a voluntary renewable energy standard or target

States and territories with no standard or target

Electricity production from renewables

Primary Resource on Photovoltaics

https://www.energy.gov/articles/energy-101solar-photovoltaics

Growth in Solar Photovoltaics

Top 10 countries in 2016 based on total PV installed

- China: 78,100 MW (25.8%)
- Japan: 42,800 MW (14.1%)
- Germany: 41,200 MW (13.6%)
- United States: 40,300 MW (13.3%)
- Italy: 19,300 MW (6.4%)
- United Kingdom: 11,600 MW (3.8%)
- India: 9,000 MW (3.0%)
- France: 7,100 MW (2.3%)

World's Largest PV Plants

https://en.wikipedia.org/wiki/List_of_photovolt aic_power_stations

Solar Power Plants in US

<u>https://www.eia.gov/state/maps.php</u>

Trend of PV cell efficiencies

Best Research-Cell Efficiencies

Trend of bulk PV price/watt (peak)

Source: Bloomberg New Energy Finance & pv.energytrend.com

SunShot Progress and Goals

*Levelized cost of electricity (LCOE) progress and targets are calculated based on average U.S. climate and without the ITC or state/local incentives. The residential and commercial goals have been adjusted for inflation from 2010-17.

Renewable Resources

Linear CSP Systems

- Linear CSP collectors capture the sun's energy with large mirrors that reflect and focus the sunlight onto a linear receiver tube.
- The receiver contains a fluid that is heated by the sunlight and then used to create steam that spins a turbine driving a generator to produce electricity.

Linear CSP in Nevada: NV Solar I (65 MW)

Power Tower CSP Systems

- Sun-tracking mirrors (heliostats) focus sunlight onto a receiver at the top of a tower. A heat-transfer fluid heated in the receiver is used to generate steam, which in turn is used by turbine generator to produce electricity.
- Some power towers use water/steam as the heat transfer fluid. Other advanced designs are experimenting with molten nitrate salt because of its superior heat-transfer capabilities.

Power Tower CSP in Nevada: Tonopah – 110 MW

World's largest - Ivanpah Solar: 350 MW

Dish/Engine CSP Systems

- A sun-tracking solar concentrator, reflects the beams sunlight onto a thermal receiver that collects the solar heat.
- The PCU includes the thermal receiver and the engine/generator. A thermal receiver can be a bank of tubes with a cooling fluid— usually hydrogen —that typically is the heat transfer medium and also the working fluid for an engine.

Dish CSP

- Currently, the most common type of heat engine used in dish/engine systems is the Sterling engine where the heated gas moves pistons and create mechanical power.
- Grid connection is through an induction machine.

Dish-Engine CSP Testing @ UNLV

