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• Typical information included: 
– Device ratings and impedances 

–  Load demand in terms of real and reactive powers. 



Per-unit equivalent circuit 

• Real power systems are convenient to analyze using their per-
phase (since its is a balanced three-phase) per-unit (since 
there are many transformers) equivalent circuits. 

• Recall: given the base apparent power (3—phase) and base 
voltage (line-to-line), the base current and  base impedance 
are given by 



Per-unit system 

• The base apparent power and base voltage are specified at a 
point in the circuit, and the other values are calculated from 
them.  

• The base voltage varies by the voltage ratio of each 
transformer in the circuit but the base apparent power stays 
the same through the circuit. 

• The per-unit impedance may be transformed from one base to 
another as 



Example 



Example (cont.) 



Node equations 

• Once the per-unit equivalent circuit is created, it can be used to 
determine the voltages, currents, and powers at various points .  

• The most common technique used to solve such circuits is nodal 
analysis. To simplify the equations, 
– Replace the generators by their Norton equivalent circuits 

– Replace the impedances by their equivalent admittances 

– Represent the loads by the current they draw (for now) 

 

 

 



Node equations 

• According to Kirchhoff’s current flow law (KCL), the sum of all 
currents entering any node equals to the sum of all currents 
leaving the node.  

• KCL can be used to establish and solve a system of 
simultaneous equations with the unknown node voltages. 

• Assuming that the current from the current sources are 
entering each node, and that all other currents are leaving the 
node, applying the KCL to the 3 nodes yields 



Node equations – the Ybus matrix 

• In matrix from, 



Ybus and Zbus matrices of a power network 



Example 



Example (cont.) 



Problems 

• 10.3 

• 10.5 

• 10.7, 10.8, 10.9 



Power-flow analysis equations 
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The basic equation for power-flow analysis is derived from 

the nodal analysis equations for the power system: For 

example, for a 4-bus system, 

where Yij are the elements of the bus admittance matrix, Vi are 

the bus voltages, and Ii are the currents injected at each node. 

The node equation at bus i can be written as 
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Power-flow analysis equations 

Relationship between per-unit real and reactive power 

supplied to the system at  bus i and the per-unit current 

injected into the system at that bus: 

where Vi is the per-unit voltage at the bus; Ii* - complex 

conjugate of the per-unit current injected at the bus; Pi and Qi 

are per-unit real and reactive powers. Therefore,  
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Power flow equations 

Let 
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Hence, 
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• There are 4 variables that are associated with each bus: 

o  P,  

o Q,  

o V,  

o δ. 

• Meanwhile, there are two power flow equations associated 

with each bus. 

• In a power flow study, two of the four variables are defined 

an the other two are unknown. That way, we have the 

same number of equations as the number of unknown. 

• The known and unknown variables depend on the type of 

bus. 

Formulation of power-flow study 



Each bus in a power system can be classified as one of three types: 

1. Load bus (P-Q bus) – a buss at which the real and reactive 

power are specified, and for which the bus voltage will be 

calculated. All busses having no generators are load busses. In 

here, V and δ are unknown. 

2. Generator bus (P-V bus) – a bus at which the magnitude of the 

voltage is defined and  is kept constant by adjusting the field 

current of a synchronous generator. We also assign real power 

generation for each generator according to the economic 

dispatch. In here, Q and δ are unknown 

3. Slack bus (swing bus) – a special generator bus serving as the 

reference bus. Its voltage is assumed to be fixed in both 

magnitude and phase (for instance, 10˚ pu). In here, P and Q 

are unknown. 

Formulation of power-flow study 



Formulation of power-flow study 

• Note that the power flow equations are non-linear, thus cannot 

be solved analytically. A numerical iterative algorithm is 

required to solve such equations. A standard procedure 

follows: 

1. Create a bus admittance matrix  Ybus for the power system; 

2. Make an initial estimate for the voltages (both magnitude 

and phase angle) at each bus in the system; 

3. Substitute in the power flow equations and determine the 

deviations from the solution. 

4. Update the estimated voltages based on some commonly 

known numerical algorithms (e.g., Newton-Raphson or 

Gauss-Seidel).  

5. Repeat the above process until the deviations from the 

solution are minimal. 



Example 

Consider a 4-bus power system below. Assume that  

– bus 1 is the slack bus and that it has a voltage V1 = 1.0∠0° pu.  

– The generator at bus 3 is supplying a real power P3 = 0.3 pu to the 
system with a voltage magnitude 1 pu.  

– The per-unit real and reactive power loads at busses 2 and 4 are P2 
= 0.3 pu, Q2 = 0.2 pu, P4 = 0.2 pu, Q4 = 0.15 pu. 



Example (cont.) 

• Y-bus matrix (refer to example in book) 

 

 

 

 

 

• Power flow solution: 

 

 

• By knowing the node voltages, the power flow (both active 
and reactive) in each branch of the circuit can easily be 
calculated. 


