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Introduction (cont.)

Electric utilities have installed extensive supervisory control
and data acquisition (SCADA) throughout the network to
support computer-based systems.

The data is used for numerous applications (e.g., system
monitoring, economic system operation, security assessment,
control of generation, etc...)

Before any assessment is made or control action Is taken, a
reliable estimate of the existing state of the system must be
determined.

For this purpose, the number of physical measurements cannot
be restricted to those quantities required to support power flow
calculations.

Moreover, errors in one or more of the input quantities can
lead to useless results.
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Introduction (cont.)

In practice, other conveniently measured quantities
(such as P&Q line flows) are available, but cannot be
used in power flow calculations.

The unavoidable errors in the measurements are
assigned statistical properties.

Such limitations are removed by state estimation based
on weighted least-squares calculations.

Gross errors detected 1n the course of state estimation
are filtered out.
A State Estimator allow the calculation of the variables

of interest with high confidence despite:
— measurements that are corrupted by noise.
— measurements that may be missing or grossly inaccurate.



Introduction (cont.)

The state (x) is defined as the voltage magnitude and
angle at each bus

Vi = Ve x=[V,V,,...V.,d,,....0,]
All variables of interest can be calculated from the state
and the measurement mode. z = h(x)
We generally cannot directly observe the state
But we can infer it from measurements

The measurements are noisy (gross measurement
errors, communication channels outage)



[llustration A: 3 —Bus DC Power Flow

The only information we have about this system
is provided by three MW power flow meters

Three-bus DC Load Flow
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O Only two of these meter readings are required to calculate the bus
phase angles and all load and generation values fully

M,; =5MW =0.05pu
M., =40MW = 0.40pu

1
fi;=—(0,-0;)=M,; =0.05pu

X3

1
f, =—(6,-96,)=M;, =0.40pu
X3
Now calculating the angles, considering third bus as swing bus we get
0, =0.02rad

0, = —0.10rad



Case with all meters have small errors

M,, =62MW =0.62pu
M,; = 6MW =0.06pu

Bus1 Bus 2

M,, =37MW =0.37pu —
M12
If we use only the M3 and M3z readings
as before, then the phase angles will be: ___O 102 MW
68 MW Mi13
91 = 0024I‘ad g, = 0.024 37 Mw} é, ! -0.0925
6 MW
0, =—-0.0925rad *
0, = Orad(still assumed to equal zero) —O_‘_
34 MW
This results in the system flows as shown in Bus 3

Figure . Note that the predicted flows match at
M13, and Ms2 but the flow on line 1-2 does not
match the reading of 62 MW from M12.



What we Need ?

« A procedure that uses the information available from
all the three meters to produce the best estimate of
the actual angles, line flows, and bus load and
generation.

* \We have three meters providing us with a set of
redundant readings with which to estimate the two

states 6,and 6,

« \We say that the readings are redundant since, as we saw
earlier, only two readings are necessary to calculate 6, and
0, the other reading is always “extra”.

* The “extra” reading does carry useful information and
ought not to be discarded.



Method of Least Squares

« The acquired data always contains inaccuracies during
measurement and/or transmission. The best estimates
are chosen as those which minimize the weighted sum
of the squares of the measurement errors.

« Mathematically, let Z=h(x)+e

where,
Z = Measurement Vector
h = System model relating state vector to the
measurement set
X = State vector (voltage magnitudes and
angles)
e = Error vector associated with the

measurement set
2-10



Normal Gaussian distribution function

- If the measurement error is unbiased, the probability density
function of n is usually chosen as a normal distribution with
Zzero mean.

|

PDF(1) =
o2

exp(-n°/20°)

. where, ¢ is called the standard deviation and o?is called the
variance of the random number.

0.0 01 0.2 03 04




SE Problem Development
» (Classical Approach: Welghted Least Squares...

min J(X)= i(z —h, (X))
{j.
Minimize: J(x) [z - h(X)]'. W. [z -h(X)]

where,
J = Weighted least squares
W = Weighting matrix = reciprocal of error variances
* |n case of a linear system, I.e., h(x) = HX, the weighted
least square estimate of X Is

Xt =G1HTW?z
where the gain matrix G =H"WH

2-12



Special Cases

* Fully Determined Case: When the number of
measurements is equal to the number of state

variables,
xest = H-lz
 Underdetermined case: When the number of
measurements Is smaller than the number of state

variables (unobservable case), minimize the sum of
the squares of the solution values,

xest = [HTH HT]-l 7



Back to lllustration A

» Assume that all the three meters have the following
characteristics:
— Meter full scale value: 100 MW
— Meter Accuracy: £ 3 MW

 This Is interpreted to mean that the meters will give a
reading within = 3 MW of the true value being
measured for approximately 99 % of time.

« Mathematically, we say that the errors are distributed
according to a normal probability density function with
a standard deviation ,c, I.e., 3o =+ 3 MW. Hence, the
metering standard deviation c =1 MW = 0.01 pu.



[llustration A (cont.)

 To derive the H matrix , we need to write the
measurements as a function of the state variables 0,
and 6, These functions are written in per unit as
-~ M, =f,=1/0.2x(6, - 0,) =50, - 50,
— M= f3=1/0.4 X(0, - 05) =2.5 0,
— Mg, =f,, =1/0.25 x(05- 0,) =-4 0,

5 _5g
0,
[H]=|125 0] x:{e}
2
0 -4 0001 0 O]

e Error covariance matrix W=|0 .0001 O
0 0 .0001




- Our least-squares “best” estimate of 6; and 6, is then
calculated as

70.0001 Y (5 -5
0" 5 25 0
= 0.0001 25 0
| [|[-5 0 -4
_ \ 0.0001) L 0 —4)
s 95 o 70.0001 “T0.62]
X | 0.0001 0.06
500 -4
\ 0.0001) |0.37

0] [ 0028571
s | | —0.094286



From the estimated phase angles, we can calculate the
power flowing in each transmission line and the net
generation or load at each bus.

Bus 1 M, Bus 2

’ —a=G1.4 MW I

——=00.1 MW

#, = 0.028571 37.7 MWT 8, = -0.084286

8, =0
7.1 mw¢




[llustration B

- Consider the following circuit which consists of two
ammeters z,, z,and two voltmeters z3, z,

10 Z 10 7 10

Vi

- If the meter readings are z;=9.014, z, = 3.024 z3 =
6.98V, z, = 5.01V and w;=100, wy, =100, wy=
50, w, = 50 then we have to estimate the voltages and V.

Variance of amp-meters = 1/100, variance of volt-meters = 1/50



Solution

5 1
Z]:gxl—g}(2+e] _ _ ~ _
(0.625 —0.125) 9.01 100 0 0 O
N SV SV ~0.125 0.625 3.02 0 100 0 0
2 8 1 3 2 2 H= 7 — W =
; , 0.375 0.125 6.98 0 0 50 0
23:§K|+§X2+e3 0.125  0.375 ) 15.01 ] oL 0 0 0 50
]
Z4:§XI+§X2+E4_ )
z | e | o o i
- - R 9.00123A 9.017 [9.001237 [0.00877A

160072V | %2 | |3.01544A | |C2| |3.02] |3.01544| |0.00456A
{ 8.0261\7} z,| | 700596V | | | |6.98| |7.0059% | |-0.0259V
T ~ | |5.01070V | | ~| [5.01] |5.01070] [-0.00070V |

<>

() represent estimated values



How Good are the Estimates?

« What criterion for acceptance is reasonable?

» If a grossly erroneous meter reading Is present,
can we detect that fact and identify the bad
measurement?

* These questions can be answered within a
quantifiable level of confidence by attaching a
statistical meaning to the measurement errors
In the least square calculations.



Test for Bad Data

Each estimated error 1s a Gaussian variable with zero mean.

The weighted sum of the squares of these has a Chi-square
distribution % where K is the degree f freedom.

Hypothesis Testing: Probability that J(x) >t =a
Where : ,

J(X): measurement residual °f
a. significance level
(prob. of false alarm)
{2 test threshold




Hypothesis Testing Parameters
K}

Percentage Points of the Chi-Square Distribution

—_—
Dogrees of Probability of a larger value of x ’

Freedom 0.99 0.95 0.90 0.75 0.50 0.25% 0.10 0.05 0.01
1 0.000 0.004 0.016 0.102 0455 1.32 27 384 6.63
2 0.020 0.103 0211 0.575 1.386 2.77 461 599 921
3 0.115 0.352 0.584 1.212 2,366 411 6.25 7.81 11.34
4 0.297 0.711 1.064 1923 1357 5.39 7.78 949 13.28
q 0.554 1.145 1.610 2675 4.351 6.63 924 11.07 15.09
6 0.872 1.635 2.204 3455 5.348 7.84 10.64 12.59 16.81
? 1.239 2.167 2833 4.255 6.346 9.04 12.02 14.07 18.48
“ 1647 2.733 3.490 5071 7.344 10.22 13.36 1551 20.09
K 2088 3.325 4168 5 899 8343 11.39 14 68 16.92 1167
10 2.558 3.940 4.865 6.737 9.342 12.55 1599 18.31 23.21
11 3.053 4575 5.578 7.584 10,341 11.70 17.28 19.68 TR 5
12 3571 5.226 6.304 B.438 11340 1485 1855 2103 26.22
13 4.107 5.892 7.042 9.299 12340 1598 19 81 22.36 27.69
14 4,660 6.571 7.790 10,165 13339 1712 21.06 2368 29.14
15 5.229 7.261 8547 11.037 14339 1825 22.31 25.00 30.58
16 5812 7.962 9.312 11912 15338 19.37 21.54 26.30 12.00
17 6.408 8672 10085 12792 16338 2049 24.77 27.59 3141
18 7.015 9390 10865 13675 17338 2160 25.99 2887 34 80
19 7.633 10117 11651 14562 18338 2272 27.20 30.14 36.19
20 8.260 10851 12443 15452 19337 2383 2841 141 3757
22 9.542 12338 14041 17.240 21337 26.04 3081 319 40.29
24 10856 13848 15659 19037 23337 2824 33.20 3642 4258
26 12198 15379 17,292 20843 25336 3043 35.56 18 89 45.64
28 13565 16928 18939 22657 2733 3262 37.92 4134 4828
30 14953 18493 20599 24478 29336 3480 40.26 43.77 50.89
40 22164 26509 29051 33660 39335 4562 51.80 55.76 63.69
S0 27707 34764 37689 42942 49315 5633 63.17 67.50 76.15
60 37485 43188 46459 52204 59315 6698 74.40 75.08 8818

 a




Continuing with Illustration B

- Assuming a =0.01, number of measurements are 4 and

number of state variables are 2, then degree of freedom
k=(4-2)=2

- From chi-square PDF we get x;=9.21

A
- Now evaluating the weighted sum of squares f we get

A 4. A
f= Zef/ o. =100(0.00877) +100(0.00456)* +50(0.02596) +50(0.00070)
=1

=d.043507
- Which is less than 9.21 Therefore we can conclude with
99% confidence that there is no bad data



Now suppose the raw data measurement set as

(2, 2, z, z,]' =[9.01A 3.02A 6.98V 4.40V]"

Now calculating the estimated errors similar to above
using the new measurement set we get

AN M M M

e, e, e, e,] = [0.06228 0.15439 0.05965 0.49298]"
Now evaluating the weighted sum of squares f we get

A 4 A
f=>e/o} =100(0.06228)* +100(0.15439) +50(0.05965)* +50(0.49298)
=1

=15.1009

- This value of f exceeds 9.21 and so it can be conclude
that there is at-least one bad measurement.

Bad measurements can be identified by computing normalized
residual errors and removing the largest ones > 3, one at a time.



Covariance matrix: R”>= W1 - HGHT
» The normalized errors estimated values are calculated as

e _ 006228 _14178
JRi,  +(1-0.807)x0.01
e, | _ 0.15439 35144
JR,, (1-0.807)x0.01
|e3'| ___ 005965  _ . 460
JRs  /(1-0.193)x0.02
e  -0.49298 _ 38804

JR,,  (1-0.193)x0.02

- It can be concluded from above that measurement z, as
bad measurement.

- Then the measurement is removed from measurement
set

With 3 measurements, f=.0435, and Chi-square value = 6.64.



Power System State Estimation

State variables: voltage magnitudes and their phase angles.

Two Kinds of inputs: data ( e.g., P&Q measurements), and
status information (e.g. on/off status of switching devices).

Number of actual measurements is far greater than
required.

Unlike the earlier DC examples, the measurement
equations h(x) are nonlinear.

Common technique: calculate the gradient of J(x) and force
it to zero using Newton’s method.

See algorithm in next slide



State Estimation Solution Algorithm

START

{

READ MEASUREMENTS

z Y
E
PICK STARTING WHERE x = ['*51]
VALUE FOR x = x°

Y

SOLVE FOR (z, - f, (x))
FORi=1---Nm

Y

CALCULATE H MATRIX
AS FUNCTION OF x

Y

CALCULATE HTRTH MATRIX
Y
CALCULATE [HTR'H}!

Y

SOLVE FOR AX
AX=[HTRTH]"THT R [z, - f, (xj
)

23 -1y (x

CALC MAX (IAx ]

'=1,..Ns
Y YES
<< MAXHA&H<E:>-—“—~€>DONE
e
UPDATE x :

X=X+Ax




Example 6-Bus Power System

B
MV3 us 3

@ MLS P +jQ measurement

*.._.__

Valtage magnitude/
phase angle measurement




Assumption:
Base case Is assumed true, but
Impossible to know in practice

PDF with zero mean, and the
Following standard deviations:
P&Q meters: 6 = 3 MW/MVAR
V meters: o = 3.83 kV

Random number generator was
to produces random errors which
are added to the base values.

TABLE 9.2 Base-Case Conditions

Measurement Base Case Value Measured Value

Name Status kv MW MVAR kv MW MVAR
BUS T

MV1 1 246.1 246.1

MAl 1 0.0 0.0

M12 1 123.6 ~-35.6 123.2 -36.0

Ml4 1 179.9 23.9 180.4 23.8

M15 1 105.0 3.4 105.4 3.8
Bus 2

Mv2 1 241.5 241.5

MAZ 0 0.0 c.0

MG2 1 50.0 75.7 51.0 75.5

M21 1 -109.3 59.7 -110.6 60.5

M23 1 11.4 -5.4 11.7 -5.9

M24 1 83.1 17.2 94.1 16.4

M25 1 15.6 5.3 15.3 2.1

M26 i 39.2 -1.1 38.2 -1.3
Bus 3

MvV3 1 241.5 241.5

MA3 0 0.0 0.0

MG3 1 50.0 24.2 49.8 24.9

M32 1 ~11.3 -0.9 -12.2 -2.1

M35 1 8.9 7.5 8.4 7.3

M36 1 52.4 17.6 51.0 17.6
Bus 4

MV4 1 228.0 228.0

MA4 0 0.0 0.0

ML4 1 ~100.0 ~-15.0 -99.4 -~16.1

Mal 1 -165.5 29.6 -164.5 28.7

M42 i -88.0 =-11.1 -89.2 -12.3

M45 1 -11.0 -3.9 -11.7 -5.58
Bus 5

MVE 1 233.3 233.3

MAS 0 0.0 0.0

MLS 1 -100.0 -15.0 -101.5 -16.1

M51 1 ~97.3 18.1 ~96.9 18.3

M52 1 -15.3 -8.7 ~16.4 -10.2

ME3 1 -8.7 =~12.4 -10.3 -12.9

M54 1 11.2 -3.7 12.7 -1.6

M56 1 10.1 -9.2 10.2 ~10.2
Bus &

MVE 1 235.4 235.4

MAG6 0 0.0 0.0

ML6 1 -100.0 -15.0 ~101.4 ~14.9

M62 1 -38.2 -1.5 -38.6 0.4

M63 1 -51.8 -16.9 -51.0 -16.5

Mé65 1 -9.9 3.4 ~8.7 2.8




State Estimation algorithm
results shown in right column.

Number of variables 11:
No. of degrees of freedom: 51

After 4 iterations, the residual
converged to 56.3

Residual threshold with 99%
Confidence: 63.4

— No bad data detected

TABLE 8.4 State Estimation Solution

Measurement Base Case Value Measured Value Estimated Value

Name Status kV MW MVAR kEV MW MVAR kV MW MVAR
Bus 1

MVl 1 246.1 245.7 247.0

MALl i 0.0 0.0 0.0

MG1 1 228.6 -32.2 225.4 -33.0 226.8 -31.7

M12 i 123.6 -35.6 126.7 -28.3 122.2 ~35.2

M14 i 179.9% 23.9 181.2 20.8 178.6 22.0

M15 1 105.0 3.4 107.4 0.8 104.6 3.5
Bus 2

M2 1 241.5 246.6 242.3

MA2 0 ~14.5 0.0 -10.5

MG2 1 50.0 75.7 49 .7 71.3 49.7 72.3

M21 1 -108.3 58.7 ~106.4 58.8 ~108.3 58.5

M23 i 11. 4 ~5.4 10.4 -7.1 1.1 -5.1

M24 1 93.1 17.2 g2.5 12.1 91.8 14.3

M25 1 15.6 5.3 17.7 6.1 16.1 5.2

M26 i 39.2 -1.1 36.2 -2 .4 39.1 -0.6
Bus 3

MV3 1 241.5 238.5 242 .1

MA3 0 -16.0 0.0 -12.0

MG3 1 50.0 24.2 50.6 21.7 81.2 23.1

M32 1 ~11.3 -0.9 -14 .4 -3.6 -11.0 -1.3

M35 1 8.9 7.5 8.1 11.3 9.6 6.9

M36 1 52.4 17.6 52.7 15.6 B2.6 17.58
Bus 4

MV4 kX 228.0 230.7 229.6

MA4 ¢] ~-18.1 0.0 -15.1

ML4 1 -100.0 ~15.0 -100.3 -14.0 -98.2 =~12.0

M41 1 ~165.5 29.6 ~159.9 32.4 -164.5 30.0

M42 1 -89.0 ~11.1 -87.2 =-11.5 ~-87.9 ~8.6

M45 1 ~11.0 ~-3.9 -8.5 -4 .8 ~10. 4 ~3.4
Bus 5

MV5 1 233.3 234. 4 234.1

MAS 0 ~16.6 0.0 -12.7

MLS 1 ~-100.0 ~15.0 -102.7 -15.9 -102,1 -15.2

M51 1 ~-87.3 19.1 -96.3 17 .4 -96.9 18.5

M52 1 ~15.3 -8.7 -13.8 =-13.2 ~-15.8 ~8.6

M53 1 ~8.7 -~12.4 ~7.3 -8.9 -9.4 -11.9

M54 1 11.2 -3.7 9.6 -4 .6 10.6 -4.3

M56 1 10.1 ~9.2 6.8 -10.7 9.5 ~8.9
Bus 6

MV 1 235.4 234.6 236.0

Ma6 0 -18.6 0.0 ~14.6

ML6 1 -100.0 ~15.0 -98.9 -~20.5 -89.5 ~15.9

ME2 1 -38.2 -1.5 ~37.9 1.9 ~38.1 ~2.0

M63 1 -51.8 -16.9 -56.3 -16.4 -52.1 -16.9

M65 1 -9.9 3.4 -10.5 3.6 -9.4 3.0




Simulation of bad data:
Reverse the reading of M12

After 5 iterations, the residual
Converged to 6,455.

Recall threshold value: 63
— Presence of bad data.

Largest normalized residual
Occurred at meter M12 = 76.9

TABLE 9.6 State Estimation Solution with Measurement M12 Reversed

Measurement Base Case Value Measured Value Estimated Value

Name Status kv MW MVAR kV MW MVAR kv M MVAR
Bus 1

NV1 1 246.1 245.9 247.6

MAL 1 0.0 0.0 0.0

MG1 1 228.6 ~32.2 226 .4 -30.6 179.9 -28.4

M12 1 123.6 ~35.6 ~-125.2 38.7 92.4 -30.1

Mi4 1 179.9 23.9 184.5 23.8 148.5 20.0

M15 i 105.0 3.4 106.8 3.2 87.5 1.7
Bus 2

Mv2 1 241.5 243.6 244.0

MAZ 0 -14.5 0.0 ~-8.5

MG2 1 50.0 75.7 49.2 77.58 77.3 61.3

M21 1 ~109.3 59.7 -108.1 57.5 -84 . 4 41.6

M23 1 11.4 ~5.4 13.2 -5.6 9.4 ~-3.0

M24 1 93.1 17.2 93.8 14.2 85.1 17.4

M25 1 15.6 5.3 21.0 2.1 19.9 4.1

M26 1 39.2 -1.1 37.1 -2.9 37.3 i.1
Bus 3

MV3 1 241.5 241.9 242.9

MA3 ¢ ~16.0 0.0 -9.7

MG3 1 50.0 24.2 51.8 17.6 57.3 15.2

M32 1 -11.3 -0.9 ~-14.6 -2.8 ~9.3 -3.5

M35 1 8.9 7.5 9.8 6.4 14.4 3.1

M36 1 52.4 17.6 52.7 18.3 52.2 15.6
Bus 4

MV4 1 228.0 234.3 230.4

MR4 0 -19.1 0.0 ~13.1

ML4 1 «-100.0 ~15.0 -104.0 ~19.3 -99.8 ~16.6

M41 1 -165.5 29.6 -160.6 28.3 «-138.8 14.5

M42 1 ~-83.0 =~11.1 -g6.1 =-13.0 -91.0 =~11.2

M45 1 -11.0 -3.9 ~8.7 -5.8 ~8.9 ~-5.4
Bus 5

MV5 1 . 233.3 234.4 235.9

MAS 0 ~16.6 0.0 -11.3

ML5 1 ~100.06 -15.0 ~98.8 -10.6 -102.1 ~i2.9

M51 1 -97.3 1.1 ~-103.3 16.1 ~82.2 11.5

M52 1 ~-15.3 -8.7 ~-14.7 -13.3 ~19.5 -7.3

M53 1 -8.7 -12.4 -6.3 =-10.0 -14.2 -7.8

M54 1 11.2 -3.7 9.4 -3.1 9.0 -2.5

M56 1 10.1 -9.2 9.2 -9.6 4.7 -6.6
Bus 6

MV6 1 235.4 241.6 237.2

MA6 0 -18.6 0.0 «12.2

ML6 1 -100.0 ~15.0 -101.0 ~1i2.6 -82.7 ~18.8

M62 1 -38.2 -1.5 -37.0 1.3 ~36.4 -4 .1

M63 1 ~51.8 -~16.9%9 -50.6 =-19.9 -51.7 =-15.1

M65 1 -9.9 3.4 -8.2 6.6 e 0.4




TABLE 9.7 Staie Estimation Solution After Removal of Bad Data

Measurement Base Case Value Measured Value Estimated Value
Name Status kv MW MVAR kv MW MVAR kv Me MVAR
Bus 1
Mvli 1 246.1 245.9 248.9
. . MAL 1 0.0 0.0 0.0
State Estimation after removal Me1 1 228.6 ~32.2 226.4 -30.6 228.7 -32.4
M2 0 123.6 -35.6 -125.2  38.7 123.3 -35.3
of bad data: Mi4 1 179.9 23.9 184.5 23.8 179.6 24.5
Mis 1 105.0 3.4 106.8 3.2 105.4 3.0
Busg 2
Mvz 1 241.5 243.6 2441
L MA2 O -14.5 0.0 -11.9
No. degrees of freedom: k=49 ez 50.0 75.7 49.2  71.5 50.4 75.7
M21 1 -109.3 59.7 -108.1 57.5 -109.4 58.6
M23 1 11.4 -5.4 13.2 ~5.6 11.4 -4.8
] ] ] M24 1 93.1  17.2 93.8 14.2 93.2 18.4
M25 1 15.6 5.3 21.0 2.1 15.9 4.7
After 3 iterations, the residual Mzs 1 1.6 5.3 1.0 2.1 5.9 4.7
Bus 3
Converged to 37.5 w3 1 241.5 241.9 243.7
MA3 O -16.0 0.0 -13.4
MG 1 50.0 24.2 51.8 17.6 50.1  20.2
Bad d M3z 1 -11.3  =0.9 -14.6 -2.8 -11.3  -1.7
. M35 1 8.9 1.5 9.8 6.4 9.0 6.2
a ata Threshold: 61 M36 1 52.4 17.6 52.7 19.3 52.5 15.7
Bus 4
Mva 1 228.0 234.3 230.5
MA4 O -19.1 0.0 -16.4
— Bad data no longer present MLs 1 -100.0 -15.0 J104.0 -19.3 -100.1 -17.1
M4l 1 -165.5 29.6 -160.6 28.3 -165.5 27.5
M2 1 -89.0 -11.1 -86.1 ~13.0 -89.2 -12.4
Ma5 1 -11.0 -3.9 -8.7 -5.9 -10.9 ~-4.7
Bus 5
Mvs 1 233.3 234.4 236.3
MAS 0 -16.6 0.0 -14.0
MLS 1 -100.0 -15.0 -98.8 -10.6 -101.1 -12.5
MS1 1 -97.3  19.1 -103.3  16.% -97.7 18.9
M52 1 -15.3  =-8.7 -14.7 -13.3 -15.6 -8.2
M53 1 -8.7 -12.4 -6.3 -10.0 -8.8 -11.2
M54 1 11.2  -3.7 9.4 -3.1 1.2 -3.1
Ms6 1 10.1 -9.2 9.2 -9.6 9.9 -8.8
Bus é
MVe 1 235.4 241.6 238.0
MAE O -18.6 0.0 -15.9
MLE6 1 -100.0 ~15.0 -101.0 -12.6 -100.2 -14.0
M2 1 -38.2 ~-1.5 -37.0 1.3 -38.4 -1.6
M63 1 -51.8 ~16.9 -50.6 ~19.9 -61.9 -15.2
M65 1 -9.9 3.4 -8.2 6.6 -9.8 2.8




Phasor Measurement Units (PMU)

QTraditionally, input measurements have been provided by the SCADA system
(Supervisory Control and Data Acquisition)

WUSynchronicity of the electrical measurements cannot be guaranteed when using
the SCADA system. This means that during a dynamic event, the measurements
provided to the state estimator by the SCADA system will not allow an accurate
estimation of state variables. In actual operation, the snapshot is collected over a
few seconds.

OWith the advent of real-time Phasor Measurement Units (PMU’s), synchronised
phasor measurements are possible which allows monitoring of dynamic
phenomena. Also, the possibility of using PMUs for state estimation and the effect
of using PMU measurements

==) PMUSs improve the accuracy of state estimation since they
eliminate time differences and provide additional
measurements of voltage magnitudes and their phases



Summary

- Real time monitoring and control of power systems is
extremely important for an efficient and reliable operation
of a power system.

- Sate estimation forms the backbone for the real time
monitoring and control functions.

- In this environment, a real-time model is extracted at
intervals from snapshots of real-time measurements.

- Estimate the nodal voltage magnitudes and phase angles
together with the parameters of the lines.

- State estimation results can be improved by using
accurate measurements like phasor measurement units.

- Traditional state estimation and bad data processing is
reviewed.
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Assignment

 Solve Problem 9.4 of Chapter 9 (pp. 465-466)



