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Introduction (cont.)

• Electric utilities have installed extensive supervisory control 

and data acquisition (SCADA) throughout the network to 

support computer-based systems.

• The data is used for numerous applications (e.g., system 

monitoring, economic system operation, security assessment, 

control of generation, etc…)

• Before any assessment is made or control action is taken, a 

reliable estimate of the existing state of the system must be 

determined.

• For this purpose, the number of physical measurements cannot 

be restricted to those quantities required to support power flow 

calculations.

• Moreover, errors in one or more of the input quantities can 

lead to useless results. 
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Introduction (cont.)
• In practice, other conveniently measured quantities 

(such as P&Q line flows) are available, but cannot be 

used in power flow calculations.

• The unavoidable errors in the measurements are 

assigned statistical properties.

• Such limitations are removed by state estimation based 

on weighted least-squares calculations.

• Gross errors detected in the course of state estimation 

are filtered out.

• A State Estimator allow the calculation of the variables 

of interest with high confidence despite:
– measurements that are corrupted by noise.

– measurements that may be missing or grossly inaccurate.



Introduction (cont.)



Illustration A: 3 –Bus DC Power Flow







What we Need ?

• A procedure that uses the information available from 

all the three meters to produce the best estimate of 

the actual angles, line flows, and bus load and 

generation.

• We have three meters providing us with a set of 

redundant readings with which to estimate the two 

states 1 and 2.

• We say that the readings are redundant since, as we saw 

earlier, only two readings are necessary to calculate 1 and 

2 the other reading is always “extra”.

• The “extra” reading does carry useful information and 

ought not to be discarded.
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Method of Least Squares

• The acquired data always contains inaccuracies during 

measurement and/or transmission. The best estimates 

are chosen as those which minimize the weighted sum 

of the squares of the measurement errors.

• Mathematically, let Z =  h( x ) + e 

where,

Z = Measurement Vector

h = System model relating state vector to the

measurement set 

x = State vector (voltage magnitudes and

angles)

e = Error vector associated with the

measurement set



Normal Gaussian distribution function
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SE Problem Development 

• Classical Approach: Weighted Least Squares…

• In case of a linear system, i.e., h(x) = Hx, the weighted 

least square estimate of x is 

xest =G-1 HTWz

where the gain matrix  G =HTWH 

Minimize: J(x) = [z - h(x)] t. W. [z - h(x)]

where, 

J = Weighted least squares

W = Weighting matrix = reciprocal of error variances



Special Cases

• Fully Determined Case: When the number of 

measurements is equal to the number of state 

variables,

xest = H-1z

• Underdetermined case: When the number of 

measurements is smaller than the number of state 

variables (unobservable case), minimize the sum of 

the squares of the solution values,

xest = [HTHHT]-1 z



Back to Illustration A

• Assume that all the three meters have the following 

characteristics:

– Meter full scale value: 100 MW

– Meter Accuracy: ± 3 MW

• This is interpreted to mean that the meters will give a 

reading within ± 3 MW of the true value being 

measured for approximately 99 % of time. 

• Mathematically, we say that the errors are distributed 

according to a normal probability density function with 

a standard deviation ,, i.e.,  3  = ± 3 MW. Hence, the 

metering standard deviation  = 1 MW = 0.01 pu.



Illustration A (cont.)

• To derive the H matrix , we need to write the 

measurements as a function of the state variables 1 

and 2. These functions are written in per unit as

– M12 = f12 = 1/0.2 x(1 - 2) =5 1 - 52

– M13= f13 = 1/0.4 x(1 - 3) =2.5 1

– M32 = f32 = 1/0.25 x(3 - 2) =-4 2 

• Error covariance matrix
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Illustration B

Variance of amp-meters = 1/100, variance of volt-meters = 1/50



Solution

(^) represent estimated values



How Good are the Estimates?

• What criterion for acceptance is reasonable? 

• If a grossly erroneous meter reading is present, 

can we detect that fact and identify the bad 

measurement?

• These questions can be answered within a 

quantifiable level of confidence by attaching a 

statistical meaning to the measurement errors 

in the least square calculations.



Test for Bad Data
• Each estimated error is a Gaussian variable with zero mean. 

• The weighted sum of the squares of these has a Chi-square 

distribution where k is the degree f freedom.

• Hypothesis Testing: Probability that J(x) > tj = α

• Where 

• J(x): measurement residual 

• α: significance level

(prob. of false alarm)

• tj: test threshold

2

k



Hypothesis Testing Parameters
k

α

tj



Continuing with Illustration B



Bad measurements can be identified by computing normalized

residual errors and removing the largest ones > 3, one at a time.

[0.06228 0.15439 0.05965 0.49298]T



Covariance matrix: R’ = W-1 – HG-1HT

With 3 measurements, መ𝑓= .0435, and Chi-square value = 6.64.



Power System State Estimation

• State variables: voltage magnitudes and their phase angles.

• Two kinds of inputs: data ( e.g., P&Q measurements), and 

status information (e.g. on/off status of switching devices).

• Number of actual measurements is far greater than 

required.

• Unlike the earlier DC examples, the measurement 

equations h(x) are nonlinear.

• Common technique: calculate the gradient of J(x) and force 

it to zero using Newton’s method.

• See algorithm in next slide



State Estimation Solution Algorithm



Example 6-Bus Power System



Assumption:

Base case is assumed true, but 

Impossible to know in practice

PDF with zero mean, and the 

Following standard deviations:

P&Q meters: σ = 3 MW/MVAR

V meters: σ = 3.83 kV

Random number generator was 

to produces random errors which

are added to the base values.



State Estimation algorithm 

results shown in right column.

Number of variables 11:

No. of degrees of freedom: 51

After 4 iterations, the residual 

converged to 56.3

Residual threshold with 99%

Confidence: 63.4

→ No bad data detected



Simulation of bad data:

Reverse the reading of M12

After 5 iterations, the residual 

Converged to 6,455.

Recall threshold value: 63

→ Presence of bad data.

Largest normalized residual 

Occurred at meter M12 = 76.9



State Estimation after removal 

of bad data:

No. degrees of freedom: k = 49

After 3 iterations, the residual 

Converged to 37.5

Bad data Threshold: 61

→ Bad data  no longer present



Phasor Measurement Units (PMU)

PMUs improve the accuracy of state estimation since they 

eliminate time differences and provide additional 

measurements of voltage magnitudes and their phases



Summary
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Assignment 

• Solve Problem 9.4 of Chapter 9 (pp. 465-466)


