Panel: Solar PV on Distribution Circuits

Determination of Mitigation Solutions

Barry Mather Ph.D.

National Renewable Energy Laboratory

Golden, CO

Importance of PV Impact Studies

- Model-based studies are used to inform the cost of PV interconnection
 - Majority of PV is installed on distribution1
 - Outcome of studies (i.e. \$\$ needed to interconnect) makes or breaks many PV projects
 - Scope of the studies heavily influences the mitigation cost if allowable impact is surpassed

PV impact studies are intrinsically intertwined to mitigation studies

¹Palmintier et al., "Emerging Issues and Challenges in Integrating Solar with the Distribution System." NREL Tech. Report TP-5D00-65331, May, 2016.

NREL/SCE Hi-Pen PV Project

2 MW Warehouse Roof Mounted PV System near Fontana, CA

- Impetus SCE installing 500 MW of distribution-connected utility scale solar
- Focus impact and mitigation of 1-5 MW PV systems
- Goal easing the interconnection concerns of utilities faced with utility-scale distribution-connected PV systems

Using salient points in time...

- When determining PV mitigation measures how can we approach the model-based PV mitigation analysis to get a reliable output with minimal input?
- 1 year of quasi-static time-series analysis
 30M to 500k static solutions 60hrs to 1hr
- Can we look at a few salient points in time (or important days) and get 80% of the value?

PV Impact/Mit. Study Approach

- Impacts assessed:
 - Voltage step change
 - Controller movement
 - Fault/protection
- Additional analysis:
 - Variability analysis
 - Impact mitigation options/settings

- Salient time points:
 - Maximum load time point
 - Minimum load time point
 - Maximum PV generation time point
 - Maximum ratio of PV generation to load
 - Maximum difference between PV generation and load

See: B. Mather, et. al "NREL/SCE High-Penetration PV Integration Project: Annual Report FY 13," NREL Technical Report TP-5D00-61269, 2014.

Voltage Step Change Analysis Approach

- For each salient operating point:
 - Model PV at 100% rated, solve
 - Lock controlled elements and reduce PV to 0% (100% loss), solve
 - Measure voltage step change, unlock controlled elements, solve
- Lock controlled elements and increase PV to 100% rated, solve
- Measure voltage step again (100% return)

The Impacts of DERs on Long-Term System Planning

Benjamin Lee Southern California Edison Grid Modernization Benjamin.Lee@sce.com

Presentation Objective and SCE Introduction

Discuss the impacts of DERs on System Planning and Grid Operations and SCE's plan to leverage technology to address it

- 50,000 sq. miles
- SCE serves 14 million customers and 5 million meters
- SCE consist of 4 operational zones

- 900 Substations
- 5,000 Transmission/Distribution circuits
- 110,000 Circuit Miles
- 1.6 million Transmission/Distribution poles
- 720,000 Substation/Transmission/Distribution Transformers
- 700,000 Street Lights

DER Integration is Significantly Impacting SCE's Long-Term System Planning

- Impact of DERs on Long-Term System Planning
 - Interconnection Process
 - Forecasting
 - System Analysis
 - Optimal Grid Solutions
- DERs are driving Integrated Planning and Operations
- Overview of SCE's Grid Modernization Software Roadmap
- Summary

Summary

- 1. Integration of DERs changes the way SCE plans and operates the electric grid
- 2. New types of analysis and evaluation are required
- 3. Long-Term System Planning and Grid Operations are becoming more dependent

Questions?

Benjamin Lee Southern California Edison Grid Modernization Benjamin.Lee@sce.com

Method for Calculating and Increasing Hosting Capacity for PV on Distribution Systems

Jeff Smith Manager, Power System Studies

jsmith@epri.com

IEEE Innovative Smart Grid Technologies (ISGT) Conference, Minneapolis, MN, September 2016

What is Hosting Capacity and Why is it So Important?

- Definition:
 - Hosting Capacity is the amount of DER that can be accommodated without adversely impacting power quality or reliability under current configurations and without requiring infrastructure upgrades.
- Hosting Capacity is
 - Location dependent
 - Feeder-specific
 - Time-varying

Hosting Capacity can be used to inform utility interconnection processes and to support DG developer understanding of more favorable locations for interconnection

- Hosting capacity considers DER interconnection without allowing
 - Voltage/flicker violations,
 - Protection mis-operation
 - Thermal overloads
 - Decreased safety/reliability/power quality

Evolution of Hosting Capacity Methods

- Detailed hosting capacity methods first used to quantify
 - How much DER can be accommodated
 - Where can DER be accommodated
 - What distribution impacts occur
- Industry-wide application
 - Over 6 million unique DER deployment scenarios evaluated across >30 feeders and > 12 utilities
- Lessons learned
 - Location matters
 - No two feeders are alike feeder clustering not sufficient
 - Rules-of-thumb aren't effective (DER as % of load for example)
 - Detailed analysis not easily replicable across large number of feeders
- New methods can be developed based learnings to "streamline" the analysis

2011

Increasing penetration (MW)

1.055

1.05

2014

Threshold of violation

2015

B – <u>Some</u> penetrations in this region are acceptable, site specific

2016/17

 No penetrations in this region are acceptable, regardless of location

Detailed Implementation of Hosting Capacity Assessments

Method Overview

Power & Energy Society®

- Select specific locations for DER
- "Iterate" through each case
- Solve 1000's of load flows

Findings

- Results similar to detailed impact studies
 - Accurate
 - Time-consuming/data intensive
 - Applicable to specific scenarios
- Difficult to consider range of possible DER scenarios
 - All locations (three-phase and single-phase)
 - Feeder reconfigurations
 - DER types
- Not easily replicable across entire system
 - Typically have to limit the cases/locations/scenarios considered
 - Can take <u>hours</u> to <u>days</u> to simulate a single feeder depending upon feeder complexity

Large "Scale" of Distribution System Creates Challenges for Distribution Planners

EPRI's Streamlined Hosting Capacity Method

Power & Energy Society

- Typical utility responsible for 100's to 1000's of distribution feeders
- Each feeder uniquely designed and operated to reliably serve all customers
- Methods needed that can be applied across entire distribution service territory

Granular	Capture unique feeder-specific responses
Repeatable	As distribution feeders change
Scalable	System-wide assessment
Transparent	Clear and open methods for analysis
Proven	Validated techniques
Available	Utilize readily available utility data and tools

Streamlined Implementation of Hosting Capacity Assessments

Method Overview

- Solve base load flow/short-circuit cases
- Increase DER at each location on feeder
- Apply advanced algorithms to calculate hosting capacity at each location

Findings

- Close approximation of DER impact
 - Less time/data intensive
 - Not a replacement for detailed studies
- Full range of possible DER scenarios can be considered
 - All locations (three-phase and single-phase), feeder configurations, DER technologies and types (centralized vs distributed)
- Easily replicable across entire system
 - Typically 3-5 minutes per feeder when automated

Integration of Hosting Capacity Analysis into Distribution Planning Tools. EPRI, Palo Alto, CA: 2016, 3002005793

Streamlined Hosting Capacity Method – What is it?

2010 2011 2014 2015 2016/17

Develop original method application Development Streamlining method development Streamlined application Streamlining method Method Streamlining M

The Input

- Utilizes existing planning tools
 - CYME, Milsoft, Synergi

The Method

Power & Energy Society®

- Developed from years of detailed hosting capacity analysis
- Validated and open methods

The Output

- Effectively and efficiently analyzes each and every feeder in system
- Considers DER size and location
 - Small distributed and large centralized
 DER
- Considers DER technology and impacts
 - PV, wind, storage, etc
 - Voltage, thermal, protection

Key Aspects of Hosting Capacity Method Power System Criteria and DERUnique

Unique DER Technology

Centralized 1

Substation

Centralized N

Develop original

Str

Streamline method 2015
Utility

Vendor plementati

2016/17

Informing developers

Assisting with screening

Planning for DER

Identifying cost-effective means for increasing hosting capacity

Utility applications to date

Power & Energy Society®

 TVA, Southern Company, Salt River Project, XCEL Energy, SCE, Central Hudson, National Grid, HydroOne, Austin Energy, CFE (Mexico), ESKOM (S. Africa), ESB (Ireland)

Defining a Roadmap for Successful Implementation of a Hosting Capacity Method for New York State, EPRI, Palo Alto, CA: 2016. 3002008848

Implementing the Hosting Capacity Method into Existing Distribution Planning Tools

- Distribution Resource Integration and Value Estimation (DRIVE) tool
- Rather than develop a new software tool, EPRI has focused efforts on implementation into existing planning tools
- Benefits of using existing planning tools
 - Necessary data resides in existing planning tools
 - Does not require "translating" data to other software platforms (requiring updating other software databases)
 - Can be used as part of toolset within planning tools for multiple purposes
 - Screening
 - Planning
 - Cost-benefit analysis

Incorporating EPRI's Hosting Capacity Method into existing utility planning tool

Increasing Hosting Capacity

Used EPRI's Streamlined Hosting Capacity method to determine feeder-specific DER impacts across system and mitigation required to increase hosting capacity

• DER considered: Distributed, Customer-based

• Issues considered (voltage, thermal, protection)

Estimated upgrades required to achieve higher hosting capacities (not all feeders required upgrades)

- Penetrations:
 - 0.5 MW
 - 1.0 MW
 - 2.0 MW
- Upgrades Utilized:
 - Power factor (inductive)
 - Reconductoring
 - Voltage class upgrade
 - Breaker relay replacement

Feeder Hosting Capacity Results

Each feeder has a unique hosting capacity response

- Some are voltage-constrained
- Others are thermal constrained

Methods for Increasing Distribution Hosting Capacity

- Methods for increasing hosting capacity depend upon many factors
 - Limiting power system criteria
 - Distribution system design and operating characteristics
 - DER capabilities
- A single solution/technology does not resolve all issues
 - Voltage
 - Thermal
 - Protection
- Solutions can be situation-specific
 - E.g., smart inverters and reconductoring can help with voltage issues but not protection
- Solutions for increasing hosting capacity can have other benefits as well
 - Reconductoring and voltage uprating can reduce losses and increase load-serving capability
 - Comm/control of DER coordinated with existing controls can help regulate voltage

- Grid-Side Enhancements/Changes
 - Reconductoring
 - Voltage uprating
 - Transformer replacement
 - Additional voltage regulator
 - Comm/control (curtailment)
 - Additional relaying
 - Storage
- Operational Changes
 - Voltage regulation changes (LTC setpoint adjustment, etc.)
 - Relay setting modification
- Technology Solutions
 - Smart inverters (var and/or watt control)
 - Distributed var control
 - Energy storage
 - PV panel orientation
 - Demand response

Feeder Mitigation Summary

- Mitigation is applied in this order
 - Smart inverter
 - Reconductoring
 - Voltage class upgrade
 - Protection upgrade
- The penetration levels shown at left represent all feeders in the system
- More mitigation is required to attain higher penetration levels

Summary

- Hosting capacity analysis captures necessary impacts of DER
- Hosting capacity can be calculated different ways
- Streamlined methods are appropriate for system-wide analysis
- Hosting capacity can be determined within existing planning tools
- EPRI is currently working with software vendors for incorporation into distribution planning tools (CYME, Synergi, Milsoft, PowerFactory)

References

Detailed Hosting Capacity Method

- Impact of High-Penetration PV on Distribution System Performance: Example Cases and Analysis Approach. EPRI, Palo Alto, CA: 2011. 1021982
- Analysis of High-Penetration Solar PV Impacts for Distribution Planning: Stochastic and Time-Series Methods for Determining Feeder Hosting Capacity. EPRI, Palo Alto, CA: 2012. 1026640
- Rylander, M., Smith, J., "Comprehensive Approach for Determining Distribution Network
 Hosting Capacity for Solar PV", 2nd International Workshop on Integration of Solar Power
 Into Power Systems, Lisbon, Portugal, Nov 2012.
- Rylander, M., Smith, J., "Stochastic Approach for Distribution Planning with Distributed Energy Resources", 2012 CIGRE Grid of the Future Symposium, Kansas City, MO, 2012
- Rylander, M., Smith, J., "Comprehensive Approach for Determining Distribution Network
 Hosting Capacity for Solar PV", 2nd International Workshop on Integration of Solar Power
 Into Distribution Systems, 12-13 November, 2012
- Distributed Photovoltaic Feeder Analysis: Preliminary Findings from Hosting Capacity Analysis of 18 Distribution Feeders. EPRI, Palo Alto, CA: 2013. 3002001245.
- Alternatives to the 15% Rule: Modeling and Hosting Capacity Analysis of 16 Feeders. EPRI, Palo Alto, CA: 2015. 3002005812.

Streamlined Hosting Capacity Method

- Integration of Hosting Capacity Analysis into Distribution Planning Tools. EPRI, Palo Alto, CA: 2016. 3002005793
- A New Method for Characterizing Distribution System Hosting Capacity for Distributed Energy Resources: A Streamlined Approach for Solar Photovoltaics. EPRI, Palo Alto, CA: 2014. 3002003278.
- Rylander, M., Smith, J., Sunderman, W., "Streamlined Method For Determining Distribution System Hosting Capacity", 23rd International Conference on Electricity Distribution, CIRED, Lyon, France, 2015
- Rylander, M., Smith, J., Sunderman, W., "Streamlined Method For Determining Distribution System Hosting Capacity", Rural Electric Power Conference, Asheville, NC, 2015 (accepted for IAS Transactions)
- Distribution Feeder Hosting Capacity: What Matters When Planning for DER?. EPRI, Palo Alto, CA: 2015. 3002004777
- Smith, J., Rylander, M., Rogers, L., Dugan, R., "It's All in the Plans: Maximizing the Benefits and Minimizing the Impacts of DERs in an Integrated Grid", Power and Energy Magazine, March/April 2015.

White Paper

Integration of Hosting Capacity Analysis into Distribution Planning Tools. EPRI, Palo Alto, CA: 2016. 3002005793

Questions

Contact:

Jeff Smith Manager, Power System Studies EPRI jsmith@epri.com

