Addendum to the Lecture

The following code:

```java
for(int i = 1; i < n; i=i*i)
```

will never halt if $n > 1$, since i will be set to 1 at every iteration.

The asymptotic complexity of the following code:

```java
for(int i = 0; i*i < n; i++)
```

is $\Theta(\sqrt{n})$ because $i \cdot i > n$ when i exceeds \sqrt{n}.

The asymptotic complexity of the following code:

```java
for(int i = 2; i < n; i=i*i)
```

is $\Theta(\log \log n)$. This is much harder to analyze.

1. Define variables

 (a) $m = \log_2 n$

 (b) $j = \log_2 i$

2. Substitute those values into the original code. Note that $\log (i^2) = 2 \log i = 2j$.

   ```java
   for(int j = 1; j < m; j = 2*j)
   ```

 That is, for a given iteration of the new code the value of j is equal to the value of $\log_2 i$ for the same iteration of the original code.

 We already know that the complexity of that fragment is $\Theta(\log m) = \Theta(\log \log n)$.