Computational Classes of Problems

For each of these problems, or languages, give its best known computational class. For example, the answer could be \(P \), \(\mathcal{NP} \), \(\mathcal{NP} \)-complete, \(\mathcal{P}\text{-SPACE} \), recursive, recursively enumerable, to name just a few. For example, if a problem is known to be in the class \(\mathcal{NP} \), but is not known to be in \(\mathcal{P} \), and is also not known to be \(\mathcal{NP} \)-complete, you answer would be “\(\mathcal{NP} \).” If there is no class with a standard definition which contains the problem, you can say, “Not a member of any class that I can find.” That could be the correct answer!

1. Given a graph \(G \), is \(G \) planar? (That is, can it be drawn in a plane with no crossings?)

\(\mathcal{NC} \). Planarity has been known to be \(\mathcal{P} \) since 1963, was shown to be linear \(O(n) \) time in 1974, and was shown to be \(\mathcal{NC} \) in 1985. It actually can be proved to be in classes even more restrictive than \(\mathcal{NC} \), but we never discussed those in class, so \(\mathcal{NC} \) is the answer I want to see.

2. Given a room and various pieces of furniture and equipment, it is possible for those items to fit into the room?

\(\mathcal{NP} \)-complete. Partition reduces to this problem. If there are \(n \) item where the \(i^{th} \) item has weight \(x_i \). By multiplying all weights by a sufficiently large factor, we may assume that \(x_i > 2 \) for all \(i \). let \(S = \frac{1}{2} \sum_{i=1}^{n} x_i \). Let \(F_i \) be a piece of furniture with a \(1 \times x_i \) rectangular base. All furniture can be fit into a rectangular room of size \(2 \times S \) if and only if the items can be partitioned into two sets of equal weight. The rule that \(x_i > 2 \) ensures that every piece of furniture must be inserted lengthwise, to eliminate the possibility of an “extraneous” solution that might be obtained by placing one of them crosswise.

3. Given a room with a door, and various pieces of furniture and equipment, is it possible to move those items into the room through the door? (This is not the same question!)

I believe it is \(\mathcal{P}\text{-SPACE} \) complete, same as Rush Hour. I haven’t found a proof yet, but I have confidence.

4. Does a context-free grammar generate all string? More specifically, given a context-free grammar \(G \) where \(\Sigma \) is the set of terminals of \(G \), is it true that \(L(G) = \Sigma^* \)?

Undecidable, more specifically, co-\(\mathcal{R\Sigma} \), but not recursive.

5. Given an \(n \times n \) checkerboard, for some \(n \), and given a configuration of checkers on that board, can the black player win?

\(\mathcal{EXP} \)-TIME complete.
6. Given a Turing machine M and a number t, will M halt within t steps?

\mathcal{P}, that is, \mathcal{P}-time.

7. Does a given general grammar G generate a given string w?

Undecidable, more specifically, \mathcal{RE}, recursively enumerable, but not recursive.

8. Given a set of jobs and a set of workers, where each worker is trained to work some given subset of the jobs, each job takes a given amount of time, and pairs of jobs (X, Y) are given, where X must be finished before work on Y begins, can all the jobs be finished within T hours?

\mathcal{NP}-complete. Partition can be reduced to this problem as follows. Given a set of items of weights x_1, \ldots, x_n, create Jobs J_1, \ldots, J_n where J_i takes x_i hours, and where there are no dependencies, and where there are two workers, each trained to do any job. Let $T = \frac{1}{2} \sum_{i=1}^{n} x_i$. Then all jobs can be finished within T hours if and only if the original items can be partitioned into two equal weight sets.

9. We define a partial inversion of a string to be the string obtained reversing any substring. For example, $abaacdab$ is a partial inversion of $abadcaab$. Given strings u and v and a number k, is it possible to obtain v from u by a sequence of k partial inversions?

\mathcal{NP}-complete. This is similar to the famous “pancake flipping” problem, introduced in 1975 in the American Mathematical Monthly, and made famous by a paper, by William H. Gates and Christos H. Papadimitriou, published in 1979. (Yes, that Bill Gates.) That problem was, how can a list be sorted most efficiently using only prefix reversal, i.e. substring inversion where the substring must be a prefix. The problem of whether the sorting can be done is at most k steps was proven to be \mathcal{NP}-complete in 2011 by Laurent Bulteau, Guillaume Ferlin, and Irena Rusu. I have not tried to generalize their result to the partial inversion problem, but I have no doubt it is also \mathcal{NP}-complete.