Computational Classes of Problems

For each of these problems, or languages, give its best known computational class. For example, the answer could be \(P \), \(\text{NP} \), \(\text{NP} \)-complete, \(\text{P}\text{-SPACE} \), recursive, recursively enumerable, to name just a few. For example, if a problem is known to be in the class \(\text{NP} \), but is not known to be in \(P \), and is also not known to be \(\text{NP} \)-complete, your answer would be “\(\text{NP} \)”.

If there is no class with a standard definition which contains the problem, you can say, “Not a member of any class that I can find.” That could be the correct answer!

1. Given a graph \(G \), is \(G \) planar? (That is, can it be drawn in a plane with no crossings?)

2. Given a room and various pieces of furniture and equipment, it is possible for those items to fit into the room?

3. Given a room with a door, and various pieces of furniture and equipment, is it possible to move those items into the room through the door? (This is not the same question!)

4. Does a context-free grammar generate all string? More specifically, given a context-free grammar \(G \) where \(\Sigma \) is the set of terminals of \(G \), is it true that \(L(G) = \Sigma^* \)?

5. Given an \(n \times n \) checkerboard, for some \(n \), and given a configuration of checkers on that board, can the black player win?

6. Given a Turing machine \(M \) and a number \(t \), will \(M \) halt within \(t \) steps?

7. Does a given general grammar \(G \) generate a given string \(w \)?

8. Given a set of jobs and a set of workers, where each worker is trained to work some given subset of the jobs, each job takes a given amount of time, and pairs of jobs \((X,Y) \) are given, where \(X \) must be finished before work on \(Y \) begins, can all the jobs be finished within \(T \) hours?

9. We define a partial inversion of a string to be the string obtained reversing any substring. For example, \text{abaa}cd\text{ab} is a partial inversion of \text{abad}ca\text{ab}. Given strings \(u \) and \(v \) and a number \(k \), is it possible to obtain \(v \) from \(u \) by a sequence of \(k \) partial inversions?