Proofs can be Arbitrarily Long

We measure the length of a mathematical proposition, or a proof, to be its number of symbols, when written in a formal language L in such a way that a computer could verify correctness of the proof. We let Σ be the alphabet of L.

Theorem 1 If F is a recursive function from integers to integers, then there is some mathematical statement S which has a proof, such that any proof of S has length greater than $F(|S|)$.

Proof: Let us suppose that Theorem 1 is false. Then there is a recursive function F such that, for any n and for any provable proposition S of length n, S has a proof of length at most $F(n)$.

Let V be a proof verification machine. If S is any statement and P is any string, V decides whether P is a proof of S.

We now show that the halting problem is decidable. Pick a string x. Then “$x \in H$” is a mathematical statement, and can be expressed formally as a string $S \in \Sigma^*$. Since H is recursively enumerable, every member of H can be proved to be a member of H, that is, if S is true it has a proof. Let $n = |S|$, the length of the statement S. By our hypothesis, either $x \notin H$, or there is some string y which is a proof of S and which has length at most $F(n)$.

Calculate $F(n)$. Let y_1, y_2, \ldots, y_N, (for some large N) be the list of all strings of length at most $F(n)$ over Σ. For each y_i, run V with input (S, y_i). By our hypothesis, $x \notin H$ if and only if there is some proof of S of length at most $F(n)$, that is, if V accepts the pair (S, y_i) for some $i \leq N$. Since there are only finitely many y_i, this is a finite task; if we fail to find a proof, then $x \notin H$.

Thus, we can decide whether $x \in H$, contradicting the known fact that H is undecidable. \qed