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Abstract

In modern cluster systems message passing functionality is often off-loaded to the network interface card for
efficiency reasons. However, this limits the amount of memory available for message buffers. Unfortunately, buffer
insufficiency can cause an otherwise correct program to deadlock, or at least slow down. Hence, given a program
trace from an execution in an unrestricted environment, determining the minimum number of buffers needed for a
safe execution is an important problem. We present three related problems, all concerned with buffer allocation for
safe and efficient execution. We prove intractability results for the first two problems and present a polynomial time
algorithm for the third.

1 Introduction

For efficiency reasons, most modern clusters off-load message passing functionality to the network interface card
(NIC) [1] to facilitate a greater overlap of computation and communication. Unfortunately, most NICs have two
orders of magnitude less memory than the average host, which makes message buffers a limited resource. Thus,
programs that use asynchronous message passing and execute correctly otherwise, might dead-lock when executing
on a system where parts of the message passing system have been off-loaded to the NIC; such issues have been
investigated in [2, 3, 4].

Ideally, we want to detect the possibility of dead-lock and prevent it from happening. The MPI message pass-
ing standard [4] defines a “safe” program as one that requires no buffering and uses synchronous communication.
Since better performance can be obtained by taking advantage of system or network buffers to reduce unnecessary
synchronizations—asynchronous communication—the notion of a “k-safe” (asynchronous) program arises. A “k-
safe” program requires k buffers to guarantee completion [1, 5, 6].

Unfortunately the value of k is usually not known a priori. In this paper we investigate the complexity of determin-
ing a minimum value of k for programs that use asynchronous buffer communication and have static communication
patterns. Under these assumptions we show that the problem of determining k, the minimum number of buffers for
deadlock free execution, is NP-hard. Furthermore, we show that the simpler task of verifying whether a buffer assign-
ment is sufficient to avoid deadlock is coNP-complete. Finally, we give a polynomial time algorithm for determining
the exact number of buffers needed to ensure nonblocking sends, achieving efficient program execution. Interestingly,
the nonblocking requirement makes the problem tractable! Motivations and precise definitions of the system and the
problems considered are given in the following sections.

2 Background

Determining the k-safety of a program is important for several reasons. First, the semantics of asynchronous com-
munication depend on the availability of buffers, and change—in an implementation dependent fashion—when buffer
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space becomes exhausted. Since buffer space is typically limited, or pre-allocated during application initialization, a
priori knowledge of the application’s buffer requirements ensures that communication semantics do not change part
way through the execution. Second, to improve performance, many systems use zero-copy techniques: messages are
transferred directly from the NIC to application buffers. Since these buffers must be pre-allocated by the application,
the application must know the number required. Third, one of the most common purposes of parallelization is to
enable the solutions of bigger problems on larger data sets. Typically, host memory is the limiting resource and, if the
number of buffers needed is known, memory utilization can be improved. Finally, communication libraries like MPI
allow the application to manage the buffer space; this can be optimized if the number required is known in advance.

The most natural primitives for asynchronous buffered communication are “nonblocking sends” and “blocking
receives”; these are also the standard communication primitives in MPI [4] and PVM [7]. Cypher and Leu formally
define the former as a POST-SEND immediately followed by a WAIT-FOR-BUFFER-RELEASE and the latter as a
POST-RECEIVE immediately followed by a WAIT-FOR-RECEIVE-TO-BE-MATCHED [8, 9]. Informally, the send
blocks until the message is copied out of the send buffer and the receive blocks until the message has been copied into
the receive buffer. We only consider point-to-point communication similar to the model used in [10], since multicast
and broadcast communication can be simulated with point-to-point communication.

A multiprocess system S is a set of simultaneously executing independent asynchronous processes that perform
a computation by interspersing local computation and point-to-point message passing between processes; these are
referred to as A-computations in [10]. Such a system is equivalent to the system with three different events like the
one defined by Lamport [11]: send events, receive events and internal events. Send events cause messages to be sent,
receive events causes messages to be received and internal events represent computation on internal state. The system
uses nonblocking sends and blocking receives; processes synchronize by communicating and no assumptions can be
made about the computation time of any process.

When a process performs a send, the message may either be sent to the receiving process where it is either received
or buffered, or the sending process blocks. If the receiving process is ready to receive (i.e., has issued a receive request
for the incoming message), or the message passing system has free buffers available, the sending process does not
block. If no buffers are available and the receiving process is not ready to receive, the sending process blocks until
one of the conditions changes. These communication primitives are comparable to the default send/receive primitives
found in PVM and MPI: blocking receives and nonblocking sends when buffers are available and blocking when not.

In such a model each process has a pool of buffers for incoming messages used on a first come first served basis;
we call these receive buffers. Buffers are used when a message is not ready to be received by the receiving process.
Buffers are returned to the receiving process’s buffer pool when the message has been received (i.e., the corresponding
receive request has completed).

Other models that use only send buffers, a combination of send and receive buffers, or buffers that are allocated on
a per channel basis, are possible. While the focus of this paper is on the receive buffer model, our results are applicable
to other models as well.

In this paper we consider programs that are repeatable [8, 9] when executed in an unrestricted environment, i.e.,
programs with static communication patterns. While this narrows the class of programs we consider, the class of
applications with static communication patters is still considerable, including: grid computations, linear system com-
putations, and pipe line computations. Since the communication pattern must be static we do not consider the case
where a receive can specify a wild card, i.e., a receive specifies exactly one sender; regardless of this restriction the
problems we consider remain intractable.

A message history M for the execution of a system S is a set of messages of the form m � �i�s i� j�s j� where i and j
are process identifiers; i represents the sender and j represents the receiver. The sequence numbers s i and s j are local
to the sending and receiving processes, respectively. For process i the first send or receive has sequence number 1,
the second has number 2, and so forth. We use a communication graph G�S�, described in the next section, to encode
the message history; sends and receives are encoded as vertices, and the sequence numbers are represented by the
topological order of the vertices in G�S�.

Even though the communication pattern is static, the arrival time of messages varies from execution to execution.
The following example shows this effect and how the allocation of buffers can result in deadlock. Consider the three
process system depicted in Figure 1 where p1 and p3 each have zero buffers available and process p2 has one buffer
available. Two different scenarios exist. In the first scenario, message 1 arrives before message 3 and takes up the
buffer. Now processes p2 and p3 can never progress as one additional buffer is needed to break the deadlock between
them. In the second scenario, message 3 arrives first and takes up the buffer. Process p 3 can proceed to its receive
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call and block until message 2 arrives. Consequently, process p 2 will send message 2, receive message 1 followed by
message 3. Thus, all processes finish and no deadlock occurs. For example, if process p 3 had one buffer rather than
process p2, the system depicted in Figure 1 is guaranteed to complete for all executions.

0 1
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0

p p
1 2 3

Figure 1: Order of execution can cause deadlock.

As demonstrated, the order in which messages arrive at a process determines whether a system deadlocks. We call
a system that exhibits such behaviours unsafe. This situation can be rectified by an appropriate allocation of buffers
to processes.

To conserve memory, we want to allocate only as many buffers as needed. For programs with static communication
patterns, we would like to determine a minimum buffer assignment or to determine whether a given buffer assignment
prevents deadlock. As we will show, both of these problems are intractable.

If system S is to execute efficiently, ideally, no send operation blocks. In addition to safety, we like to determine
the minimum buffer assignment necessary to prevent blocking sends. Interestingly, the stricter constraint makes the
corresponding buffer allocation problem tractable.

Determining whether a system is buffer independent—the system is 0-safe—was investigated in [8, 9]. In our
model the interesting systems are buffer-dependent, and require an unknown number of buffers to avoid deadlock. To
determine the minimum number of buffers, the execution of a system can be modeled using a (coloured) Petri net [12].
In order to determine if the system can reach a state of deadlock, the Petri net occurrence graph [13] is constructed,
and a search for dead markings is performed. However, the size of the occurrence graph is exponential in the size of
the original Petri net.

A variation of this problem has been investigated by the operations research community [14, 15, 16]. In these
models, events or products are buffered between various stations in the production process, however, the arrival of
these events is governed by probability distributions, which are specified a priori. In our model, since processes are
asynchronous, the time for a message to arrive is non-deterministic, i.e., a message may take an arbitrarily long time
to arrive and a process may take an arbitrarily long time to perform a send or a receive.

3 Definitions

Let S be a multiprocess system with n processes and Ei communication events occurring in process i; a communication
event is either a send or a receive. A communication graph of S is a directed acyclic graph G�S� � �V�A� where the
set of vertices V � �vi�c � 1 � i � n�0 � c � �Ei � 1�� corresponds to the communication events and the arc set A
consists of two disjoint arc sets, the computation arc set P and the communication arc set C. Each vertex represents
an event in the system: vertex vi�0 represents the start of process i, vertex vi�c, 1 � c� Ei, represents either a send or
a receive event, and vertex vi��Ei�1� represents the end of a process. An arc �vi�c�vi�c�1� � P�0 � c � Ei, represents a
computation within process i and an arc �vi�s�v j�t� �C represents a communication between different processes, i and
j, where vi�s is a send vertex, and v j�t is a receive vertex (e.g. Figure 2). Note, the process arcs are drawn without
orientation for clarity; they are always oriented downwards. In general vertices are labelled with double indices,
representing the process label and the sequence number of the corresponding event. The former is dropped when the
process label is given by the context. Communication graphs are comparable to the time-space diagrams—without
internal events—noted in [11].
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Figure 2: An example of a communication graph with a 2-ring.

A multiprocess system S is unsafe if a deadlock can occur due to an insufficient number of available buffers; if S
is not unsafe, then S is said to be safe. Figures 1 and 3 are examples of unsafe systems. Note: the numbers above the
graph in Figure 3 represents the buffer assignment.

1 00 1

Figure 3: Order of buffer selection can cause deadlock.

A buffer assignment is an n-tuple B � �b1�b2� ����bn� of non-negative integers that represent the number of buffers
that can be allocated by each process. Since buffers use up memory, which may be needed by the application, ideally,
as few buffers as possible should be allocated. However, allocating too few buffers can result in an unsafe system.

Two natural decision problems arise from this optimization problem. Given a communication graph G�S� and a
non-negative integer k, the Buffer Allocation Problem (BAP) is to decide if there exists a buffer assignment B �
�b1�b2� ����bn� such that S is safe and ∑n

i�1 bi � k. In order to solve this problem we need to solve a simpler one.
Suppose we are given a buffer assignment B� �b1�b2� ����bn� and a communication graph G�S�, the Buffer Sufficiency
Problem (BSP) is to decide if the assignment is sufficient to make S safe.

Additionally, we can require that no process in system S should ever block on a send. Given a communication
graph G�S� and a non-negative integer k, the Nonblocking Buffer Allocation Problem (NBAP) is to decide if there
exists a buffer assignment B � �b1�b2� ����bn�, such that no send in S ever blocks, and ∑n

i�1 bi � k. Next, we introduce
the terminology used throughout the paper.

3.1 Terminology

The ith process component Gi�S� of G�S� is the subgraph Gi�S� � �Vi�Ai� where Vi � �vi�c � V � 0 � c � �Ei � 1��
and Ai � ��vi�c�vi�c�1� � A � 0 � c � Ei�. The process component corresponds to a process in S. We construct
communication graphs by connecting process components with arcs. Hence, it is more intuitive to treat a process
component as a chain of send and receive vertices bound by a start and an end vertex.

A t-ring is a subgraph of a communication graph G�S�, consisting of t � 1 process components such that in each
of the t process components there is a send vertex s i j �c j and a receive vertex ri j �d j , c j � d j, 1� j � t such that the arcs
�si1�c1 �rit �dt � and �si j�1 �c j�1 �ri j �d j �, 1 � j � t, are in A. This definition is equivalent to the definition of a “crown” in
[10].

A t-ring is a circular dependence of alternating send and receive events; an example of a t-ring is illustrated in
Figure 4. As the shaded arcs in Figure 4 show, each receive event depends on the preceding send event and each send
event depends on the corresponding receive event. Thus, without an available buffer, there is a circular dependency
that results in the system deadlocking.
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Figure 4: Dependency cycle in G�S�.

Therefore, a system S whose communication graph G�S� contains a t-ring will deadlock unless one of the processes
in the t-ring has an available buffer. Since G�S� must be a DAG, no cycle will ever occur in G�S�. Figure 2 shows an
example of a 2-ring. If G�S� contains a t-ring, then we say that system S also contains a t-ring.

In this paper we use G�S� rather than the dependency graph because the order in which received messages are
allocated to buffers depends on the execution history. In order to model the execution of a system we define a colouring
game that simulates the execution of the system with respect to G�S�.

3.2 Colouring the Communication Graph

Given a communication graph G�S�, an execution of a corresponding system S is represented by a colouring game
where the goal is to colour all vertices green; a green vertex corresponds to the completion of an event. We use
three colours to denote the state of each event in the system: a red vertex indicates that the corresponding event has
not started, a yellow vertex indicates that the corresponding event has started but not completed, and a green vertex
indicates that the corresponding event has completed. Hence, a red vertex must first be coloured yellow before it can
be coloured green; this corresponds to a traffic lights changing from red, to yellow, to green 1.

To represent buffer allocations we use tokens. For each process with a number of allocated buffers, we associate
an equal size pool of tokens with the corresponding process component. To represent a buffer allocation, tokens are
removed from the process component’s token pool and placed on the receive vertices.

The colouring game represents an execution via the following rules. Initially, the start vertices of G�S� are coloured
green and all remaining vertices are coloured red; this is called the initial colouring.

1. A red send vertex may be coloured yellow if the preceding vertex is green (i.e., the send is ready).
2. A red receive vertex may be coloured yellow if the corresponding send vertex is yellow, and

(a) the preceding vertex (in the same process component) is green (i.e., both the send and the receive are
ready), or

(b) a token from the corresponding buffer pool is moved on to the vertex (i.e., the send is ready and a buffer is
available).

3. A yellow send vertex may be coloured green if the corresponding receive vertex is coloured yellow (i.e., the
communication has completed from the senders perspective).

4. A yellow receive vertex may be coloured green if both of its preceding vertices are green. If the vertex has a
token, the token is returned to the process component’s pool (i.e., a receive completes once the send completes
and the preceding computation completes).

5. A red end vertex may be coloured yellow if the preceding vertex is green.
6. A yellow end vertex may be coloured green if the preceding vertex is green.

Buffer utilization is represented by placing a token from the token pool of the process component on the selected
vertex, and colouring it yellow. If no tokens are available, the rule cannot be invoked.

A valid colouring of G, denoted χG, is a colour assignment to all vertices that can be obtained by repeatedly
applying the colouring rules, starting from the initial colouring. A colouring sequence Σ � �χ 1�χ2� ���� is a sequence
of valid colourings such that each colouring is derived from the preceding one by a single application of one of the
colouring rules. An execution of a multiprocess system S with buffer assignment B is represented by a colouring

1Naturally, we refer to a European traffic light.

61



sequence on G�S�. We say that a colouring sequence completes if and only if the last colouring in the sequence
comprises only green vertices. A colouring sequence deadlocks if and only if the last colouring in the sequence
has one or more non-green vertices and the sequence cannot be extended via the application of the colouring rules.
Furthermore, each transition, from one colouring to the next, within a colouring sequence, corresponds to a change of
state of an event in the corresponding execution.

Assuming that all events in the system are ordered, there is a correspondence between the colouring sequences on
G�S� and the executions of system S. A system S is safe if and only if every colouring sequence on the graph G�S�
completes. Furthermore, sends in S never block if and only if every partial colouring sequence on G�S� that ends
with a colouring containing a yellow send vertex and a corresponding red receive vertex can be extended by applying
rule 2 to the red receive vertex. The choice of when to apply rule 2b affects future choices. For example, in Figure 3,
applying the rule to the receive vertex corresponding to the send from process p 1, before the send vertex in process p3

is coloured green, results in a deadlocked colouring sequence.

4 The Buffer Allocation Problem

In order to prevent deadlock in distributed applications the underlying system needs to allocate a sufficient number
of buffers. Ideally, it should be the minimum number required. Unfortunately, the corresponding decision problem,
BAP is intractable: given a communication graph G�S� and a positive integer k, determine whether there exists a
buffer assignment of at most k buffers such that S is safe. We show that BAP is NP-hard by a reduction of the well
known 3-SAT problem[17] to BAP. Recall the definition of 3-SAT: determine if there exists a satisfying assignment
to
�n

i�1�ai � bi� ci�, where ai, bi, and ci are boolean literals in �x1� x̄1�x2� x̄2� � � � �xn� x̄n�. We first need the following
lemma.

Lemma 4.1 (The t-Ring Lemma) Let G be a communication graph comprising a single t-ring. No colouring se-
quence on G can complete without invoking rule 2b at least once.

Proof: Assume by contradiction that there exists a complete colouring sequence Σ that does not make use of rule 2b.
Consider the first colouring in Σ where one of the sending vertices is green; call the vertex s i. Let r j be the correspond-
ing receive vertex. By rule 3, the vertex r j must be yellow. Since rule 2b has not been applied, rule 2a must have been
invoked earlier in the sequence. By the definition of a t-ring, the send vertex s j must be the predecessor of r j. Since
the rule 2a was applied to r j , s j must be green. Hence, there is an earlier colouring in Σ with a green send vertex. This
is a contradiction.

Theorem 4.2 The Buffer Allocation Problem (BAP) is NP-hard.

Proof: We prove this by reduction of 3-SAT to BAP. For any 3-SAT instance F we construct a corresponding system
S and the corresponding communication graph G�S�, both which are polynomial in the size of F .

The system has 2n� 1 processes, where n is the number of variables. Each process contains c� 1 epochs where
c is the number of clauses in F . An epoch is a consecutive sequence of one or more events in a process. An epoch
terminates on a send to a barrier process, or when the process terminates. An epoch begins on a receive from a
barrier process or when the process starts. A barrier process is used to synchronize all processes at the end of its
epoch. Each process performs a send to the barrier process at the end of their epoch, and waits for a response from
the barrier process. The barrier process sends the response to every process only after it has received a message from
each process. An epoch of a process component is correspondingly defined. Epochs are used to prevent unwanted
interaction between processes.

For each literal xi and x̄i, let the system S contain processes pxi and px̄i . In addition, let pbarrier denote the barrier
process in S.

Epoch 0 is used to fix a buffer assignment corresponding to a variable assignment in 3-SAT. In epoch 0 add a 2-ring
between processes pxi and px̄i . This corresponds to fixing an assignment, because by Lemma 4.1, we have to assign
a buffer to either pxi or px̄i to prevent deadlock (see Figure 5). Next, every process p xi and px̄i , 1 � i� n, performs a
send to process pbarrier. After pbarrier receives from all processes, it performs a send to all processes, allowing them to
proceed into the next epoch.

The jth epoch of each process corresponds to the jth clause of F and is a 3-ring on the processes p aj , pbj , and pcj

that correspond to the literals a j, b j, and c j (see Figure 6). By Lemma 4.1, in order to avoid deadlock, at least one of
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the three processes, paj , pbj , or pcj , must have a buffer. Finally, at the end of the epoch, all processes perform a send
to the process pbarrier and wait for a reply. This is formalized in the following Lemma.
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Figure 6: The clause widget.

Lemma 4.3 There exists a token assignment of size n such that all colouring sequences on G�S� complete if and only
if formula F is satisfiable.
Proof: Let sxi�0, sx̄i �0, rxi �0, and rx̄i �0 be the send and receive vertices in epoch 0. By Lemma 4.1, to colour vertices s xi�0

and sx̄i �0 green, a free token must be available at either process component p xi or px̄i . Hence, we need at least n tokens.
Note, at the end of each epoch, each token is released back into its token pool.

As long as all vertices in each epoch of each process component can be coloured green, the barrier component can
also be coloured green. A colouring sequence will only deadlock in the barrier if the corresponding send vertex in one
of the process components can not be coloured yellow.

If F has a satisfying assignment, then at least one literal in every clause will be true. A corresponding token
assignment will ensure that each 3-ring has at least one process component with a token (one corresponding to a true
literal). Hence, by Lemma 4.1 none of colouring sequences will deadlock on any of the the 3-rings. Hence, any
colouring sequence on G�S� will complete.

If F does not have a satisfying assignment, then for any assignment there exists at least one clause comprising
false literals. The corresponding token assignment will not assign any tokens to the process components in the cor-
responding 3-ring. Thus, by Lemma 4.1 all colouring sequences will deadlock in that 3-ring. Further, none of the
colouring sequences on G�S� will complete. Hence, any colouring sequence on G�S� will complete if and only if the
corresponding assignment satisfies F.

Hence, there exists a buffer assignment of size n such that S is safe if and only if F is satisfiable. Thus, BAP is
NP-hard.

Theorem 4.4 The Buffer Allocation Problem (BAP) is in Σ2P.
Proof: By Theorem 5.1, verifying that a token assignment is sufficient to prevent deadlock (BSP) is coNP-complete.
Since we can non-deterministically guess a sufficient token assignment, the result follows.

The Buffer Allocation Problem remains intractable for systems with send buffers only, and for systems with a
combination of both send and receive buffers. In the latter case, the problem remains in Σ 2P because the class of
systems with receive buffers only is a subclass of systems with both receive and send buffers. In the former case, we
conjecture that the problem is NP-complete. The NP-hardness follows from the observation that each t-ring in the
system has to have a buffer assigned to one of its processes in order for the system to progress. It does not matter if it
is a send or a receive buffer. Hence, the reduction used in Theorem 4.2 can be applied with no modification.
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5 The Buffer Sufficiency Problem

We now turn our attention to the possibly simpler problem of verifying whether a given buffer assignment is sufficient
to prevent deadlock. However, this turns out to be an intractable problem as well; we show that BSP is coNP-
complete by a reduction from the TAUTOLOGY problem [18, Page 261] to BSP. Given an instance of a formula in
disjunctive normal form (DNF),

�n
i�0
�li

j�0 Li� j where Li� j � �x1� x̄1� � � � �xn� x̄n�, the formula is a tautology if it is true on
all assignments. An assignment for which the formula is not true is a concise proof that the formula is not a tautology.

Theorem 5.1 The Buffer Sufficiency Problem (BSP) is coNP-complete.

Proof: We first observe that if S is unsafe, then there exists a concise certificate of this fact comprising a colouring
sequence on G�S� that does not complete. Since the size of a colouring sequence is at most twice the number of
vertices in G�S�, the certificate is polynomial in size and hence, BSP is in coNP.

Let F be a DNF formula with t terms where the ith term has l i literals. For any formula F , we construct a system S
and show that there exists a deadlocking colouring sequence on G�S� if and only if the formula is not a tautology. We
represent the disjunction of t terms by a subsystem containing a t-ring on t processes where each term is a subsystem
consisting of a single process, called a ‘term’ process. The communication graphs corresponding to the term and the
disjunction are illustrated in Figures 7 and 8 respectively. Following the t-ring, one ‘term’ process performs a send –
called a ‘done’ send – to signal that the t-ring did not deadlock. Finally, the ith ‘term’ process performs l i receives,
corresponding to the literals of the ith term; the latter we call ‘literal’ receives. The first receive in the ‘term’ process
is called a ‘t-ring’ receive.
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Figure 7: Disjunction subsystem.

When a message to a ‘term’ process arrives before any send within the t-ring begins, the message is buffered, using
up the one available buffer and preventing the process from buffering any additional messages until it leaves the t-ring.
This corresponds to the falsification of the corresponding literal and term.

To represent a variable assignment, we use a select subsystem consisting of three processes p xi , px̄i , and qi; the
first two processes correspond to the truth values of x i and are called ‘select’ processes. The third process, called the
‘arbiter’, fixes the truth value of xi. Processes pxi and px̄i each perform a send to the third ‘arbiter’ process, but the
‘arbiter’ process can receive neither message until it receives a ‘done’ message. Since the ‘arbiter’ has only one buffer,
only one of the sends from the processes pxi and px̄i will be buffered; the other send will cause the sending process to
block until the ‘done’ message arrives.

The process that did not block performs a nonblocking send, via a disperser (described below), to each ‘term’
process whose corresponding term contains the complement of the fixed variable (i.e., ‘select’ process p xi sends a
message to all ‘term’ processes whose corresponding terms contain the literal x̄ i). Once the ‘arbiter’ process receives
the ‘done’ signal, all three processes, pxi , px̄i , and qi, can complete without deadlock.

A disperser is a nonblocking subsystem that upon receipt of a ‘disperse’ message performs a nonblocking broadcast
by using additional processes as buffers (see Figure 10).

To construct a multiprocess system S that corresponds to formula F , instantiate a select subsystem for each variable
and a disjunction subsystem corresponding to F . The disjunction subsystem performs the ‘done’ send to a disperser,
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which broadcasts it to the select subsystems. Finally, each select subsystem broadcasts its selection, via a disperser, to
the corresponding ‘literal’ receives of the ‘term’ processes; Figure 11 depicts the corresponding communication graph
G�S� of a composition.

Intuitively, if each of the ‘term’ processes receive a message from a select subsystem – sent via a disperser –
before any of the ‘term’ processes initiate a send event, the buffers on each of the ‘term’ processes will be used up.
By Lemma 4.1 this will prevent the disjunction subsystem from advancing past the t-ring. If the formula cannot be
falsified, then at least one ‘term’ process will not receive any messages before the disjunction subsystem advances past
the t-ring. This is formalized in the following lemma.

Lemma 5.2 There exists a deadlocking colouring sequence on the communication graph G�S� if and only if the
formula F is not a tautology.

Proof: If F is not a tautology, then there exists an assignment for which every term in the disjunction is false. In
this case we show that a deadlocking colouring sequence exists. Let v xi�0 and vx̄i�0 be the start vertices of process
components pxi and px̄i respectively. Similarly, let the send vertices sxi�1 and sx̄i �1 be adjacent to the receive vertices
rqi�xi and rqi�x̄i in the process component qi, and let sxi �2 and sx̄i �2 be the send vertices of the arcs that are incident on the
disperser components. Let Z � V be the set of start vertices corresponding to the falsifying assignment of F ; Z will
contain one of vxi�0 or vx̄i �0 for each i.

First, let ΣZ be the longest colouring sequence constructed by applying the colouring rules only to vertices that
have ancestors in Z. Since each qi has one free token, for every vxi�0 � Z or vx̄i�0 � Z, vertex rqi�xi (respectively rqi�x̄i ),
will be assigned a token and coloured yellow via rule 2b; later in the sequence the vertices s xi�2 (respectively sx̄i�2)
can be coloured yellow and then green. The corresponding receive vertex in the disperser component can thus be
coloured green. Since the dispersers are adjacent to the ‘literal’ receive vertices in the term process components, the
corresponding send vertex of each of the receive vertices can be coloured yellow, implying that rule 2b can be applied
to the ‘literal’ receive vertices. Thus, if Z contains vxi�0 or vx̄i�0, and a term process component contains a ‘literal’
receive vertex corresponding to x̄ i (respectively xi), then the token in the corresponding process component will be
used up.
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Figure 10: Disperser subsystem.

Second, extend ΣZ by allowing all valid colourings. To avoid deadlock, Lemma 4.1 requires at least one of the
term process components in the disjunction to have a free token. Since F is not a tautology and we used a falsifying
assignment, none of the process components has a free token, and the colouring sequence will deadlock.

If F is a tautology, then regardless of the assignment, one of the terms will be true (i.e., all the literals in the term
will be true). Hence, at least one term process component will have no ‘literal’ receive vertices that are descendants of
Z, and will have a token available to prevent the colouring sequence from deadlocking on the t-ring. Observe that the
selection component allows at most one of rqi�xi or rqi�x̄i to be coloured yellow, via rule 2b. Provided that the ‘done’
receive vertex of process component qi is not coloured green, at least one term component will not have any ‘literal’
receive vertices to which rule 2b can be applied. Thus, the token belonging to that process component will be available
to prevent the colouring sequence from deadlocking on the t-ring. On the other hand, if the ‘done’ receive vertex is
coloured green, then the ‘done’ send vertex in the term component is coloured green. This means that at least one
‘t-ring’ receive vertex is coloured green, and hence the colouring sequence will not deadlock in the t-ring. Once the
‘done’ send vertex is coloured green, the colouring sequence can always complete. Hence, the system S is safe.

Hence, system S is unsafe if and only if the formula is not a tautology. Since BSP is in coNP and is coNP-hard via
a reduction from TAUTOLOGY, BSP is coNP-complete.

This result also holds for systems that use a combination of both send and receive buffers. The coNP-hardness
follows from the fact that systems with receive buffers only are also systems that use combinations of send and
receive buffers. Since a colouring sequence also serves as a deadlock certificate for combination systems, the coNP-
completeness result follows. In the case of systems with send buffers, we conjecture that the corresponding BSP is in P.
Unlike communication in systems with receive buffers only, the order of the sends implies an order on the allocation of
buffers. Hence, we believe that the computation of sufficiency is similar to the nonblocking buffer allocation problem
and hence is in P.

6 The Nonblocking Buffer Allocation Problem

We now turn to the last of the three problems we consider in this paper. In addition to the system being safe, we
can require that no sending process ever blocks due to insufficient buffers on the receiving process. The Nonblocking
Buffer Allocation Problem (NBAP) is to determine the minimum number of buffers needed to achieve nonblocking
sends. Given G�S�, the following algorithm computes the number of buffers needed to assure that none of the sends
will ever block.

Given two vertices, vi�c�k and vi�c, in G�S�, k � 0, vertex vi�c�k is communication dependent on vertex vi�c if
vi�c is the start vertex or if there exist a vertex v j�d, j �� i, such that there exists a path from vi�c to v j�d and the arc
�v j�d �vi� j�c� is in A (see Figure 12). Vertex vi�c�k is terminally communication dependent on vertex vi�c if vi�c�k is
communication dependent on vi�c and is not communication dependent on the vertices v i�c�l , 0 � l � k. The algorithm
is depicted in Figure 13.
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The time between when a message can arrive and when it is received at receive vertex v i�c is represented by the
interval Ii�c. Each interval must have a buffer to ensure nonblocking sends. Hence, the minimum number of buffers,
bi, is the maximum overlap over all intervals of a process component G i�S�.

Computing the terminal communication dependencies for G�S� can be done via dynamic programming in O��V �n�
time, where V is the vertex set of G�S� and n is the number of processes. If there exists a path from vertex v i�c to v j�d ,
then there exists a path from vi�c to all vertices v j�d�k, k � 0. Associate with each vertex vi�c an integer vector ai�c of
size n; ai�c� j� � d means that there exists a path from vi�c to v j�d , and thus to v j�d�k, k � 0. The vector ai�c is computed
by taking the elementwise minimums over the vectors of the adjacent vertices v i�c; this is simply a depth first traversal
of G�S�. Since the number of arcs is at most 3�V ��2 and the pairwise comparison takes n steps, the traversal takes
O��V �n� time.

Next, computing the O��V �� intervals, Ii�c, requires one table lookup per interval. To compute the maximum overlap
we sort the intervals and perform a sweep, keeping track of the current and maximum overlap; this takes O��V � log �V ��
time. Thus, the total complexity is O��V �n� �V � log �V �� time. In the worst case where p 
 �V �, this algorithm is
quadratic. However, in practice n is usually fixed, in which case the �V � log �V � term dominates.

6.1 Proof of Correctness of the Nonblocking Buffer Allocation Algorithm

In terms of the colouring game, a system S will not block on any send if for any valid colouring on G�S� containing
a yellow send vertex s and a corresponding red receive vertex r, vertex r can be coloured yellow by applying rule 2b.
This corresponds to guaranteeing buffer availability for every send in the system.
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Figure 12: vi�c�k is communication dependent on vi�c.

1. For each receive vertex vi�c determine its terminal communication dependency, vertex v i�t , where
t � c.

2. Set Ii�c � �t�c� to be the interval between vertex vi�t and vertex vi�c.
3. For each process component Gi�S�, compute bi, the maximum overlap over all intervals Ii�c.
4. B � �b1�b2� ����bn� is the optimal nonblocking buffer assignment.

Figure 13: Algorithm for computing an optimal nonblocking buffer assignment.

Lemma 6.1 Given a multiprocess system S, let G�S� be the corresponding communication graph. For all vertices
vi�s�v j�t � G�S�, if v j�t is a send vertex and there exists a path from the vertex vi�s to vertex v j�t , then vertex v j�t cannot
be coloured yellow until vertex vi�s is coloured green.

Proof: By rule 1, the predecessor of v j�t must first be coloured green before v j�t can be coloured yellow. Since rules 3
and 4 imply that the predecessors of a green vertex must be green, the result follows.

Corollary 6.2 Let S, G�S�, vi�s, and v j�t be as in Lemma 6.1 and let vi�r be the receive vertex corresponding to the send
vertex v j�t . Rule 2b will never be applied to vertex vi�r before vertex vi�s is coloured green.

The preceding corollary implies that a buffer for the receive event corresponding to vertex v i�r need not be avail-
able until the completion of the send event corresponding to the vertex, on which v i�r is terminally communication
dependent. Hence, it is sufficient to allocate the buffer just before the completion of the respective send event. Finally,
we argue that this is also necessary.

Theorem 6.3 Given S and G�S�, let vi�s be a send vertex and vi�r be a receive vertex that is terminally communication
dependent on vertex vi�s. A token for the application of Rule 2b on vertex v i�r must be available before vertex vi�s is
coloured green.

Proof: Let v j�t be the send vertex corresponding to the receive vertex v i�r and let Q � �vi�q � s � q � r� be the set of
vertices that are predecessors of vi�r, but on which vi�r is not communication dependent.

Since vi�r is not communication dependent on the vertices in Q, we can construct a colouring sequence on G�S�
that fixes the vertices in Q to be red, and colours vertex v j�t yellow, making the application of rule 2b possible in the
next step. Since no progress is made in the ith process component after colouring vertex v i�s green, the state of the
associated token pool does not change until the application of rule 2b to vertex v i�r. Hence, when vertex vi�s is coloured
green, the token pool must have a token destined for vertex v i�r.

Thus, if receive event r is terminally communication dependent on send event s, then it is necessary and sufficient
that a buffer to be used for receive event r must be allocated before the send event s completes. The start event may be
thought of as a special send event. Since a buffer is required for each receive over a corresponding interval, computing
the maximum overlap of intervals yields the number of buffers required.
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6.2 Other Models

For systems with only send buffers the problem remains in P. The problem can be solved by first reversing all arcs in
the communication graph, swapping the start and end vertices, and then running the algorithm described above.

For systems with both send and receive buffers, we conjecture that the nonblocking buffer allocation problem is
NP-hard. This follows from the observation that we have a choice of either allocating a buffer on the sending or the
receiving side, each time a buffer is needed.

6.3 Approximating BAP with NBAP

The NBAP algorithm may be useful for determining a buffer assignment that prevents deadlock (BAP). Since a non-
blocking execution is guaranteed not to deadlock, any buffer assignment determined by the NBAP algorithm ensures
a safe execution. However, the buffer assignment may be far from optimal. A simple example of this phenomena is a
two process producer-consumer system comprising of n messages sent by the producer and received by the consumer
in the respective order. Such a system requires zero buffers to execute safely, but requires n buffers to execute without
blocking. Thus, the aforementioned buffer assignment may entail infinitely more buffers than required.

6.4 Implementation of the NBAP algorithm in Millipede

We implemented the NBAP algorithm and added it to the Millipede parallel debugging system, which is a a multi
level parallel debugger for message passing programs [19, 20, 21]. Millipede logs all messages between processes in
a parallel system; these message histories are then used to analyze program execution and locate bugs. Determining
the number of buffers required for block free execution is one such analysis.

To demonstrate the NBAP algorithm we ran Millipede on a program that implements the pipe-and-roll parallel
matrix multiplication algorithm [22]. The program has one control process and a number of worker processes arranged
in a 2 dimensional mesh. We ran the NBAP algorithm on meshes of size 2�2, 3�3 and 4�4. The communication
graph for the smallest example, comprising four workers ordered in a 2� 2 mesh is depicted in Figure 14. The
corresponding optimal buffer assignment is, listed in the second column of table 1.

Proc. Max overlap Overlap for intervals Ij
I1 I2 I3 I4 I5 I6 I7 I8 I9

0 4 0 0 0 0 4 3 2 1 0
1 3 2 1 2 3 2 1 1 0 0
2 3 3 2 1 2 1 1 1 0 0
3 3 3 2 1 2 1 1 1 0 0
4 3 2 1 2 3 2 1 1 0 0

Table 1: The result of NBAP algorithm on the 2�2 example.

In this example process 0 is the control process and processes 1 through 4 are the workers. The control process
needs 4 buffers and the workers each need 3 to execute without blocking. The results obtained when executing the
NBAP algorithm on a 3� 3 worker system is 9 buffers for the control process and between 4 and 5 buffers for the
worker processes. For the 4�4 system the numbers are 16 for the control process and between 5 and 7 buffers for the
workers.

7 Conclusion

As more and more functionality of message passing systems is off-loaded to the network interface card, limited buffer
space becomes an increasingly important issue. Hence, the problem of determining k-safety plays an increasingly
important role. Unfortunately this problem is intractable.

We have shown that in the receive buffer model, determining the number of buffers needed to assure safe execution
of a program is NP-hard, and that even verifying whether a number of assigned buffers is sufficient is coNP-complete.
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Figure 14: The communication system for a 2�2 worker process mesh.

On the positive side, if we require that no send blocks, we provide a polynomial time algorithm for computing the
minimal number of buffers. By allocating this number of buffers, safe execution is guaranteed!

There are several strategies that a programmer can use to reduce the likelihood of deadlock when only a few
buffers are available. To decrease the risk of deadlock the programmer can introduce epochs that are separated by
barrier synchronizations. If each epoch only needs a small number of buffers, the risk of deadlock due to buffer
insufficiency is reduced.

For systems with only send buffers we conjecture that the Buffer Sufficiency Problem can be solved in polynomial
time because the order of the sends in each process is fixed. This would imply that the buffer allocation problem for
systems with only send buffers is NP-complete. For systems with both send and receive buffers we conjecture that the
nonblocking buffer allocation problem is NP-hard. Unlike in the other two models, a buffer can be assigned either on
the send side or on the receive side, dramatically increasing the size of the search space. The results (conjectures) are
summarized below.

Problem Receive Buffers Send Buffers Send/Receive Buffers

BAP NP-hard NP-hard NP-hard
BSP coNP-complete (P) coNP-complete
NBAP P P (NP-hard)
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