
IDLI: An Interactive Message Debugger for Parallel
Programs using LAM-MPI

Hoimonti Basu

School of Computer Science
University of Nevada, Las Vegas

Las Vegas, NV 89154
Email: hoimonti@yahoo.com

Ph: 702-443-1538, Fax: 702-895-2639

Jan B. Pedersen
School of Computer Science

University of Nevada, Las Vegas
Las Vegas, NV 89154

Email: matt@cs.unlv.edu
Ph: 702-895-2557, Fax: 702-895-2639

Abstract
Many complex and computation intensive problems
can be solved efficiently using parallel programs on a
network of processors. One of the most widely used
software platforms for such cluster computing is LAM-
MPI. To aid development of robust parallel programs
using LAM-MPI we need efficient debugging tools.
However, the challenges in debugging parallel
programs are unique and different from those of
sequential programs. This paper introduces IDLI, a
parallel message debugger for LAM-MPI, designed on
the concepts of multilevel debugging. Through its
customizable query mechanism, data abstraction,
granularity, and user-friendly interface IDLI provides
an effective environment for debugging parallel LAM-
MPI programs. It has a novel technique to
simultaneously replay and sequentially debug one or
more processes from a distributed application.

Keywords: Distributed computing, LAM-MPI,
multilevel debugging, message debugger

1. Introduction
Parallelism introduced in a computation brings

new dimensions for errors and unexpected behavior.
Consequently debugging parallel programs is a
challenging job. The most often used technique is to
insert print statements in the programs to track its
behavior [1]. Often debuggers for sequential
programming like the GNU Debugger (GDB) [2] or
the Data Display Debugger (DDD) [3] are used to
debug the sequential part of a parallel program at a
particular node. But the limitation of these processes is
that when a user has to debug a parallel application
running on many nodes where both functionality and
data has been distributed among various nodes. In
such a scenario the user needs to understand the whole
picture since the state of the entire application is
dependent on the states of all the involved nodes.
Focusing on debugging programs at particular nodes
with a sequential debugger without understanding the
big picture does not go a long way in finding and
correcting intricate and complex bugs [4].

Another issue which makes debugging quite
intricate is the fact that in parallel programs, the cause

and effect of an error can be separated by great
distance in time and code making it difficult to locate
and debug. Also, this difficulty is enhanced when the
cause and effect do not occur in the same process [5].
A parallel system is much larger and complex than a
single process and many available tools deluge the
programmer with information overload, making it
nearly impossible to zero down on useful information
pertinent to debugging [6]. Often, existing parallel
debugging tools are criticized precisely for this reason
[7]. IDLI has been designed to avoid information
overloading by providing requisite abstractions and
views. At the same time customized views can be
generated by the user thus making the tool flexible.
IDLI provides both local and global context debugging
information thus making it suitable to be used for
sequential debugging as well as understand the overall
big picture. Our goal is to develop a simple, yet
effective, debugger based on the principles of
multilevel debugging [6] which expedites the process
of locating errors due to faulty message passing in
parallel programs using LAM-MPI [8].

2. Related Work
For the last two decades a great deal of research

effort has been directed at developing tools for
improving the development of parallel applications
and significant progress has been made [9]. However,
the reason for not having highly popular and
standardized debuggers in the parallel domain, akin to
sequential debuggers like GDB, is that they are
extremely difficult to implement. Tool developers
must cope with an inherently unstable environment
where it may be impossible to reproduce program
events or timing relationships [10]. Moreover, it is
often difficult to find a comprehensive debugging tool
capable of handling of all types of errors that arise in
the parallel programming domain [8].

At present, quite a few tools are available for
debugging MPI [11] programs. Most of them can be
broadly classified into three categories based on the
functionalities they provide. These categories are
source level, graphical visualization and post
processing debugging tools. Some of these tools with

mailto:hoimonti@yahoo.com
mailto:matt@cs.unlv.edu

2.1

2.2.

2.3.

2.4

their versatile features might belong to more than one
of the above mentioned categories.

. Source Level Debuggers
Source level debugging tools being, the lowest of

the above mentioned three categories, are extensions
of traditional sequential debuggers like GDB. Some
tools simply instantiate a copy of a standard sequential
debugger for each process, while others may be more
sophisticated and have a sequential debugger
integrated in an Integrated Development Environment
(IDE). Each sequential debugging window is capable
of providing substantial information about the attached
process. The information is localized in context and is
best used for debugging the sequential part of the
code. Since these debuggers are based on the
sequential style of programming they do not fit well
into the paradigm of parallel programming which has
quite a few new classes of errors related to message
passing and protocol conformance [6].

Firstly, they typically operate at the level of
source and assembly code. Such a fine level of
granularity makes it difficult to debug an MPI
program running on hundreds of nodes. Often source
level debuggers do not have views or data pertaining
to the big picture, containing all the nodes, which help
a developer, analyze and locate the exact source of
bugs. Though the technique of debugging a parallel
MPI program usually starts at the local context, it
eventually requires information pertaining to a global
view of the whole application. Moreover, in an MPI
program some of the most common type of errors
arises due to faulty message passing involving several
processes [4]. As the number of processes increase, it
becomes nearly impossible for the developer to
manually manage, issue commands, monitor the
output, and control each process in a separate window.
Further, such a process is quite prone to human errors.
Examples of source level debuggers are Classic Guard
[12], DDT [13], Etnus Total View [14], KDevelop
[15], and PGDGB [16].

 Graphical Visualization Debuggers
Graphical visualization debug tools attempt to

assist the developer in a top-down debugging
approach. They graphically present snapshots of the
whole system indicating current states of processes,
message queue, message route, pending messages and
other relevant system features of the parallel machine.
Their primary strength lies in depicting the complete
system status at different points of time during
execution of the program using various graphical
charts and diagrams. They help developers in
understanding the overall system behavior.

Unfortunately, these debuggers are at the other
end of the spectrum compared to source level
debuggers. Most of these debuggers lack sufficient
granularity to aid a developer pin-point the location of

the errors. Typically, in an MPI program the bulk of
the code is sequential. Hence having no source level
debugging capability at all seriously cripples the
usability of these tools. The mapping of an activity at
the global level to its causal context at the local level
is left entirely to the user. Another limitation is that
most graphical visualization debuggers typically have
a predefined set of views. In other words, they are not
flexible or adaptable to a user’s customized needs.
Examples of graphical visualization debuggers are
Inter Trace Collector [17], MQM [18], Panorama [19],
Paradyn [20], and XMPI [21].

 Post Processing Debuggers
Post processing debugging tools provide post-

mortem debugging capabilities. The principle behind
such tools is logging program execution in sufficient
detail which enables replaying a part or whole of the
program later on. Most of these debuggers fail to
provide sufficient granularity when needed. Generally
they posses no integrated sequential debuggers and
perform a replay based on past data stored in log files.
As a result, on-the-fly data manipulation cannot be
supported by these tools thereby seriously limiting
their debugging capabilities. For example, a tool that
was designed to record only message passing events
would obviously lack any debugging capability for
bugs in the sequential part of the code. Examples of
post processing debuggers are Buster [22] and
PVaniM [23].

. Summary
Though there many tools available to aid in

parallel programming only a handful of them are
debuggers. Others belong to various tool classes like
static or dynamic error checkers, profilers, event
tracers and code analyzers. Primarily, the usability and
effectiveness of available debuggers are severely
reduced due to the following reasons:
• Most of them are designed and built to satisfy
only one end of the spectrum for debugging tools, that
is, they are either good at providing localized or global
contexts but not both.
• A large amount of data which is often not of much
relevance to the user makes debugging extremely
challenging and time consuming by causing
information overload.
• A serious shortcoming of existing tools is that
they offer very little flexibility in creating
customizable views or altering existing views. This
often makes debugging extremely complicated or at
worst impossible.
• In order to debug MPI programs effectively, users
often need to trace a particular message or a group of
related messages. Most existing debuggers do not
support such queries. Few tools do offer tracing of
messages but they require instrumentation of the
users’ applications.

4.1.

4.1.1.

Arguably, for debugging a parallel program, a
user may choose to use a combination of currently
available tools. But such a combination is often
hindered by the following obstacles: (a) high learning
curves for each tool, (b) lack of (seamless) integration
since each product is from a different vendor, (c)
different user interfaces and design philosophies for
each tool, and (d) variances in compliance to
standards, reliability, portability and levels of
available support.

3. Multilevel Debugging
 In contrast to the top down approach used in most

parallel debuggers and visualization tools, multilevel
debugging [6] was developed as a bottom up approach
to debugging. Instead of providing a global view of a
program and allowing the user to look for all errors
using just one tool, the bottom up approach of
multilevel debugging provides not only tools for the
creation of error hypothesis but specialized tools for
handling different error classes. These tools assist in
verifying a hypothesis and refine it if necessary [6].
Also, such tools are equipped with the ability to help
the user track the error back to its source code and fix
it.

As discussed earlier, in contrast to sequential
debugging there are many new types of errors that
arise in parallel programming. To handle these new
types of errors, new tools specific to each type which
will provide detailed information on locating and
debugging the error are needed. The bottom up
approach of multilevel debugging is very well suited
for development of these tools since it not only
provides information for hypothesis of an error but
also helps in locating the source of the bug. In
multilevel debugging, errors are classified into three
classes, namely sequential, message passing and
protocol level errors. Each class has bugs that are
specific to it. We shall be focusing on debugging the
second class of errors, that is, message passing, using
IDLI.

4. Introducing IDLI
The concept of multi level debugging was

developed in [6] and demonstrated on PVM with a
debugger named Millipede. Later, a Java GUI was
added to Millipede to improve its cross platform
compatibility and incorporate new debugging features
[4, 24]. IDLI is a message debugger designed to
extend the concepts of multilevel debugging to LAM
MPI [8] which has become a popular message passing
library for parallel computations. In the subsequent
sections we shall explore the architecture and features
of IDLI.

 Architecture and Overview
Our multilevel message debugger, IDLI, operates

with a high quality implementation of the MPI
standard from LAM which is associated with Open
Systems Laboratory (OSL) of Indiana University [8].
The architecture of IDLI consists of three layers: (a) a
distributed relational SQL database which is used for
persistent data storage comprises the back-end, (b) the
middle layer is a native C [25] library which has
wrappers for MPI functions and, (c) a simple shell
user interface forms the front-end. These three layers
aid in logging, displaying and analyzing the debugging
information gathered from calls made to the MPI
routines during the execution of a parallel application
in a distributed environment.

Back-end: Distributed Relational
Postgre SQL Database

We have used the free open source SQL database
system PostgreSQL [26] for persistent storage.
PostgreSQL is a well tested, widely used powerful and
distributed object-relational database management
system. It has an efficient and safe concurrency
transaction management. The SQL database need not
be installed on any of the nodes of the network where
the user’s application is executing. This is
demonstrated in Figure 1. The architecture of IDLI
enables processes to insert data into the database in a
distributed manner. Each process executing a program
with MPI calls, stores its data by opening a dedicated
connection to the database server through a TCP/IP
network connection. This data comprising of meta
data from MPI calls and messages exchanged is used
for debugging the program later on.

Figure 1: Overview of execution of an application in debug mode with IDLI.

IDLI LIBRARY

USER’S PROGRAM ON
PROCESS 1

 SQL DB

SQL

Inter MPI
MPI LIBRARY

SQL
IDLI LIBRARY

USER’S PROGRAM ON
PROCESS 2

MPI LIBRARY

4.1.2.

4.1.3.

4.2.

4.2.1.

Figure 2: Menu Navigation Map of IDLI.

Middle Layer: Wrappers for MPI
functions in the native C library of IDLI

During a debugging session, when a user’s
application is compiled in debug mode with IDLI, it is
linked with the native C library of IDLI instead of the
standard MPI library. This is done by means of
functions present in IDLI’s native C library known as
wrappers. Currently, IDLI supports twenty four
commonly used MPI functions [27]. Consequently the
native C library has wrapper functions for each of
these MPI routines. These wrapper functions intercept
the MPI calls placed in the user’s program. In
addition, the wrappers possess intelligence for MPI
function specific (a) initialization, (b) database
processing, (c) lock management for database
transactions like writes and updates (more than one
process might try to simultaneously write or update
the same database tables) and (d) determining the
mode for processing, that is, whether the user wants to
sequentially debug an application or replay the
application at selected nodes. When a wrapper
function intercepts an MPI call from an application
program, it stores debugging information specific to
the MPI routine in the SQL database at the back-end.
The stored data is furnished by the wrappers whenever
required by the user for analysis, and debugging of
erroneous scenarios. As a result, IDLI’s native C
library has a two way communication with the SQL
database as shown in Figure 1.

Front-end: Shell User Interface of
IDLI
A simple shell user interface acts as IDLI’s front-end.
When a user begins a session with IDLI he gets a
welcome screen with a list of menus. The complete
menu navigation map of IDLI is shown in Figure 2.
The front-end, which is a shell user-interface,
possesses useful features like command history,
command completion with tabs, prompts showing the
selected user database for current session. Data is

predominantly displayed as a set of rows. Each row
has columns for different types of data. Each column
has a header row which has a suitable name for that
column. To easily discern the criteria that the data was
sorted by, columns of sorted data are generally
displayed in colors which are different from the rest of
the data.

 Features of IDLI
IDLI can be used to replay, analyze, as well as

view, the contents of communication messages
exchanged by MPI routines in an application. It can
also be used for debugging source code of a program.
Thus, IDLI enables a user to do post-processing as
well as source level debugging or a combination of
both.

Query Manager
IDLI, as a message debugger, can be used to view

details of messages exchanged by MPI calls through a
Query Manager. The Query Manager has a front-end,
which is the shell user interface that interacts with a
SQL database at the back-end. It is equipped with a
feature that enables a user to write customized SQL
queries. This helps a user to create customizable views
of data from the global to local context of the
application and vice versa. An example of the
execution of a customized query is shown in Figure 3.
A set of well defined built-in queries (as shown in
Figure 2) are provided by the Query Manager to aid
the user in retrieving debugging data for analysis and
hypothesis formation of errors [6].

An example of the execution of the built-in query
locategroup N is shown in Figure 4. The built-in
features have been designed not to overwhelm the user
with huge amounts of irrelevant data. The Query
Manager also aids the user in tracing a message to its
origin at a particular line number of the requisite file.
In addition, a user can do post mortem analysis using
IDLI’s Query Manager.

1: log time

LIST

IDLI

DROP N PSQL N QUERY N HELP EXIT

DUMP N LOCATEP2P N LOCATEGROUP N

2: message group id
3: rank of a process
4: file name
5: file & line number
6: MPI function name

1: between 2 processes
2: between 2 files of 2 processes
3: between 2 lines of 2 processes
4: between 2 lines of 2 files of 2 processes
5: between 2 files
6: between 2 lines
7: between 2 lines of 2 files
8: MPI function name

1: file
2: line
3: line of file
4: MPI function name

PSQL REPLAY N STATUS N TRACE N HELP EXIT

Figure 3: Example of execution of a customized SQL to get specific data.

Figure 4: Example of execution of the built-in query locategroup N in IDLI's Query Manager.

These features of the Query Manager lend the qualities
of adequate data abstraction and granularity to IDLI.

4.2.2. Replay

With IDLI’s Replay feature, an application’s
execution can be replayed simultaneously at a number
of selected processes using a sequential debugger of
the user’s choice. Figure 5 shows the overall
architecture of IDLI’s Query Manager and Replay at

two nodes. During replay all data related to MPI calls
are fetched from stored data of a previous run of the
application.

Since the MPI communication layer is not
invoked during Replay, the debugging process for a
parallel application running on large networks is
considerably faster. A user may run a Replay of the
application in a sequential debugger of her choice for a
selected set of processes from any machine on the

SQL
 DATABASE

IDLI USER INTERFACE

REPLAY

QUERY MANAGER

USER’S PROGRAM ON
PROCESS 1

IDLI LIBRARY

Connection Types Process to Computer SQL

SEQUENTIAL
DEBUGGER OF USER’S

CHOICE

Inter IDLI

REPLAY

USER’S PROGRAM ON
PROCESS 2

IDLI LIBRARY

SEQUENTIAL
DEBUGGER OF USER’S

CHOICE

Figure 5: Overall architecture of IDLI’s Query Manager and Replay.

network which is enabled with TCP/IP connectivity.
Figure 6 shows Replay in action with the sequential
debugger DDD.

IDLI creates individual connections for each
specified process. During replay of a program, IDLI
creates a connection to the chosen process running on
a node using the Secure Shell 2 Protocol (SSH2) [28]
over TCP/IP and invokes the user’s selected sequential
debugger. The original session of the Query Manager,
from which the replay was initiated, is the parent
while the replays on different nodes are its children.

The Replay feature can be used simultaneously
for any number of processes of distinct ranks. IDLI
automatically runs the Replay on the same node on
which the process was originally run during an
application’s execution. We do so to simulate the
exact hardware and software environment for the
parallel application in which the errors arose. This is
particularly relevant for processes running in a
heterogeneous network where each node might have a
different machine architecture and operating system.

Figure 6: IDLI’s Replay feature in action with sequential debugger DDD.

Figure 7: Replay on two different nodes with two different debuggers (DDD & GDB) along with
simultaneous use of Query Manager.

It is noteworthy that multiple processes might have
run on the same node. IDLI is capable of handling
multiple such Replay sessions on the same node.
Further it has built-in error checking to prevent a user
from simultaneously invoking more than one Replay
for the same process rank. IDLI has a robust Replay
session management functionality. During exit from
Replay, IDLI checks if there are any replays in action
on any of the nodes. If that is the case, the user is
notified to exit only when all nodes have quit replays.

An application can be replayed multiple times in
the same session on any number of processes
simultaneously. Also, a programmer can replay an
application on different nodes of the network using
different sequential debuggers simultaneously for each
distinct process. This feature provides the flexibility to
use GDB at node 1 or DDD at node 2 depending on
the availability and need at a specific remote machine.
The debugger is opened in an xterm window with
display set to the local machine where IDLI is
running. In addition, Replay and Query Manager can
be run simultaneously. These features are
demonstrated in Figure 7.

5. Conclusion
The guiding philosophy behind the development

of IDLI was to implement a message debugger for the
LAM-MPI environment based on the principles of
multilevel debugging. This concept was designed to
avoid several limitations prevalent in current parallel
debugging tools. Some of the limitations prevalent in
current parallel debuggers have been transcended in
the following manner:
• Partial view of the debugging spectrum: IDLI
provides both global and local context debugging
information and is flexible to a user’s specific needs.
• Information Overloading: Various levels of data
abstraction are provided in IDLI thus enabling it to
display relevant information according to a user’s
needs. The built-in queries have various options that
help to trim down the debugging data and retrieve
specific information. Moreover IDLI provides the
flexibility to replay an application simultaneously on a
chosen number of processes. This enables a user to
choose as many processes as he is comfortable
debugging simultaneously. Thus the user is in total

control of the amount of the data she wants to
simultaneously view and process for debugging.
• Inability to alter or create custom views: A user has
complete freedom to take advantage of the entire
range of Postgres SQL commands to virtually create
any desired view of the available data in the user
database using IDLI.
• Lack of querying features at message level: IDLI’s
Query Manager has a whole set of built-in queries that
cater to fine granularity at the message level. To
provide detailed information on the exchanged
messages IDLI does not require any modification or
instrumentation of the user’s application source code.

An interesting fact, that demonstrates IDLI’s
utility and convenience, is that it was used to debug its
own software during the development cycle. In the
implementation phase, considerable time and effort
were saved while debugging a number of complex
bugs, by using IDLI’s Query Manager. To summarize,
IDLI provides: (a) specific debugging information
through sufficient levels of data abstraction, (b)
connects global data with local context and vice-versa,
(c) has a simple front-end user interface, (d) has built-
in queries for querying messages and viewing details
of executions of MPI routines, (e) allows custom SQL
queries to be written by a user, and (f) enables fast and
multiple simultaneous replays on any process (at its
physical machine) with a sequential debuggers of the
user’s choice. We believe that these features based on
multilevel debugging make IDLI a novel parallel
debugging tool.

6. Future Work
We would like to enhance the features of our

message debugger IDLI to include protocol
conformation as defined in [5] and deadlock detection.
Protocol conformation would allow a user to write
specifications of the behavior of the protocol. Then
using information from the actual messages, IDLI
would automatically check that the messages satisfy
the given specifications. Another great utility would
be automatic detection of deadlocks based on an
algorithm that provides automatic suggestions for a
deadlock induced state, given a protocol specification
[29]. Implementation of this algorithm would also add
automatic correction to automatic detection of
deadlocks.

At present IDLI is designed to work with message
passing in one communication world denoted by the
communication handle, MPI_COMM_WORLD. This
functionality can be extended to multiple
communication worlds which are used in many large
real time applications for parallel computing.

Also, currently IDLI provides global level views
of the whole system through data abstraction. This

feature can be extended to include a graphical display
of the entire system complete with pictures of active
processes at various nodes, their executions and
contents of messages exchanged [30]. We can also add
profilers to view the performance of the system as a
whole. These future features would transform IDLI
into a complete debugger for LAM-MPI parallel
programs.

7. References
[1] Pancake, Cherri. M. et al. “Results of User Surveys Conducted on

Behalf of Intel Supercomputer Systems Division, Two Divisions of
IBM Corporation, and CONVEX Computer Corporation”, 1989-
1993.

[2] GNU DeBugger. http://www.gnu.org/directory/gdb.html
[3] Data Display Debugger. http://www.gnu.org/software/ddd/
[4] Tribou, Erik H. “Millipede: A Graphical Tool for Debugging

Distributed Systems with a Multilevel Approach”, Masters Thesis,
University of Nevada Las Vegas, Las Vegas, Nevada, USA, August
2005.

[5] Eisenstatdt, M. “My Hairiest Bug War Stories”, The Debugging
Scandal And What To Do About It, Communications of the ACM,
April 1997.

[6] Pedersen, Jan B. “Multilevel Debugging of Parallel Message
Passing Systems”, PhD Thesis, University of British Columbia,
Vancouver, British Columbia, Canada, June 2003.

[7] Pancake, Cherri. M. “Why Is There Such a Mismatch between User
Need and Parallel Tool Production?”, Keynote address, 1993
Workshop on Parallel Computing Systems: A Dialog between Users
and Developers, April 1993.

[8] LAM / MPI Parallel Computing. http://www.lam-mpi.org/
[9] Pancake, Cherri. M. “Performance Tools for Today's HPC: Are We

Addressing the Right Issues?” in Parallel Computing, Vol. 27, pp.
1403-1415, 2001.

[10] Pancake, Cherri. M. “Applying Human Factors to the Design of
Performance Tools”, Proceedings of Euro-Par ’99, pp. 440-457,
1999.

[11] Message Passing Interface (MPI).
http://www.llnl.gov/computing/tutorials/mpi/

[12] Classic Guard. http://www.guardsoft.com/classicguard.html
[13] DDT. http://www.allinea.com/?page=48
[14] EtnusTotalView. http://www.etnus.com/TotalView/index.html
[15] KDevelop. http://freshmeat.net/projects/mpiplugin/
[16] PGDGB. http://www.pgroup.com/products/pgdbg.htm
[17] InterTraceCollector.

http://www.intel.com/cd/ids/developer/asmona/eng/95656.htm
[18] MQM.

http://web.engr.oregonstate.edu/~pancake/ptools/mqm/flyer.html
[19] Panorama. http://www-cse.ucsd.edu/users/berman/panorama.html
[20] Paradyn. http://www.cs.wisc.edu/~paradyn/
[21] XMPI. http://www.lam-mpi.org/software/xmpi/
[22] Buster.http://166.111.68.162/web/gelato/gelato-3-Buster.htm
[23] PVaniM.

http://www.cc.gatech.edu/gvu/softviz/parviz/pvanimOL/pvanimOL.
html

[24] Tribou, Erik H. & Pedersen, Jan B. “Millipede: A Multilevel
Debugging Environment for Distributed Systems”, Proceedings of
the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA'05), pp. 187-193, June 2005.

[25] Kernighan, B. & Ritchie, D. “The C Programming Language”,
Prentice Hall, 1988.

[26] PostgreSQL. http://www.postgresql.org/
[27] Wilkinson, B. & Allen, M. “Parallel Programming Techniques and

Applications using Networked Workstations and Parallel
Computers”, 2nd Edition, Pearson Prentice Hall, 2005.

[28] SSH2. http://www.ssh.com/
[29] Pedersen, Jan B. & Wagner, A. “Correcting Errors in Message

Passing Systems”, High-Level Parallel Programming Models and
Supportive Environments, 6th international workshop, HIPS 2001,
San Francisco, LNCS 2026, Springer Verlag, April 2001.

[30] Pancake, Cherri. M. "Exploiting Visualization and Direct
Manipulation to Make Parallel Tools More Communicative," in
Applied Parallel Computing, ed. B. Kagstrom et al., Springer
Verlag, Berlin, , pp. 400-417, 1998.

