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Abstract 
Many complex and computation intensive problems 
can be solved efficiently using parallel programs on a 
network of processors. One of the most widely used 
software platforms for such cluster computing is LAM-
MPI. To aid development of robust parallel programs 
using LAM-MPI we need efficient debugging tools. 
However, the challenges in debugging parallel 
programs are unique and different from those of 
sequential programs. This paper introduces IDLI, a 
parallel message debugger for LAM-MPI, designed on 
the concepts of multilevel debugging. Through its 
customizable query mechanism, data abstraction, 
granularity, and user-friendly interface IDLI provides 
an effective environment for debugging parallel LAM-
MPI programs. It has a novel technique to 
simultaneously replay and sequentially debug one or 
more processes from a distributed application.  
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1. Introduction 
Parallelism introduced in a computation brings 

new dimensions for errors and unexpected behavior. 
Consequently debugging parallel programs is a 
challenging job. The most often used technique is to 
insert print statements in the programs to track its 
behavior [1]. Often debuggers for sequential 
programming like the GNU Debugger (GDB) [2] or 
the Data Display Debugger (DDD) [3] are used to 
debug the sequential part of a parallel program at a 
particular node. But the limitation of these processes is 
that when a user has to debug a parallel application 
running on many nodes where both functionality and 
data has been distributed among various nodes. In 
such a scenario the user needs to understand the whole 
picture since the state of the entire application is 
dependent on the states of all the involved nodes. 
Focusing on debugging programs at particular nodes 
with a sequential debugger without understanding the 
big picture does not go a long way in finding and 
correcting intricate and complex bugs [4].  

Another issue which makes debugging quite 
intricate is the fact that in parallel programs, the cause 

and effect of an error can be separated by great 
distance in time and code making it difficult to locate 
and debug. Also, this difficulty is enhanced when the 
cause and effect do not occur in the same process [5]. 
A parallel system is much larger and complex than a 
single process and many available tools deluge the 
programmer with information overload, making it 
nearly impossible to zero down on useful information 
pertinent to debugging [6]. Often, existing parallel 
debugging tools are criticized precisely for this reason 
[7]. IDLI has been designed to avoid information 
overloading by providing requisite abstractions and 
views. At the same time customized views can be 
generated by the user thus making the tool flexible. 
IDLI provides both local and global context debugging 
information thus making it suitable to be used for 
sequential debugging as well as understand the overall 
big picture. Our goal is to develop a simple, yet 
effective, debugger based on the principles of 
multilevel debugging [6] which expedites the process 
of locating errors due to faulty message passing in 
parallel programs using LAM-MPI [8].  
 

2. Related Work 
For the last two decades a great deal of research 

effort has been directed at developing tools for 
improving the development of parallel applications 
and significant progress has been made [9]. However, 
the reason for not having highly popular and 
standardized debuggers in the parallel domain, akin to 
sequential debuggers like GDB, is that they are 
extremely difficult to implement. Tool developers 
must cope with an inherently unstable environment 
where it may be impossible to reproduce program 
events or timing relationships [10]. Moreover, it is 
often difficult to find a comprehensive debugging tool 
capable of handling of all types of errors that arise in 
the parallel programming domain [8].  

At present, quite a few tools are available for 
debugging MPI [11] programs. Most of them can be 
broadly classified into three categories based on the 
functionalities they provide. These categories are 
source level, graphical visualization and post 
processing debugging tools. Some of these tools with 
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their versatile features might belong to more than one 
of the above mentioned categories. 
 

. Source Level Debuggers 
Source level debugging tools being, the lowest of 

the above mentioned three categories, are extensions 
of traditional sequential debuggers like GDB. Some 
tools simply instantiate a copy of a standard sequential 
debugger for each process, while others may be more 
sophisticated and have a sequential debugger 
integrated in an Integrated Development Environment 
(IDE). Each sequential debugging window is capable 
of providing substantial information about the attached 
process. The information is localized in context and is 
best used for debugging the sequential part of the 
code. Since these debuggers are based on the 
sequential style of programming they do not fit well 
into the paradigm of parallel programming which has 
quite a few new classes of errors related to message 
passing and protocol conformance [6].  

Firstly, they typically operate at the level of 
source and assembly code. Such a fine level of 
granularity makes it difficult to debug an MPI 
program running on hundreds of nodes. Often source 
level debuggers do not have views or data pertaining 
to the big picture, containing all the nodes, which help 
a developer, analyze and locate the exact source of 
bugs. Though the technique of debugging a parallel 
MPI program usually starts at the local context, it 
eventually requires information pertaining to a global 
view of the whole application. Moreover, in an MPI 
program some of the most common type of errors 
arises due to faulty message passing involving several 
processes [4]. As the number of processes increase, it 
becomes nearly impossible for the developer to 
manually manage, issue commands, monitor the 
output, and control each process in a separate window. 
Further, such a process is quite prone to human errors. 
Examples of source level debuggers are Classic Guard 
[12], DDT [13], Etnus Total View [14], KDevelop 
[15], and PGDGB [16]. 
 

 Graphical Visualization Debuggers 
Graphical visualization debug tools attempt to 

assist the developer in a top-down debugging 
approach. They graphically present snapshots of the 
whole system indicating current states of processes, 
message queue, message route, pending messages and 
other relevant system features of the parallel machine. 
Their primary strength lies in depicting the complete 
system status at different points of time during 
execution of the program using various graphical 
charts and diagrams. They help developers in 
understanding the overall system behavior.  

Unfortunately, these debuggers are at the other 
end of the spectrum compared to source level 
debuggers. Most of these debuggers lack sufficient 
granularity to aid a developer pin-point the location of 

the errors. Typically, in an MPI program the bulk of 
the code is sequential. Hence having no source level 
debugging capability at all seriously cripples the 
usability of these tools. The mapping of an activity at 
the global level to its causal context at the local level 
is left entirely to the user. Another limitation is that 
most graphical visualization debuggers typically have 
a predefined set of views. In other words, they are not 
flexible or adaptable to a user’s customized needs. 
Examples of graphical visualization debuggers are 
Inter Trace Collector [17], MQM [18], Panorama [19], 
Paradyn [20], and XMPI [21]. 
 

 Post Processing Debuggers 
Post processing debugging tools provide post-

mortem debugging capabilities. The principle behind 
such tools is logging program execution in sufficient 
detail which enables replaying a part or whole of the 
program later on. Most of these debuggers fail to 
provide sufficient granularity when needed. Generally 
they posses no integrated sequential debuggers and 
perform a replay based on past data stored in log files. 
As a result, on-the-fly data manipulation cannot be 
supported by these tools thereby seriously limiting 
their debugging capabilities. For example, a tool that 
was designed to record only message passing events 
would obviously lack any debugging capability for 
bugs in the sequential part of the code. Examples of 
post processing debuggers are Buster [22] and 
PVaniM [23]. 
 

. Summary 
Though there many tools available to aid in 

parallel programming only a handful of them are 
debuggers. Others belong to various tool classes like 
static or dynamic error checkers, profilers, event 
tracers and code analyzers. Primarily, the usability and 
effectiveness of available debuggers are severely 
reduced due to the following reasons: 
• Most of them are designed and built to satisfy 
only one end of the spectrum for debugging tools, that 
is, they are either good at providing localized or global 
contexts but not both.  
• A large amount of data which is often not of much 
relevance to the user makes debugging extremely 
challenging and time consuming by causing 
information overload.   
• A serious shortcoming of existing tools is that 
they offer very little flexibility in creating 
customizable views or altering existing views. This 
often makes debugging extremely complicated or at 
worst impossible.  
• In order to debug MPI programs effectively, users 
often need to trace a particular message or a group of 
related messages. Most existing debuggers do not 
support such queries. Few tools do offer tracing of 
messages but they require instrumentation of the 
users’ applications.  
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Arguably, for debugging a parallel program, a 
user may choose to use a combination of currently 
available tools. But such a combination is often 
hindered by the following obstacles: (a) high learning 
curves for each tool, (b) lack of (seamless) integration 
since each product is from a different vendor, (c) 
different user interfaces and design philosophies for 
each tool, and (d) variances in compliance to 
standards, reliability, portability and levels of 
available support. 
 

3. Multilevel Debugging 
 In contrast to the top down approach used in most 

parallel debuggers and visualization tools, multilevel 
debugging [6] was developed as a bottom up approach 
to debugging. Instead of providing a global view of a 
program and allowing the user to look for all errors 
using just one tool, the bottom up approach of 
multilevel debugging provides not only tools for the 
creation of error hypothesis but specialized tools for 
handling different error classes. These tools assist in 
verifying a hypothesis and refine it if necessary [6]. 
Also, such tools are equipped with the ability to help 
the user track the error back to its source code and fix 
it.  

As discussed earlier, in contrast to sequential 
debugging there are many new types of errors that 
arise in parallel programming. To handle these new 
types of errors, new tools specific to each type which 
will provide detailed information on locating and 
debugging the error are needed. The bottom up 
approach of multilevel debugging is very well suited 
for development of these tools since it not only 
provides information for hypothesis of an error but 
also helps in locating the source of the bug. In 
multilevel debugging, errors are classified into three 
classes, namely sequential, message passing and 
protocol level errors. Each class has bugs that are 
specific to it. We shall be focusing on debugging the 
second class of errors, that is, message passing, using 
IDLI.  
 

4. Introducing IDLI 
The concept of multi level debugging was 

developed in [6] and demonstrated on PVM with a 
debugger named Millipede. Later, a Java GUI was 
added to Millipede to improve its cross platform 
compatibility and incorporate new debugging features 
[4, 24].  IDLI is a message debugger designed to 
extend the concepts of multilevel debugging to LAM 
MPI [8] which has become a popular message passing 
library for parallel computations. In the subsequent 
sections we shall explore the architecture and features 
of IDLI. 
 

 Architecture and Overview 
Our multilevel message debugger, IDLI, operates 

with a high quality implementation of the MPI 
standard from LAM which is associated with Open 
Systems Laboratory (OSL) of Indiana University [8].  
The architecture of IDLI consists of three layers: (a) a 
distributed relational SQL database which is used for 
persistent data storage comprises the back-end, (b) the 
middle layer is a native C [25] library which has 
wrappers for MPI functions and, (c) a simple shell 
user interface forms the front-end. These three layers 
aid in logging, displaying and analyzing the debugging 
information gathered from calls made to the MPI 
routines during the execution of a parallel application 
in a distributed environment.  
 

Back-end: Distributed Relational 
Postgre SQL Database 

We have used the free open source SQL database 
system PostgreSQL [26] for persistent storage. 
PostgreSQL is a well tested, widely used powerful and 
distributed object-relational database management 
system. It has an efficient and safe concurrency 
transaction management. The SQL database need not 
be installed on any of the nodes of the network where 
the user’s application is executing. This is 
demonstrated in Figure 1. The architecture of IDLI 
enables processes to insert data into the database in a 
distributed manner. Each process executing a program 
with MPI calls, stores its data by opening a dedicated 
connection to the database server through a TCP/IP 
network connection. This data comprising of meta 
data from MPI calls and messages exchanged is used 
for debugging the program later on. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Overview of execution of an application in debug mode with IDLI. 
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Figure 2: Menu Navigation Map of IDLI. 
 

Middle Layer: Wrappers for MPI 
functions in the native C library of IDLI 

During a debugging session, when a user’s 
application is compiled in debug mode with IDLI, it is 
linked with the native C library of IDLI instead of the 
standard MPI library. This is done by means of 
functions present in IDLI’s native C library known as 
wrappers. Currently, IDLI supports twenty four 
commonly used MPI functions [27]. Consequently the 
native C library has wrapper functions for each of 
these MPI routines. These wrapper functions intercept 
the MPI calls placed in the user’s program. In 
addition, the wrappers possess intelligence for MPI 
function specific (a) initialization, (b) database 
processing, (c) lock management for database 
transactions like writes and updates (more than one 
process might try to simultaneously write or update 
the same database tables) and (d) determining the 
mode for processing, that is, whether the user wants to 
sequentially debug an application or replay the 
application at selected nodes. When a wrapper 
function intercepts an MPI call from an application 
program, it stores debugging information specific to 
the MPI routine in the SQL database at the back-end. 
The stored data is furnished by the wrappers whenever 
required by the user for analysis, and debugging of 
erroneous scenarios. As a result, IDLI’s native C 
library has a two way communication with the SQL 
database as shown in Figure 1. 
 

Front-end: Shell User Interface of 
IDLI  
A simple shell user interface acts as IDLI’s front-end. 
When a user begins a session with IDLI he gets a 
welcome screen with a list of menus. The complete 
menu navigation map of IDLI is shown in Figure 2. 
The front-end, which is a shell user-interface, 
possesses useful features like command history, 
command completion with tabs, prompts showing the 
selected user database for current session. Data is 

predominantly displayed as a set of rows. Each row 
has columns for different types of data. Each column 
has a header row which has a suitable name for that 
column. To easily discern the criteria that the data was 
sorted by, columns of sorted data are generally 
displayed in colors which are different from the rest of 
the data. 
 

 Features of IDLI 
IDLI can be used to replay, analyze, as well as 

view, the contents of communication messages 
exchanged by MPI routines in an application. It can 
also be used for debugging source code of a program. 
Thus, IDLI enables a user to do post-processing as 
well as source level debugging or a combination of 
both. 
 

Query Manager 
IDLI, as a message debugger, can be used to view 

details of messages exchanged by MPI calls through a 
Query Manager. The Query Manager has a front-end, 
which is the shell user interface that interacts with a 
SQL database at the back-end. It is equipped with a 
feature that enables a user to write customized SQL 
queries. This helps a user to create customizable views 
of data from the global to local context of the 
application and vice versa. An example of the 
execution of a customized query is shown in Figure 3. 
A set of well defined built-in queries (as shown in 
Figure 2) are provided by the Query Manager to aid 
the user in retrieving debugging data for analysis and 
hypothesis formation of errors [6].  

An example of the execution of the built-in query 
locategroup N is shown in Figure 4. The built-in 
features have been designed not to overwhelm the user 
with huge amounts of irrelevant data. The Query 
Manager also aids the user in tracing a message to its 
origin at a particular line number of the requisite file. 
In addition, a user can do post mortem analysis using 
IDLI’s Query Manager.  

1: log time 

LIST 

IDLI 

DROP N PSQL N QUERY N HELP EXIT 

DUMP N LOCATEP2P N LOCATEGROUP N 

2: message group id 
3: rank of a process 
4: file name 
5: file & line number 
6: MPI function name 

1: between 2 processes 
2: between 2 files of 2 processes 
3: between 2 lines of 2 processes 
4: between 2 lines of 2 files of 2 processes 
5: between 2 files
6: between 2 lines 
7: between 2 lines of 2 files
8: MPI function name 

1: file 
2: line 
3: line of file 
4: MPI function name 

PSQL  REPLAY N STATUS N TRACE N HELP EXIT 



 

 

Figure 3: Example of execution of a customized SQL to get specific data. 
 

Figure 4: Example of execution of the built-in query locategroup N in IDLI's Query Manager. 

 
These features of the Query Manager lend the qualities 
of adequate data abstraction and granularity to IDLI. 
 
4.2.2. Replay 

With IDLI’s Replay feature, an application’s 
execution can be replayed simultaneously at a number 
of selected processes using a sequential debugger of 
the user’s choice. Figure 5 shows the overall 
architecture of IDLI’s Query Manager and Replay at 

two nodes. During replay all data related to MPI calls 
are fetched from stored data of a previous run of the 
application.  

Since the MPI communication layer is not 
invoked during Replay, the debugging process for a 
parallel application running on large networks is 
considerably faster. A user may run a Replay of the 
application in a sequential debugger of her choice for a 
selected set of processes from any machine on the  
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Figure 5: Overall architecture of IDLI’s Query Manager and Replay. 
 
network which is enabled with TCP/IP connectivity. 
Figure 6 shows Replay in action with the sequential 
debugger DDD. 

IDLI creates individual connections for each 
specified process. During replay of a program, IDLI 
creates a connection to the chosen process running on 
a node using the Secure Shell 2 Protocol (SSH2) [28] 
over TCP/IP and invokes the user’s selected sequential 
debugger. The original session of the Query Manager, 
from which the replay was initiated, is the parent 
while the replays on different nodes are its children.  

The Replay feature can be used simultaneously 
for any number of processes of distinct ranks. IDLI 
automatically runs the Replay on the same node on 
which the process was originally run during an 
application’s execution. We do so to simulate the 
exact hardware and software environment for the 
parallel application in which the errors arose. This is 
particularly relevant for processes running in a 
heterogeneous network where each node might have a 
different machine architecture and operating system.  

 

Figure 6: IDLI’s Replay feature in action with sequential debugger DDD. 



 

 

Figure 7:  Replay on two different nodes with two different debuggers ( DDD & GDB ) along with 
simultaneous use of Query Manager. 

 
It is noteworthy that multiple processes might have 
run on the same node. IDLI is capable of handling 
multiple such Replay sessions on the same node. 
Further it has built-in error checking to prevent a user 
from simultaneously invoking more than one Replay 
for the same process rank. IDLI has a robust Replay 
session management functionality. During exit from 
Replay, IDLI checks if there are any replays in action 
on any of the nodes. If that is the case, the user is 
notified to exit only when all nodes have quit replays.  

An application can be replayed multiple times in 
the same session on any number of processes 
simultaneously. Also, a programmer can replay an 
application on different nodes of the network using 
different sequential debuggers simultaneously for each 
distinct process. This feature provides the flexibility to 
use GDB at node 1 or DDD at node 2 depending on 
the availability and need at a specific remote machine. 
The debugger is opened in an xterm window with 
display set to the local machine where IDLI is 
running. In addition, Replay and Query Manager can 
be run simultaneously. These features are 
demonstrated in Figure 7. 

 
 

5. Conclusion 
The guiding philosophy behind the development 

of IDLI was to implement a message debugger for the 
LAM-MPI environment based on the principles of 
multilevel debugging. This concept was designed to 
avoid several limitations prevalent in current parallel 
debugging tools. Some of the limitations prevalent in 
current parallel debuggers have been transcended in 
the following manner:  
• Partial view of the debugging spectrum: IDLI 
provides both global and local context debugging 
information and is flexible to a user’s specific needs. 
• Information Overloading: Various levels of data 
abstraction are provided in IDLI thus enabling it to 
display relevant information according to a user’s 
needs. The built-in queries have various options that 
help to trim down the debugging data and retrieve 
specific information. Moreover IDLI provides the 
flexibility to replay an application simultaneously on a 
chosen number of processes. This enables a user to 
choose as many processes as he is comfortable 
debugging simultaneously. Thus the user is in total 



 

control of the amount of the data she wants to 
simultaneously view and process for debugging. 
• Inability to alter or create custom views: A user has 
complete freedom to take advantage of the entire 
range of Postgres SQL commands to virtually create 
any desired view of the available data in the user 
database using IDLI.  
• Lack of querying features at message level: IDLI’s 
Query Manager has a whole set of built-in queries that 
cater to fine granularity at the message level. To 
provide detailed information on the exchanged 
messages IDLI does not require any modification or 
instrumentation of the user’s application source code.  

An interesting fact, that demonstrates IDLI’s 
utility and convenience, is that it was used to debug its 
own software during the development cycle. In the 
implementation phase, considerable time and effort 
were saved while debugging a number of complex 
bugs, by using IDLI’s Query Manager. To summarize, 
IDLI provides: (a) specific debugging information 
through sufficient levels of data abstraction, (b) 
connects global data with local context and vice-versa, 
(c) has a simple front-end user interface, (d) has built-
in queries for querying messages and viewing details 
of executions of MPI routines, (e) allows custom SQL 
queries to be written by a user, and (f) enables fast and 
multiple simultaneous replays on any process (at its 
physical machine) with a sequential debuggers of the 
user’s choice. We believe that these features based on 
multilevel debugging make IDLI a novel parallel 
debugging tool. 
 

6. Future Work  
We would like to enhance the features of our 

message debugger IDLI to include protocol 
conformation as defined in [5] and deadlock detection. 
Protocol conformation would allow a user to write 
specifications of the behavior of the protocol. Then 
using information from the actual messages, IDLI 
would automatically check that the messages satisfy 
the given specifications. Another great utility would 
be automatic detection of deadlocks based on an 
algorithm that provides automatic suggestions for a 
deadlock induced state, given a protocol specification 
[29]. Implementation of this algorithm would also add 
automatic correction to automatic detection of 
deadlocks. 

At present IDLI is designed to work with message 
passing in one communication world denoted by the 
communication handle, MPI_COMM_WORLD. This 
functionality can be extended to multiple 
communication worlds which are used in many large 
real time applications for parallel computing.  

Also, currently IDLI provides global level views 
of the whole system through data abstraction. This 

feature can be extended to include a graphical display 
of the entire system complete with pictures of active 
processes at various nodes, their executions and 
contents of messages exchanged [30]. We can also add 
profilers to view the performance of the system as a 
whole. These future features would transform IDLI 
into a complete debugger for LAM-MPI parallel 
programs.  
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