A Rule Based Evolutionary Algorithm for
Intelligent Decision Support

Eric Sandgren?,
David Webb

and Jan B. Pedersen ®*

& College of Engineering, University of Nevada,
Las Vegas, 4505 Maryland Parkway, Box 454005,
Las Vegas, NV 89154-4005.

E-mail: eric.sandgren@unlv.edu,
matt@cs.unlv.edu

b Philip Morris USA, 6601 West Broad St.,
Richmond, VA, 23230

E-mail: david.J. webb@pmusa.com

Genetic or evolutionary search algorithms seek and ex-
ploit the structure of the problem encoding employed
in the application. This exploitation can be slow and
result in solutions containing obvious flaws. A rule
based structure is proposed which seeks to inject do-
main specific knowledge into the search process and
allow for a more intuitive design encoding. This ap-
proach significantly reduces the size of the problem
encoding which in turn reduces solution time as well
as being able to produce a more robust solution. Suc-
cess or failure in improving the decision strategy as re-
lated to the history of which rules or combination of
rules are successful allows for rule refinement as well as
knowledge capture. This, in turn, yields a better under-
standing of the decision process. An approach for im-
plementing rules within the design encoding is demon-
strated and several problems are solved using the tech-
nique with the results compared to those generated by
a conventional genetic algorithm.

Keywords: Decision support systems, Planning,
Scheduling, Learning, Information Systems

1. Introduction

One of the many practical applications of ge-
netic or evolutionary algorithms is in the area of

*Corresponding author: Jan B. Pedersen, College of En-
gineering, University of Nevada, Las Vegas, 4505 Maryland
Parkway, Box 454005, Las Vegas, NV 89154-4005.

Al Communications
ISSN 0921-7126, IOS Press. All rights reserved

decision support. Generating a solution to this
class of problems involves the ordered selection
of a large number of individual decisions, each of
which is influenced by every decision made up to
that point. Common examples of decision support
problems include routing, scheduling, bin packing
and game strategy. Genetic algorithms are par-
ticularly well suited for solving decision support
problems as they seek a global, rather than a local
optimum and can easily handle integer and dis-
crete variables which are commonly required in the
problem formulation. Significant hurdles are inher-
ent, however, due to the presence of a large num-
ber of decision variables, slow final convergence
and the potential of “noise” or unwanted charac-
teristics appearing in the final solution. Evolution-
ary algorithms possess the trait of discovery, but
the discovery process is heavily dependent upon
randomness built into the search algorithm. For
most decision support applications, specific do-
main knowledge is available which, if embodied in
the problem encoding, could be used to greatly en-
hance both the convergence of the solution process
and the quality of the final decision strategy.

In practice, most decision support activities are
highly dependent upon human intervention. Lim-
ited success in the application of evolutionary
algorithms to various decision support applica-
tion areas has been achieved by several investiga-
tors [1,4,6,10,11], but the problem is far from be-
ing resolved. Factories are scheduled by production
planners who have a wealth of experience and un-
derstanding of the intricacies of day to day opera-
tions. Truck scheduling and routing is directed by a
dispatcher who has a knowledge base which is also
difficult to emulate with a brute force optimization
approach. On the other hand, this knowledge base
is local in nature and often works against system
level goals and objectives. Additionally, it is diffi-
cult to maintain a high level of human performance
on a day in and day out basis. For these reasons, it
makes sense to add a level of computational sup-

2 E. Sandgren et al. / A Rule Based Evolutionary Algorithm for Intelligent Decision Support

port to aid the human in making key decisions.
The structure of the support, however, must be
better aligned with the existing process which re-
lies heavily on a knowledge based approach. This
can be accomplished to some extent through the
implementation of expert systems, but a rule based
genetic or evolutionary approach has the poten-
tial to deliver a knowledge driven process within
the framework of a traditional optimization set-
ting. A knowledge or rule based approach holds the
promise of not only improving the effectiveness of
the decisions being made, but also in capturing the
knowledge to allow for the possibility of obtaining
improved performance each day, every day.

The implementation of rules within the frame-
work of an optimization algorithm is well estab-
lished in the most general sense. Rule based ap-
proaches have been applied to agent based sys-
tems involving communication networks [8] and in
some cases, genetic algorithms were employed to
optimize the rule selection. The application of sim-
ulated annealing to the traveling salesman prob-
lem [7] uses rules including moving groups of cities
and reversing the order of a group of cities from
the current city visit schedule or strategy. If the
current strategy was viewed as the chromosome of
a genetic algorithm, this approach could be con-
sidered a rule based evolutionary approach. At-
tempts in applying heuristic knowledge within the
broad framework of genetic algorithms has been
attempted, but these efforts have generally been
focused on modification of the genetic operators [9]
or in searching for rules that predict outcomes in
data sets [5]. The next logical step is to implement
a genetic encoding which executes rules in the fun-
damental sense of being contained in the problem
encoding itself. A rule based version of an evolu-
tionary algorithm which implements this concept
was constructed and applied to the area of struc-
tural design [12]. A generalization of this approach
to the decision support problem is presented herein
and several example problems are solved using this
concept.

2. Genetic Formulation

A traditional nonlinear programming formula-
tion employs a set of design variables which are
modified through a search strategy where success
is measured by a combination of an objective func-

tion value(s) and the satisfaction of a set of con-
straints. This formulation, for a single objective
search, is expressed mathematically as follows:

Minimize f(z); where z = [z, 22, ..., 2,7 (1)
Subject to

gi(z)>0;j=1,2,...,J (2)

hi(z) =0k =1,2,..., K 3)
With

2w < gy < gMoh (4)

A design configuration or a decision strategy to a
genetic algorithm is an encoded string of informa-
tion which is analogous to a chromosome in a liv-
ing organism. Each position or gene in the string
represents a specific design or decision character-
istic which is directly linked to a specific appli-
cation. The collection of all possible gene states
represents the number of possible design or de-
cision strings. If the encoding is thought of as a
replacement for the vector of design variables in
equations 1-4, the relationship between a standard
nonlinear programming and genetic optimization
approach can be clearly seen. There are, however,
several key distinctions which differentiate the two
approaches. Among these distinctions are:

1. The genetic algorithm operates by manipu-
lation of the coding of the set of gene values
composing the chromosome.

2. A population of designs or decision strings
is considered rather than a single design or
decision point.

3. The transition from one set of designs or deci-
sions to the next are probabilistic rather than
deterministic.

4. The algorithm operates in a discrete rather
than a continuous design or decision space.

These differences may not seem that dramatic, but
they produce an algorithm which is more globally
oriented in its search and is not as likely to be
trapped by local minima compared to other tradi-
tional approaches.

The overall suitability of a chromosome is
termed its fitness. The property of fitness may be
related to any function or functions of the design
performance or the outcome of a decision strategy.
This fitness is the characteristic which determines
the probability of a particular chromosome to be

E. Sandgren et al. / A Rule Based Evolutionary Algorithm for Intelligent Decision Support 3

selected as a parent for the next generation. The
chromosomes possessing the greatest fitness have
the highest probability of becoming parents, but
even the least fit member has a finite probabil-
ity of being selected. The parent strings are com-
bined using genetic operators in order to produce
offspring. The process is repeated with the expec-
tation that both the average fitness of the popu-
lation as well as the best fitness contained in the
population will improve.

In order to initiate the solution process, an ini-
tial population is generated randomly and the
rules which govern how parents are selected and
combined to produce offspring must be defined.
Special operators such as mutation are included in
order to guard against the loss of important de-
sign or decision information as the population rep-
resents only a small subset of the design or deci-
sion space. The search requires no gradient infor-
mation and produces a number of design or de-
cision alternatives which can be useful when con-
sidering multiple design or decision criteria and
accounting for unforeseen events. The process re-
lies on the randomness present in natural selec-
tion, but exploits information gathered in order to
produce a viable solution in a reasonable amount
of time. Even problems requiring significant sim-
ulation times to access the outcome of a decision
strategy and those that require large populations
due to the size of the decision matrix are practical
due to the parallel nature of the solution process.
Additional detail concerning conventional genetic
algorithms is given by Goldberg in [3] and Davis
in [2].

3. A Rule Based Encoding

In a traditional genetic optimization, an encod-
ing of the design is generated so that the struc-
ture of the design or decision support may be di-
rectly manipulated by the genetic algorithm. This
encoding structure is important, as it allows the
genetic algorithm and associated genetic operators
to modify the design or decision string. The geneal-
ogy of the design or decision string can be tracked
from the initial population, through each subse-
quent generation, to the final outcome. Some sense
of discovery can be captured by observing what
structural changes are made to the encoding dur-
ing the process. There is no reason why this same

approach cannot be extended to allow for design
or decision rules which directly modify the genetic
encoding. This process allows the genetic opera-
tors to manipulate the original problem encoding
structure utilizing the rules, or to actually alter
the rules themselves. This allows for a natural cap-
ture of knowledge or intelligence or even corporate
memory concerning the problem solution as well as
the computational path to the solution. The rules
may be applied to a population of decision encod-
ings which have been created randomly or through
the application of a traditional genetic algorithm.

The implementation of a rule based encoding
must be done carefully in order to provide as much
flexibility as possible while avoiding the creation
of a local optimizer. Some randomness must be
maintained in the execution of the rule base, and
there must be a mechanism for simultaneously fir-
ing multiple rules in order to transform a single
decision string to a better state. The randomness
helps to keep the search global in nature and the
ability to operate on a single decision strategy with
multiple rules is essential as in many cases, no one
rule in itself is sufficient to improve the overall
performance. Ideally, all of these features should
be built into a standard genetic encoding struc-
ture. There are a number of encoding strategies
that might be implemented and only one possibil-
ity is presented herein. The goal is not to general-
ize the concept, but to demonstrate the capability
of such an approach. At an elementary level, the

1

2 4
OiE EETOEE B
‘Rule‘i ‘Rmez‘ ‘Rules‘

3 5 678 9 10 11

Which decision string population to
Mumber of rules to apply

Fig. 1. A rule based encoding for a genetic algorithm.

process can be defined by a rule string as shown
in Figure 1. Here, the first element represents the
number of the rules defined by the string to ac-
tually apply. This allows for both a single rule or
multiple rules to be executed on a given decision
string in the current population. The second ele-
ment defines which member of the decision strat-
egy population to apply the rules to. If a single
decision strategy is being considered for modifica-
tion, this element may be eliminated. The subse-

4 E. Sandgren et al. / A Rule Based Evolutionary Algorithm for Intelligent Decision Support

quent groups of elements are used to define which
specific rule or rules to apply with specific infor-
mation blocks which define how each rule is to be
executed. The fact that there are only three infor-
mation blocks within each rule definition group in
Figure 1 is of no consequence as the number can be
arbitrarily expanded as needed. In order to ensure
consistency in the crossover operation for generat-
ing offspring, however, there is a benefit in keep-
ing the number of blocks in each rule execution
group equal. The rules, as structured, are applied
to a conventional encoding string which represents
a member of the design or decision support pop-
ulation. For example, in a manufacturing schedul-
ing example, the problem encoding being operated
upon could represent the individual job priorities
which when fed into a simulation, would provide
the performance metrics with which to evaluate
the effectiveness of the decision string. The rules
would then operate on the job priority encoding
and could include concepts such as:

— Increase job priority on a job which is deliv-
ered late

— Decrease job priority on a job which is ready
early

— Alter a priority of a selected job (as specified
in the rule encoding)

— Switch priorities between two jobs (each spec-
ified in the rule encoding)

— Divide a product batch order into two sepa-
rate orders or jobs for separate processing

A number of other potentially effective rules could
be easily implemented as well. The rule based en-
coding operates on the decision encoding popula-
tion to modify the overall schedule. Good or bad
rules will be identified by the process. Good rules
will be exploited while bad rules will eventually
evolve out of the rule population. This allows for
a straightforward capture of knowledge.

The process may now be thought of as a two
phase process. The first phase involves the gener-
ation of a population of decision strategies. A tra-
ditional genetic optimization could be executed to
form this population or it could be formed through
a random selection, much as the population for the
first generation in a conventional genetic solution
process. A subset of this population could then be
subsequently processed by the rule based encod-
ing. There are many possibilities to move between
the phase one and phase two processes. Care must

be taken not to have such specific rules as to elim-
inate the global nature of the search. This is why
generic rules such as the one to alter a priority of
a selected job or switch the priorities of two jobs
are included. This allows the algorithm to select
a schedule as part of the genetic selection process
which is then subsequently influenced by the ap-
plication of rules. One final point of note is the rel-
ative size of the design or decision encoding. The
original problem encoding may involve hundreds
or thousands of elements while the rule based en-
coding will typically involve tens of elements. The
reduction in overall solution time relies on the fact
that solving a set of smaller problems is far more
efficient than solving a very large problem. This
has a significant impact on convergence and the
computational time required.

4. An Example — The Summation Game

In order to demonstrate how a decision support
problem is formulated for solution via a rule based
genetic approach, consider the summation game
shown in Figure 2. The goal of the game is to place

15

o
112]3 —5
4|5|6 —s
7189 —2

12 15 18

Fig. 2. Simple sum game at initial setting.

the consecutive integers, one through nine, so that
the sum of each row, column and diagonal is iden-
tical. For the example placement of the integers in
Figure 2, the sums are shown for each row, column
and diagonal and are seen to be far from equal or
optimal. The objective function utilized in this ex-
ample will be the difference between the highest
and lowest sum of any row, column or diagonal.
The row, column and diagonal sums are shown for

E. Sandgren et al. / A Rule Based Evolutionary Algorithm for Intelligent Decision Support 5

the initial placement of integers in Figure 2 by the
small numbers following the red arrows. For this
initial placement, the objective function is eighteen
(difference of lower row sum of twenty four and
upper row sum of six). In this instance, the inte-
gers are simply placed in order by rows. Certainly,
this placement does not represent a solution to the
game.

Using a conventional genetic optimization algo-
rithm, there are many ways to formulate this prob-
lem for solution. Remarkably, even a simple prob-
lem like this one, is not easily solved. The ap-
proaches considered here compare a traditional,
brute force approach, with a rule based decision
support approach. A conventional approach would
consist of implementing a nine element encoding
where each element in the encoding is allowed to
take on an integer value from one to nine. Each
position of the encoding string translates directly
to a position in the sum game, starting at the top
left corner and proceeding across and down. The
sums of the rows, columns and diagonals are eas-
ily calculated and provide a means of evaluating
an appropriate objective function. In this exam-
ple, the objective function is taken to be the differ-
ence between the largest and smallest of the sums.
If this difference is zero, then all of the sums are
equal and a potential solution has been located.
The term potential is used as there is no guarantee
in this formulation that each integer value is uti-
lized once and only once. For example, if any inte-
ger value were repeated nine times, all sums would
be zero, but it would not represent a solution to
this particular game.

In order to guarantee that each encoding posi-
tion represents a unique integer at the end of the
search process, a constraint is added to the for-
mulation which successively penalizes the multiple
use of an integer in the encoding string. This is
not the only way to avoid the multiple value issue,
but it represents an easily implemented approach.
The first formulation of the problem may now be
expressed in mathematical form as follows:

Minimize F(x) =

mam(Z(rowi, columny, diagonaly,))

—min(Z(rowi, columnyj, diagonaly,)) (5)
Where

$:x17x2,$3,...,.’179,0<$i <10 A

x; is an integer (6)

i=row(l,2,3)
J = column(1,2,3)
k = diagonal(1,2)

And

91(x) = Naup (7)
where

Ngyp = total # of reps. of integers in z.

This formulation was executed using a conven-
tional genetic algorithm and the objective function
solution history is documented in Figure 3. The

Value

1 B 11 16 21 26 31 36 41 486

Generation

Penalized Objective Function - - - - Objective Function

Fig. 3. Objective function solution history for sum game
problem.

solution history of the constraint value is plotted
in Figure 4. An exterior penalty function was uti-

]
5
[
4 |
=
2 [
> ¥ |
+ [
£ 2 —
-
8 |
o 0 .—.l i
1 6 11 16 21 26 31 36 41 46
-1
-2

Generation

Fig. 4. Constraint value solution history for sum game.

6 E. Sandgren et al. / A Rule Based Evolutionary Algorithm for Intelligent Decision Support

lized for this solution. A population size of 2000
was selected with the best five design encodings
being carried over from generation to generation.
A wvalid solution to the game was generated on
the forty fifth generation which is documented in
Figure 5. Note that the sum of each row, column

L

15 15 15

Fig. 5. Solution Developed for the Sum Game.

and diagonal is equal at a value of 15. From the
constraint history in Figure 4, initial generations
utilized multiply repeated integers in the decision
string, but by generation 45, all integer values in
the best decision string were unique. Note that
there are multiple solutions to the game which can
be seen by simple switching the first and third rows
or columns. This issue is not considered here, as
any valid solution to the game is being sought.
The way in which a problem is formulated can
have a significant impact on the efficiency and
effectiveness of a genetic optimization algorithm.
The first formulation considered is valid, but by
adding a constraint, the difficulty of the solution
was considerably magnified. This increase in diffi-
culty required the inclusion of a large population
and additional generations to be executed. If al-
gorithm efficiency is measured by the number of
objective function and constraint evaluations, this
formulation can be seen to have potential efficiency
problems. If the calculation of the objective func-
tion and/or constraints is computationally expen-
sive, this loss of efficiency can become a significant
issue. Each objective function and constraint eval-
uation in this simple case requires little computa-
tional effort, but even for this case, it does raise
the issue of formulation versus efficiency and ef-
fectiveness. Certainly there is a benefit in linking

the problem formulation and the encoding of the
decision string as closely as possible to the physi-
cal nature of the problem itself. This strategy can
often be developed for decision support problems
through consideration of how an expert might ap-
proach the problem and mimicking their solution
strategy. This leads naturally to a rule based for-
mulation and encoding of the problem.

The initial encoding and solution approach is
valid in that it did generate the desired solution.
On the other hand, it may be regarded as a brute
force approach were the encoding captures little
of the strategy of solving the game from a given
initial placement of integers. When a decision sup-
port task is being envisioned, the lack of capture or
understanding of the strategy is a distinct disad-
vantage. A rule based encoding of the problem can
be implemented in order to provide the link which
leads to a viable decision support formulation. For
the sum game, consider how a human player would
work toward a solution to the game. It is most
likely that a hand solution to the game would in-
volve assigning the integers 1 through 9 to various
positions in the game matrix. The user would then
start exchanging the position of pairs of numbers
in the game matrix to improve the larger differ-
ences among the various row, column and diagonal
sums. Using this approach, some explicit strategy
or rule set is applied in order to decide which game
matrix positions to exchange. A positive outcome
of this approach is that only feasible solutions can
be generated in that no replication of integers can
occur during the process. This exact approach may
be build into the rule based encoding.

Care must be taken so as not to reduce the
global search characteristic of the genetic ap-
proach, but other than this caution, virtually any
rule encoding will work. In this particular case,
the caution revolves around locating a temporary
placement of the integers for which no single swap
of two integers will improve the difference in the
sums. This situation may be avoided by a num-
ber of strategies, including the implementation of
a simulated annealing algorithm in order to ac-
cept intermediate designs which are not as good as
the current one, particularly in the early stages of
the search. Another approach would be to include
some randomness in the rule set, which enhances
the global nature of the algorithm. In this case,
the rule encoding itself will be created so that the
local minimum situation can be overcome by al-

E. Sandgren et al. / A Rule Based Evolutionary Algorithm for Intelligent Decision Support 7

lowing the solution process to apply a number of
simultaneous moves at any iteration.

The rule set developed can be very complicated,
or alternatively, very simple in nature. The genetic
algorithm has the capability of discovery and ex-
ploitation. This means that the user need not be
overly concerned with the development of an in-
telligent rule set. In this case the rule set is based
only upon the concept of selecting two integers in
the matrix and exchanging them. No consideration
of row and column sums are built into the rule set
as the genetic algorithm will apply the rules in a
way that the best objective is located. In order to
execute the basic rule structure, four items need
to be included in the encoding. These items define
the row and column of each of the two positions
to be switched. In order to avoid the trap of a lo-
cal minimum, a number of simultaneous exchanges
will be allowed. For this example from one to three
exchanges will be allowed, where the number of
exchanges are specified in the encoding and thus
controlled by the genetic algorithm. Taking into
account the above considerations, a rule based en-
coding for the simple sum game may be expressed
as follows:

_ a a ,a ,ab b b b c . ,c .
x_[N7r17017r27c2517017r2a02arl7cl7r2ﬂc2]

where N indicates the number of exchanges to ex-
ecute and r¢,c{,rg, c§ represent the first pair of
positions to exchange (row,column), = (r{,c%)
with (row,column)s = (r$,c3) and 7%, e, 78, c5;
r{,cf,rs5, c5 represent the other two exchange pos-
sibilities. This form of the encoding string is di-
rectly in line with the general structure presented
in Figure 2. As an example, consider the current
game matrix configuration to be given by:

1 2 3
4 5 6
7 8 9

and let the encoding string by set at
x=102,2,3,1,2,2,1,3,3,1,1, 3, 2]

The current game matrix would be altered to the
form given by

1 6 3
9 5 2
7T 8 4

The operation switches (rows, columng) with
(rowy, columns),which exchanges the 6 and 2 in-

teger values. The encoding also switches (rows,
columny) with (rows, columns) which exchanges
the 4 and 9 integer values. The last possible ex-
change of (rows,columny) with (rows, colummns)
is not executed since the number of rules specified
to be executed, N, is two. Whether or not this
new configuration is accepted is a function of the
objective function which is formulated as the dif-
ference between the maximum and minimum row,
column and diagonal sum as defined in the first
formulation.

On the surface the new formulation seems a bit
complex in that a nine element decision string from
the encoding in the first example has been replaced
by a 13 element encoding string. The elimination
of the constraint is a positive step, but the perfor-
mance can be compared by looking at the results
of executing the second or rule based formulation.
Since the execution of the rule based formulation
requires an initial game configuration, the integers
are selected randomly without replacement. The
objective function history is plotted in Figure 6 as
a function of the number of generations executed
by the genetic algorithm. It is seen in Figure 6
that the solution was located by the eighth gen-
eration with a population size of 200. While addi-
tional coding was required to implement the rule
interpretation and to modify the game matrix ac-
cordingly, the number of function evaluations re-
quired to solve the problem was reduced by a fac-
tor of almost 50. This is a significant difference
and indicates the potential promise in a rule based
approach for more difficult decision support prob-
lems.

Value (Max Sum Difference)

0 1 2 3 4 5 7] 7 2]

Generation Number

Fig. 6. Solution history for sum game using a rule based
approach.

8 E. Sandgren et al. / A Rule Based Evolutionary Algorithm for Intelligent Decision Support

5. A More Challenging Problem: The Maze

The solution of an arbitrary maze is a good rep-
resentation for most decision support problems.
For a given maze configuration, the goal is to de-
velop a sequence of moves that will lead from the
starting point to the designated end point. The
success of each move is dependent upon all moves
made previously and as such which it shares with
virtually any form of decision support application.
The data file required to describe a particular maze
must define the size of the maze (assumed here
to be rectangular), and have some mechanism to
define feasible and non-feasible moves from each
block in the maze. The possible move directions
are simple north, east, west and south which re-
quires four potential move states be built into the
encoding for each successive move through the
maze. A sample maze is shown in Figure 7 which
will be utilized to demonstrate the approach. In
Figure 7, the walls are delineated by solid lines,
while the individual matrix locations are shown
in lighter, dashed lines. Both a traditional genetic
formulation and a rule based formulation will be
considered. For the traditional formulation, the en-

FINISH

I -

t
=

il mug

START

Fig. 7. A simple maze.

coding is expressed as a series of moves, where each
move is represented by an integer value from zero
to three. Thus the encoding is given as:

x = [r1,22,%3,...,%,| where

0 < x; < 3,x; is an integer (8)

Here, n represents the total number of moves al-
lowed for the decision support. The constraint of
not being able to travel through a wall may be
handled in a number of ways. Here it is arbitrarily
dealt with by not allowing a move which passes
through a wall. For example, if a north moves is
specified and this move would pass through a wall
in the maze, the move is disallowed and the next
move in the decision encoding is considered.

The objective function may also take on a num-
ber of forms as long as an indication of success is
measured within the function. For this example,
the objective function will be the distance from the
position in the maze after executing every move
specified in the decision encoding and the desired
end point. The goal is to minimize this distance,
with a value of zero being the limit which indi-
cates a solution has been generated. This objective
function may be expressed as follows:

Minimize f(z) =

\/(xcurrent - l'final)z + (ycurrent - yfinal)2

This objective function has a problem when a path
is found which terminates near the endpoint but is
a dead end. This solution will be rated better than
other members of the population which do not
progress as far through the maze, but remain on
productive tracts. Some penalty may be assigned
to a dead end situation, but this moves directly
into the realm of problem specific knowledge and
leads naturally into the rule based approach. For
this example, the objective function defined above
will be implemented without consideration to dead
paths.

The formulation developed above was executed
using a standard genetic algorithm with a popu-
lation of 500 with each decision string having a
length of fifty elements. The algorithm was allowed
to progress through 100 generations. This resulted
in the evaluation of 50,000 decision strings. The re-
sults from several runs started with different ran-
dom seeds are shown in Figure 8. As can be read-
ily seen, the final distance to the exit point in the
maze was not located. The best paths found ter-
minated at local dead ends, which is not unex-
pected. By dramatically expanding the population
size and executing many more generations, this dif-
ficulty could potentially be resolved. For a prob-
lem such as this, where the evaluation of the ob-
jective function is relatively inexpensive, this may

E. Sandgren et al. / A Rule Based Evolutionary Algorithm for Intelligent Decision Support 9

represent a viable approach. As the objective func-
tion becomes increasingly expensive, however, this
approach is not attractive. From the rule based

FINISH

N ‘] "
+ _I_**
=

I_lL

START

Fig. 8. End points for conventional genetic algorithm solu-
tion

perspective, starting from an initial path or set of
paths defined identically as in the previous formu-
lation, the object is to execute a rule set in order
to improve the path(s). The rule set for this prob-
lem consists of five separate rules. These rules are
defined as follows:

1. Group all successful moves at the beginning
of the encoding string

2. For a selected group of encoding string posi-
tions, randomly alter the values

3. For a selected move in the encoding string,
alter the direction as specified

4. For the first successful move in the encod-
ing string after a specified position, try the
same direction for the next number of speci-
fied moves (encoding positions)

5. Rectify the first specified number of back /forth
moves, starting from a specified position in
the encoding string.

The first rule consolidates all successful moves at
the beginning of the string, which allows the re-
maining positions to explore the maze from a given
point in the maze. The second rule alters a set of
encoding positions to random values. This rule was
inserted in order to allow for a global search. The
third rule, operates on the same principle as does
rule 2, but it only alters a single position to a value
included in the information segment of the rule en-
coding string. The fourth rule seeks to take advan-

tage of the situation where a series of moves can be
made in the same direction and the final rule elim-
inates situations where a move is directly coun-
tered by an opposite direction move (i.e., north fol-
lowed immediately by south). These rules are eas-
ily implemented and while they insert some prob-
lem specific knowledge, they are very general in
scope. More specific rules dealing with situations
such as dead ends could be included, but they re-
quire additional code for the identification of such
conditions.

The rule encoding for this example takes on a
form very similar to that pictured in Figure 2. For
this example, a maximum of five rules was allowed,
each of which was assigned two informational po-
sitions in the string. With the first position defin-
ing the number of rules to execute and the sec-
ond defining which path to modify, this requires
a total of 17 string positions to define the max-
imum rule set (5 sets of three positions plus the
first two). Note that this is a considerably smaller
encoding string than for the conventional genetic
solution approach which required a decision string
of 50 elements.

Ten initial paths were generated by executing
the conventional genetic algorithm as defined in
the original solution. Only one generation was exe-
cuted, with a population of 500 designs. Ten paths
were selected based both of the distance to the end
point of the maze and the difference among the
paths traveled. This portion of the solution process
is termed the phase one search. The second phase,
executes the rules to modify the paths as described
in the rule based approach. A population of 500
was maintained for the phase two search. The pro-
cess was terminated as soon as the distance to the
end point of the maze was reduced to zero. The
rule based algorithm located the solution after 12
generations and required less than one third of the
function evaluations for the failed searches of the
conventional algorithm.

The final path and prescribed moves are shown
in Figure 9. Note that there are a few back and
forth moves present in the final solution, but there
is nothing in the formulation which seeks to avoid
this situation. Figure 10 documents the percent-
age use of each of the five rules. This percentage
is based upon the number of times a specific rule
was executed successfully. This information can be
utilized to improve or alter the rule set. Note that
each of the rules were used successfully, although

10 E. Sandgren et al. / A Rule Based Evolutionary Algorithm for Intelligent Decision Support

rules 3 and 4 and particularly rule 5 accounted
for the largest number of successful moves. This
makes some sense as the first rule, once executed
successfully moves all successful moves to the front
of the decision string and has little impact be-
yond that point. Rule 2 allows for random move
alterations which is important from maintaining a
global search perspective, but it would not be ex-
pected to form a large percentage of the success-
ful moves. The remaining moves perform specific
functions during the search and each can be shown
to have had a positive impact. Combinations or
groups of rules applied simultaneously to generate
a better decision string were not tracked, but this
could be done quite easily.

FINISH

I | |
t m |1 | [

Z

i §

— |
START

Final string: ENNEENNNWWWEWNNNEEEEESSSSS

EEENSENNNWWNNNEWSEENSNSN

Fig. 9. Final solution generated by rule based approach.

Fig. 10. Successful rule execution distribution.

6. Summary and Conclusions

A rule based approach has been successfully
demonstrated on a small subset of decision support
problems. The rule base is conveniently encoded
within the decision string of the genetic algorithm
which makes the implementation of the approach
a straightforward matter. The two phase approach
allows for many combinations of a conventional ge-
netic search with a rule based approach. In both
problems considered here, significant improvement
in both solution efficiency and efficacy were noted.
The ability to incorporate problem specific knowl-
edge is of significant interest and benefit to any de-
cision support problem. The ability to determine
which rules are being exploited successfully is also
demonstrated and this feature can be further ex-
ploited to improve the rule base over time. Exten-
sions to other problem classes including the travel-
ing salesman and manufacturing scheduling prob-
lem are currently being investigated.

References

[1] N. Adachi, M. Sato, and S. Kobayashi. Application of
Genetic Algorithm to Flight Schedule Planning. Sys-
tems and Computers in Japan, 35(12):83-92, 2004.

L. David. Handbook of Genetic Algorithms. Van Nos-
trand Reinhold, New York, 1991.

[3] D. E. Goldberg. Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison-Wesley,
Reading MA, 1989.

[4] M. Hosny and C. L. Mumford. Single Vehicle Pickup
and Delivery with Time Windows: Made to Measure
Genetic Encoding and Operators. In Proceedings of the
2007 Genetic and Evolutionary Computation GECCO
07, pages 2489-2496. ACM Press, 2007.

[5] H. Ishibuchi and T. Yamamoto. Fuzzy Rule Selection
by Multo-Objective Genetic Local Search Algorithms
and Rule Evaluation Measures in Data Mining. Fuzzy
Sets and Systems, 141(1):59-88, 2004.

[6] M. T. Jensen. Generating Robust and Flexible Job
Shop Schedules Using Genetic Algorithms. IFEE
Transactions on Evolutionary Computation, 7(3):175—
288, June 2003.

[7] S. Lin and B. W. Kernighan. An Efficient Heuristic
Algorithm for the Traveling Salesman Problem. Oper-
ations Research, 21(2):498-516, 1973.

[8] E. Nonas and A. Poulovassilis. Optimising Self Adap-
tive Networks by Evolving Rule-Based Agents, volume
1596 of Lecture Notes in Computer Science (LNCS).
Springer Verlag, 1999.

[2

[9]

(10]

(11]

(12]

E. Sandgren et al. / A Rule Based Evolutionary Algorithm for Intelligent Decision Support

T. Onoyama, T. Maekawa, S. Kubota, Y. Taniguchi,
and S. Tsuruta. Intelligent Evolutional Algorithm for
Distribution Network Optimization. In Proceedings of
the IEEE 2002 International Conference on Control
Applications, pages 802-807, 2002.

A. Persson, J. Ekberg, H. Grimm, S. Falk, A. Ng,
P. Stablum, and T. Lezama. Simulation-Based Multi-
Objective Optimization of a Real-World Scheduling
Problem. In Proceedings of the IEEE 2006 Winter
Simulation Conference, pages 1757-1764, 2006.

M. Russel and G. B. Lamont. A Genetic Algorithm
for Unmanned Aerial Vehicle Routing. In Proceedings
of the 2005 Genetic and FEvolutionary Computation
GECCO 05, pages 1523-1530. ACM Press, 2005.

D. Webb and E. Sandgren. Topological Design via a
Rule Based Genetic Optimization Algorithm. Submit-
ted to Computers and Structures.

11

