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Abstract

Random number generators are a small part of any computer sim-
ulation project. Yet they are the heart and the engine that drives the
project. Often times software houses fail to understand the complex-
ity involved in building a random number generator that will satisfy
the project requirements and will be able to produce realistic results.
Building a random number generator with a desirable periodicity,
that is uniform, that produces all the random permutations with
equal probability, and at random, is not an easy task. In this paper
we provide tests and metrics for testing random number generators
for uniformity and randomness. These tests are in addition to the
already existing tests for uniformity and randomness, which we mod-
ify by running each test a large number of times on sub-sequences
of random numbers, each of length n. The test result obtained each
time is used to determine the probability distribution function. This
eliminates the random number generator misclassification error. We
also provide new tests for uniformity and randomness, the new tests
for uniformity test the skewness of each one of the subgroups as well
as the kurtosis. The tests for randomness, which include the Fourier
spectrum, the phase spectrum, the discrete cosine transform spec-
trum, and the orthogonal wavelet domain, test for patterns not de-
tected in the row data space. Finally we provide visual and acoustic
tests.
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1 Introduction

Sequences generated in a deterministic way via an algorithm which is pro-
grammed in the computer, are usually called pseudo random numbers. Of
course by the nature of generation of pseudo random numbers, it is difficult
to argue that the produced numbers are random. The question is not if the
algorithm used is deterministic or not, but if the sequence produced has
random behavior or not. Knowing the current number can one predict the
next number or not, or even if one can predict if the next number has some
properties such as greater than the current number with high probability,
etc. The first attempt to generating random numbers was the John Von
Neumann “middle square method” in the early 1950s which was proven to
be poor source of random numbers with short periodicity [5]. Metropo-
lis [11] working with 38-bits managed to obtain a sequence of 750,000 be-
fore it degenerated. The Metropolis 38-bit algorithm passed satisfactorily a
number of statistical tests for uniformity and randomness, but for today’s
many applications, it does not have large enough periodicity. One of the
most popular random number generators in use today are special cases of
the linear congruential method introduced by D.H. Lehmer [6], the algo-
rithm is of the form: Xn+1 = (aXn + c) mod m, where n ≥ 0, and m is
the maximum number stored by the computer. The coefficients a and c,
and the seed X0 of the random number generator (0 ≤ a, c,X0 < m) all
have to be chosen in a way the period is maximum that means the period
is m and the generator produces uniform random numbers. The number m
is chosen to be m = 2b , where b is the maximum number of bits we want
to use to generate the appropriate random numbers. Usually b is equal to
the integer register size of the computer. If we choose a = 1, c = 1, X0 = 0,
and m = 2b, then the numbers the generator Xn+1 = (Xn+1) mod m with
X0 = 0 will generate, have a maximum periodicity of m, but the sequence
generated is 0, 1, 2, 3, 4, . . . ,m− 1, which is not random at all.

The selection of a, and c, that guarantees to generate a sequence of
period m, if m = 2b, where b is the maximum number of bits we want to
use to generate the random sequence, is as follows:

c is relatively prime to 2, and a = 4k + 1, for k = 1, 2, . . .. If
c = 0 the maximum period is obtained if a is a primitive element
modulo m and X0 is relatively prime to m.

Maximum periodicity of course does not guarantee randomness. Ran-
dom number generators have been investigated over the years by many re-
searchers; examples include [1, 2, 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18].
They have many applications. They are the heart of random games (elec-



tronic slot machines, electronic bingo, electronic poker, etc.), for simulating
industrial processes, queuing theory related applications, flight simulation,
and Monte Carlo methods for solving mathematical problems.

According to Dr. I. J. Matrix [5], although mathematicians consider
the decimal expansion of π as a random series. To modern numerologists
however π is full of interesting patterns. Dr. Matrix has pointed out that
the first repeated two-digit number in π’s expansion is 26:

π = 3.14159265358979323846264338327950 . . . .

According to Dr. Matrix, the digits of π, if correctly interpreted, convey the
entire history of the human race. Statistics and signal processing provide
the tools to create tests for uniformity, and randomness. If a series behaves
randomly with respect to a battery of k-tests administered to the sequence,
an additional test administered to the sequence might result in rejecting the
randomness of the sequence. It is very difficult to assess that a sequence of
numbers is random but for each test for randomness it passes the confidence
on the randomness of the generator increases.

In this paper we revisit some of the popular tests for uniformity, and
randomness, but instead of administering them on one sequence using one
estimate of the test-statistic, the way it is recommended by the literature,
we administer them to several sub-sequences and use the test-statistic re-
sults obtained each time to create a probability distribution function for
the test-statistic. The probability distribution obtained this way has to
adhere to the theoretical distribution of the test-statistic. Due to the law
of large numbers and the small variance of the estimated parameters, the
estimated parameters of the probability distribution converge to the true
parameters. The proposed changes are computationally intense, and also
require new software development. They do however reduce the probability
of misclassifying the generator. In addition to the revised traditional tests
we present a number of new tests for uniformity and randomness. Some
of these tests pertain to the discrete uniform distribution which is very
important for electronic casino games.

This paper is organized as follows: In section 2 we present the revised
χ2 test and Kolmogorov-Smirnov tests for uniformity. We also revisit the
tests for randomness presented in the literature but we revise them. The
revised versions increase the potency of the randomness tests. In section 3
we present the new tests for randomness and uniformity. We also organize
the random numbers into a high definition (R, G, B) still images. Thus
we use three consecutive random numbers quantized between 0 and 255
to create pixels of a color image. In this color image we can apply the
theorems of section 3 to tests for randomness, and we also perform a visual



inspection for patterns. We also quantize the random numbers between
−215 and 215 − 1, and we organize the acoustic signals into a wave file to
detect any non-random acoustic patterns.

2 A Revision of the Existing Tests

The way the tests described below are administered is as follows: a sample
is obtained from the random sequence and the test is applied on the sample;
if the sample passes the test, the random number generator passes the test,
otherwise the random number generator does not pass the test.

In our revision, every test described here is applied to may sub-sequences
from the random number generator (typically over 300), and the length of
every sub-sequence is over 1,000 numbers. From all of these computations
we form a random distribution which should be the same as the one de-
scribed by the theory related to that test.

In order for us to show that the two distributions, namely the theoretical
and the distribution obtained by the multiple samples are the same we test,
the hypothesis is that the parameters of the estimated distribution are not
significantly different than those of the theoretical distributions. Variance
tests result in a χ2 with appropriate degrees of freedom, and tests for the
means result in a t-distribution with appropriate degrees of freedom. If the
parameters of two distributions (belonging to the same family) are the same,
then the distributions are the same. Here due to the law of large numbers,
the experimental parameters should converge to the theoretical parameters,
if the random generator is uniform, and/or random, depending on the test
administered. Of course another way is to use Kolmogorov-Smirnov, or
even a χ2 test to show that the expected number of data in each segment
of the probability function is equal to the observed number of data. This
revision increases the reliability of testing the random numbers. The sug-
gested modifications require writing a great deal of software. Furthermore
using them requires time consuming computations that could outweigh the
benefits for some applications.

The Serial Test
The Serial test examines the frequency of the possible pairs (q, r), 0 ≤ q, r ≤
d, where 0, 1, . . . , d, are all the possible outcomes of the random game and
the random number generator simulating the random game. There are (d+
1)2 possible pairs, and each possible pair appears with probability 1/(d+1)2,
thus in a sequence of N random numbers, the expected number of times a
particular pair occurs is N/(d + 1)2, the sum of the ratios of the observed
minus the expected squared over the expected has a χ2 distribution with



d2 + 2d degrees of freedom. Instead of performing this test on a sub-
sequence of N random numbers, we select k sub-sequences, each of size
N and perform the test on each one of the sub-sequences. Each time we
perform the test, we obtain a χ2 value. The histogram of the k χ2 values
should be an estimate of a χ2 distribution with d2 +2d degrees of freedom.

The Gap Test
If 0 < n < k < d, we consider the lengths of consecutive sub-sequences
ri, ri+1, ri+2, . . . , rim−1 , ri+m in which ri+m is between n and k and the
other ones are not. In other words, we consider the inter-arrival time of
numbers which are between n and k.

The Poker Test
The poker test considers n groups of five successive integers and observes
which of the following patterns is matched by each quintuple:

• All different.

• One pair and three different.

• Two pairs and one different.

• Three of a kind and two different.

• Full house: three the same and two the same.

• Four of a kind.

• Five of a kind.

The Coupon Collectors Test
The length required to get a complete set of integers from 0 to d− 1.

The Permutation Test
Divide the input sequence into n groups of k elements each (rik, rik+1,
. . . , r(i+1)k−1), where 0 ≤ i ≤ n. If n is sufficiently large with respect
to k, the element in each group could have k! possible relative orderings.
The number of times each ordering appears is counted and a χ2test is
applied with probability 1/k! for each ordering to occur. This test we
implement on large sub-sequences, and the algorithm we use is different
than the one in the literature. We demonstrate our algorithm with an
example of 4 elements (k = 4), and n = 2, 400. So there are 24 per-
mutations for each vector of four elements, and we expect each permuta-
tion to be repeated 100 times. The χ2 of course is the sum of observed
minus expected the quantity squared over expected, and it has 23 de-
grees of freedom. For example, consider the following four tuples gener-
ated (30, 24, 516, 2), (44, 532, 29, 1, 63, 892), (54, 89, 031, 102, 532, 108, 378),
(395, 289, 1, 029, 107), (489, 391, 33, 763), . . ..



According to our algorithm, in each of the above vector of 4 numbers,
we find the position of the largest and we record that, then we consider
the remaining 3 and we find the position of the larger among the remain-
ing three, finally we find the position of the larger among the 2. These
permutation vectors associated to the above numbers are: (2, 0, 0), be-
cause the largest number between the 4 numbers (30, 24, 516, 2), is at po-
sition 2, next we ignore 516, and the largest number among the remaining
3, (30, 24, 2) is at position 0, now we ignore 30, and the largest number
among the reaming 2, (24, 2), is at position 0. Thus the vector is (2, 0, 0).
The permutation vectors associated with the above vectors therefore are
(2, 0, 0), (3, 0, 0), (3, 2, 1), (2, 0, 0), (3, 0, 0), . . .. The implementation of the
algorithm is described by the following pseudo-code:

int i, j, k, n, m, max, a[4][3][2];
for (i = 0; i < 4; i++)

for (j = 0; j < 3; j++)
for (k = 0; k < 2; k++)

a[i][j][k] = 0;
n = 2400; // the number of random vectors of size four to be generated;

for(m=0; m < n; m++) {
Generate the first random number;
Generate the second random number;
Generate the third random number;
Generate the fourth random number;
Find the max of the four random numbers;
Set i=max;
Find the max of the remaining three;
Set j=max of the remaining 3;
Find the max of the remaining two;
Set k=max of the remaining 2;
a[i][j][k]++; //This array keeps count of each permutation

}

At the end the array a[0][0][0], to a[3][2][1], will hold all the possible per-
mutations generated. Theoretically for this example every element a[i][j][k]
of the array should be equal to 100. In practice we have fluctuations from
the theoretical number the χ2 distribution decides if these fluctuations are
random, or not.

Run-Test
A sequence may be tested for “runs up” and “runs down”. In this test we



examine the lengths of monotone sub-sequences of the original sequence.

Maximum of k test
We consider sub-sequences of length k, and we find the maximum, that is,
Si = max(rik, rik+1, . . . , rik+(k−1)) then we apply the Kolmogorov-Smirnov
test to the sequence S0, S1, . . . , Sn−1.

3 New Tests for Uniformity and Randomness

The following five theorems pertain to testing the uniformity and random-
ness of random generators. Specifically theorem 1 pertains to the unifor-
mity. Since the number N of random numbers generated is very large, due
to the law of large numbers, the mean, variance, skewness, and kurtosis,
should approach very close to the ones given by the theorem. The z-test
is a good distance formula, specifying the maximum allowable distance of
the sample statistics from the theoretical values. Theorems 2, 3, 4, and
5 all pertain to randomness. Thus if the random generator does not pro-
duce truly random data, then the produced sequence is auto-correlated and
therefore multivariate analysis, the theory of random processes, and signal
processing, are appropriate theories to detect if there are any dependencies
between the numbers of the sequence generated by the generator.

Theorem 1 Given M random numbers from the discrete uniform distri-
bution function with possible values 1, 2, 3, 4, . . . ,M , then if X is a random
variable with probability

P (X = i) =
1
M

, i = 1, 2, . . . ,M

Then we get the following results:

E(X) =
M + 1

2

E(X2) =
(M + 1)(2M + 1)

6

E(X3) =
M(M + 1)2

4

E(X4) =
(M + 1)(6M3 + 9M2 + M − 1)

30

σ2
X =

M2 − 1
12

E(X − µ)3 = 0

E(X − µ)4 =
(M − 1)(M + 1)(48M3 + 75M2 + 8M − 15)

240



also the skewness

γ1 =
E(X − µ)3

σ3
X

= 0

and the kurtosis is:

γ2 =
E(X − µ)4

σ4
X

=
(M − 1)(M + 1)(48M3 + 75M2 + 8M − 15)

240σ4
X

Proof:

E(X) = µ =
1
M

M∑
n=1

n =
M + 1

2
(1)

also we get by the binomial theorem

13 = (0 + 1)3 = 1
23 = (1 + 1)3 = 13 + 3 ∗ 12 + 3 ∗ 1 + 1
33 = (2 + 1)3 = 23 + 3 ∗ 22 + 3 ∗ 2 + 1
43 = (3 + 1)3 = 33 + 3 ∗ 32 + 3 ∗ 3 + 1
...

...
(M + 1)3 = M3 + 3 ∗M2 + 3 ∗M + 1

So to determine the sum
M+1∑
i=1

i3

we sum each side of the equal sign, after canceling out similar terms, arrive
at

(M + 1)3 = 1 + 3(12 + 22 + 32 + . . . + M2) + 3
M(M + 1)

2
+ M

which implies
M∑
i=1

i2 =
M(M + 1)(2M + 1)

6

and hence

E(X2) =
(M + 1)(2M + 1)

6
(2)

and

σ2
X =

(M + 1)(M − 1)
12

(3)



The third moment E(X3) can be found in a similar manner using the bi-
nomial theorem and the technique applied above:

(M + 1)4 = M4 + 4 ∗M3 + 6 ∗M2 + 4 ∗M + 1
= 1 + 4(13 + 23 + 33 + . . . + M3)

+M(M + 1)(2M + 1) + 2M(M + 1) + M

From the above we obtain
M∑
i=1

i3 =
M2(M + 1)2

4
.

Thus

E(X3) =
M(M + 1)2

4
. (4)

Furthermore

E(X − µ)3 = E(X3)− 3E(X2)µ + 3E(X)µ2 − µ3

=
M(M + 1)2 − (M + 1)2(2M + 1)− (M + 1)3

4
= 0

and hence the skewness is

γ1 =
E(x− µ)3

σ3
X

= 0 (5)

which implies that the probability function is symmetric about the mean.

The fourth moment E(X4) can be found as follows:

(M + 1)5 = M5 + 5 ∗M4 + 10 ∗M3 + 10 ∗M2 + 5 ∗M + 1

= 1 + 5(14 + 24 + 34 + . . . + M4) +
5M2(M + 1)2

2
+

5M(M + 1)(2M + 1)
3

+
5M(M + 1)

2
+ M

From the above we have
M∑
i=1

i4 =
M(M + 1)(2M + 1)(3M2 + 3M − 1)

30
,

which implies that the fourth moment is

E(X4) =
(M + 1)(2M + 1)(3M2 + 3M − 1)

30
. (6)



In addition

E(X − µ)4 = E(X4)− 4E(X3)µ + 6E(X2)µ2 − 4E(X)µ3 + µ4

=
(M + 1)(2M + 1)(3M2 + 3M − 1)

30
−M(M + 1)2µ + (M + 1)(2M + 1)µ2 − 3µ4

=
(M − 1)(M + 1)(48M3 + 75M2 + 8M − 15)

240
(7)

Thus the kurtosis becomes

γ2 =
(M − 1)(M + 1)(48M3 + 75M2 + 8M − 15)

240σ4
X

(8)

2

Tests for skewness and kurtosis are very important. The way we administer
these tests is by estimating the skewness based on a large number of ran-
dom numbers. Then, due to the law of large numbers, the difference of the
theoretical skewness and the sample skewness is a normal distribution with
mean zero. The z-test is used to test the skewness. In a similar way we
test the kurtosis. Random number generators with skewness and/or kurto-
sis significantly different than the theoretical values are not good random
number generators.

Theorem 2 If X = [X1, X2, X3, . . . , Xk] is a random vector with each
Xi (i = 1, 2, 3, . . . , k) being a discrete uniform distribution with random
values between 1 and M as well as independent, then

E[X] =


X1

X2

...
Xk

 =


M+1

2
M+1

2
...

M+1
2

 ,

Σ =


M2−1

12 0 0 . . . 0
0 M2−1

12 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . M2−1
12

 .

Furthermore, The principal components of the vector X are the Xi (i =
1, 2, 3, . . . , k) and the eigenvalues are all equal to (M2 − 1)/12.

Proof:



Since each one of the random variables Xi (i = 1, 2, 3, . . . , k) has the
uniform distribution, we get:

µi = E[Xi] =
M + 1

2
(9)

and the variance

σ2
Xi

=
(M − 1)(M + 1)

12
=

M2 − 1
12

, i = 1, 2, 3, . . . , k. (10)

Also E[(Xi − µi)(Xj − µj)] = 0 because Xi and Xj are independent (for
i 6= j). Hence, from the above we infer that the mean vector, and the
variance covariance matrices are the ones stated by the theorem. 2

This is a very important test which tests for auto-correlation. We form
vectors of size n using n consecutive random numbers. Thus the first n-
consecutive random numbers from 1 to n form one vector. The second
n-consecutive random numbers from n + 1, to 2n, form a second vector of
n-numbers, and so on. For the large sample of random vectors we compute
the variance covariance matrix . The computed matrix will not be exactly
as the theoretical matrix, but should not be significantly different than the
theoretical matrix either. To test the significance we test each diagonal of
the computed matrix against the diagonal of the theoretical matrix by using
the χ2 distribution, for each pair of experimental-theoretical diagonal entry.
Subsequently, we use the Wishart distribution to test the experimental
variance covariance matrix if it is significantly different than the theoretical
variance covariance matrix. For an acceptable generator the two matrices
should not be significantly different. This test is also an auto-correlation
test up to lag n, and as such it is also a randomness tests, which many
generators fail.

Theorem 3 Let x0, x1, x2, . . . , xN−1 be a sequence of random number from
the discrete uniform distribution U [1,M ]. The discrete cosine transform of
the sequence is

Xm = cm

√
2
N

N−1∑
n=0

xn cos
(

πm(2n + 1)
2N

)
,m = 0, 1, 2, . . . , N − 1,

where

c0 =
1√
2

cm = 1, m = 1, 2, 3, . . . , N − 1.



Then

E(X0) =
√

N(M + 1)
2

σ2
X0

=
(M + 1)(M − 1)

12
E(Xm) = 0, m = 1, 2, 3, . . . , N − 1.

Proof:

Since

X0 =
1√
N

N−1∑
n=0

xn

we get

E[X0] =
√

N(M + 1)
2

(11)

and

E[X2
0 ] =

1
N

E

(
N−1∑
n=0

xn

)2

=
1
N

N−1∑
n=0

E(x2
n)

+
2
N

(
(N − 1)

(M + 1)2

4
+ (N − 2)

(M + 1)2

4
+ · · ·+ (M + 1)2

4

)
=

1
N

N−1∑
n=0

E(x2
n) +

2
N

N−1∑
i=1

i
(M + 1)2

4

=
(M + 1)(2M + 1)

6
+

(N − 1)(M + 1)2

4

which implies

σ2
X0

=
(M + 1)(2M + 1)

6
+

(N − 1)(M + 1)2

4
− N(M + 1)2

4

=
(M + 1)(M − 1)

12
(12)

2



This test is best to be administered on 64 consecutive random numbers,
organized in an 8 × 8 square and subtracting the mean value from each
of the numbers. Then all components would have mean zero, and the
expected number of positive should be equal to the expected number of
negative values, and each one should be about 32.

Theorem 4 Let x0, x1, x2, . . . , xN−1 be a sequence of random numbers from
the discrete uniform distribution U [1,M ]. The finite Fourier transform of
the sequence is

Xm =
1√
N

N−1∑
n=0

xne−i 2πmn
N = Um + iVm, m = 0, 1, 2, . . . , N − 1.

The spectral density is
Sm = U2

m + V 2
m

and the phase spectrum

ϕm = arctan
(

Vm

Um

)
has a uniform circular distribution between 0 and 2π.
Furthermore

E(X0) = E(U0) =
√

N(M + 1)
2

E(V0) = 0

σ2
X0

=
M2 − 1

12
E(Xm) = 0, m = 1, 2, 3, . . . , N − 1

Proof:

X0 =
√

Nx̄ =
√

N

∑N−1
i=0 xi

N

hence

E(X0) =
√

N(M + 1)
2

(13)

and

σ2
X0

= E(X2
0 )− E2(X0) =

M2 − 1
12

. (14)



So now

E(Xm) =
1√
N

N−1∑
n=0

E(xn)e−i 2πmn
N =

1√
N

M + 1
2

N−1∑
n=0

e−i πmn
N = 0. (15)

2

The power spectrum of the random sequence should not be significantly
different than the square of the mean of the component at the zero fre-
quency; for all other frequencies the power spectrum should be uniformly
distributed up to the Nyquest frequency. The phase spectrum should have
a uniform distribution between [0, 2π]. The spectrum test and the phase
spectrum test are both tests for randomness. Random number generators
with spectral properties different than the theoretical spectral properties
are auto-correlated and therefore not random.

Theorem 5 Let x0, x1, x2, . . . , xN−1 be a sequence of random numbers from
the discrete uniform distribution U [1,M ], and let X = [x0, x1, x2, . . . , xN−1]
be the corresponding N-dimensional vector. Consider the seven tap wavelet
quadrature mirror filter given by this orthogonal matrix:

W =



a0 a1 a2 a3 0 a3 a2 a1

−a1 a0 −a1 a2 −a3 0 −a3 a2

a2 a1 a0 a1 a2 a3 0 a3

−a3 a2 −a1 a0 −a1 a2 −a3 0
0 a3 a2 a1 a0 a1 a2 a3

−a3 0 −a3 a2 −a1 a0 −a1 a2

a2 a3 0 a3 a2 a1 a0 a1

−a1 a2 −a3 0 −a3 a2 −a1 a0


Now let

y0 = a0x0 + a1x1 + a2x2 + a3x3 + a3x5 + a2x6 + a1x7

z0 = −a1x0 + a0x1 − a1x2 + a2x3 − a3x4 − a3x6 + a2x7.

y0 (y0 = [W ·X]0) is the result of applying the low pass filter in the process
and z0 (z0 = [W ·X])1) is the result of applying the high pass filter in the
process. Then the expected value and the variance of y0 and z0 are

E(y0) =
√

2µx0

σ2
y0

= σ2
x0

E(z0) = 0
σ2

z0
= σ2

x0



Proof:

Since this is an orthogonal quadrature mirror filter, the coefficients
a0, a1, a2, a3 satisfy the following equations:

a0 + 2a1 + 2a2 + 2a3 =
√

2

a0 + 2a2 =
√

2
2

2a1 + 2a3 =
√

2
2

a2
0 + 2a2

1 + 2a2
2 + 2a2

3 = 1
2a0a2 + 2a1a3 + a2

1 + a2
3 = 0

4a1a3 + 2a2
2 = 0

Solving the above system of equations, we obtain

a0 = 0.8534972
a1 = 0.3610506
a2 = −0.0731952
a3 = −0.0074972.

Now if we consider the low pass filter y0 then

E(y0) = E(a0x0 + a1x1 + a2x2 + a3x3 + a3x5 + a2x6 + a1x7)
= (a0 + 2a1 + 2a2 + 2a3)µx0

=
√

2µx0 (16)
E(y2

0) = E(a0x0 + a1x1 + a2x2 + a3x3 + a3x5 + a2x6 + a1x7)2

= (a2
0 + 2a2

1 + 2a2
2 + 2a2

3)E(x2
0)

+ (4a0a1 + 4a0a2 + 4a0a3 + 4a1a2 + 4a1a3 + 2a2
1 +

+ 4a2a3 + 2a2
2 + 2a1a2 + 2a2

3 + 4a1a3 + 4a2a3 + 2a1a2)µ2
x0

From the above equations we obtain the following:

E(y2
0) = E(x2

0) + 4(a1 + a3)(a0 + 2a2)µ2
x0

= E(x2
0) + µ2

x0

= σ2
x0

+ 2µ2
x0

And thus

σ2
y0

= E(y2
0)− E(y0)2



= σ2
x0

+ 2µ2
x0
− E(y0)2

= σ2
x0

+ 2µ2
x0
− (

√
2µx0)

2

= σ2
x0

(17)

The expected value of the high pass filter z0 is

E(z0) = E(−a1x0 + a0x1 − a1x2 + a2x3 − a3x4 − a3x6 + a2x7)
= (−2a1 + a0 + 2a2 − 2a3)µx0

= 0 (18)

To compute σ2
z0

we proceed with

E(z2
0) = E

(
(−a1x0 + a0x1 − a1x2 + a2x3 − a3x4 − a3x6 + a2x7)2

)
= (a2

0 + 2a2
1 + 2a2

2 + 2a2
3)E(x2

0)
+ 2(−a1a0 + a2

1 − a1a2 + a1a3 + a1a3 − a1a0 − a1a2

+ a0a2 − a0a3 − a0a3 + a0a2 − a1a2 + a1a3 + a1a3

+ a1a2 − a2a3 − a2a3 + a2
2 − a2a3 − a2a3)µ2

x0

= E(x2
0)− µ2

x0

= σ2
x0

And since E(z0) = 0 we get

σ2
z0

= E(z2
0)− E(z0)2 = σ2

x0
. (19)

2

The way this test applied is as follows: We apply the low pass filter to
the random sequence and we obtain a signal half the size of the original
signal which is the low pass transform signal (the low pass coefficients).
Then we apply to the original sequence the high pass wavelet filter, and
we obtain a signal half the size of the original signal which is the high pas
filter. From the above theorem both low pass, and high pass signals should
have exactly the same energy. If that does not happen the generator is not
random. This is a test that the majority of the generators fail. In non
random data sequences the low pass component of the wavelet transformed
data has significantly higher energy than the high pass component of the
wavelet transformed data. Due to Parsevals theorem, the total energy of
the original data is equal to the total energy of the transformed data.



4 Visual and acoustic tests for random num-
ber generators

In addition to the tests described in sections 2 and 3, a number of visual
and acoustic tests can be provided. A simple and yet very affective visual
test for assessing if the random number generator is capable of producing
all the possible pairs of integer numbers within a certain range 1, 2, . . . , C,
with equal probability, is to run the generator until the last number in the
sequence is generated. Every consecutive pair of random numbers (ri, ri+1)
in the sequence represents a coordinate in a bitmap type image with resolu-
tion C ∗R, where C is the number of columns and R is the number of rows
of the image. The pixel having the coordinate (ri, ri+1) is painted black.
Before the process starts all pixels are initialized to white. If the cycle of
the generator is large enough relative to the resolution of the bitmap im-
age, then the generator should generate all the possible coordinates of the
image with equal probability. Thus the image should be totally black after
all the random numbers are generated. Furthermore all coordinates should
be generated equal amount of times. This is not always the case as we see
in the bmp file with resolution 800×800 pixels generated by rand(), a very
popular random number generator. Not all pairs are generated with equal
probability, and as it shown in Fig. 1, some pairs are never generated by
the end of the cycle of the generator, while some other pairs are generated
multiple times.

In Fig. 1 consecutive random numbers were paired. The first random
number of the pair represents the x-coordinate, and the second the y-
coordinate. For each pair (x, y) a black pixel is drawn on white screen.
So white pixels represent (x, y) coordinates never reached by any of the
generated random pairs, while the black pixels represent (x, y) coordinates
reached at least once by the end of the generated sequence. The generator
used was rand() which is part of the library functions of many compilers.
Ideally the picture should be all black, and every (x, y) coordinate should
be visited equal number of times by the end of the generated sequence.

A number of additional visualization tests can be administered with
triplets (three consecutive random numbers, the first two being the (x, y)
coordinates and the third being the gray scale intensity), or with five-tuples,
the first two being the (x, y) coordinates and the other 3 being the three
color channel intensities red, green, and blue (R, G, B). In addition to that
one could compute the frequency distribution of each five tuple. Acoustic
tests using the random number generators can also be created by organizing
the sequence into a wav file mono, stereo, surround sound, or just a voice
resolution channel, and play it to detect patterns, and zero crossings. We



Figure 1: 800× 800 bitmap result of rand() testing.

quantize the random numbers in the range −215 and 215 − 1 before we
organize them into an acoustic wave file. Acoustic inspection of the wave
file could reveal patterns in the random number generator.

5 Conclusions

Random number generators are very important for scientific applications
as well as commercial applications such as the casinos. Here we provide a
number of tests, which includes tests already known and revised in this pa-
per, new tests for uniformity and randomness as well as visual and acoustic
tests. The new tests for uniformity test the skewness of each one of the



subgroups, and the kurtosis. The tests for randomness, which include the
Fourier spectrum, the phase spectrum, the discrete cosine transform spec-
trum, and the orthogonal wavelet frequency domain, test for patterns not
detected in the row data space. Finally we provide visual and acoustic
tests. In the acoustic tests we quantize the random numbers between −215

and 215 − 1 and then we organize them into an acoustic wave file. Acous-
tic inspection of the wave file could reveal patterns in the random number
generator as well.
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