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Preliminaries 
 
Before we start writing code we have to agree on what we are implementing. This 
document will guide you through how to implement a simple Scheme evaluator for a 
subset of scheme (roughly equivalent to the λ-calculus [Kle35]) and according to The 
Rules of Evaluation Version 2 from lecture [Ped07]. 
 
Let us first try to understand the background, that is, let us introduce the λ-calculus. 

The λ-calculus 
 
The lambda-calculus was first introduced in 1935 by Church and Kleene, and forms the 
basis for a number of functional programming languages such as ML, Lisp and Scheme. 
 
The basic rules are pretty simple, and can be summarized as follows: 
 
A lambda-expression is defined inductively as one of the following 
 

1 V, a variable, where V is any identifier (The precise set of identifiers is 
arbitrary, but must be finite). 

2 (λ V. E), an abstraction, where V is any identifier and E is any lambda 
expression. An abstraction corresponds to an anonymous function. 

3 (E E’), an application, where E and E’ are any lambda expressions. An 
application corresponds to calling a function E with arguments E’. 

 
We need to consider a few more issues, such as substitution, but we will return to those in 
a later section. 
 
As you can see from the 3 rules above, the ability to declare a function abstraction and to 
apply it, as well as the ability to reference variables is all that is needed. That does not 
sound like much, but this is actually a Turing-complete language! 
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The Scheme Rules of Evaluation Version 2 
 
Let us briefly review the rules of evaluation as they are stated in version 2 from lecture: 
 

• [Initialization Rule]: The environment initially contains only the built-in 
primitives. 

• [Number Rule]: A numerals value is a number interpreted in base 10. 
• [Name Rule]: A name is evaluated by substituting the value bound to it in the 

environment. 
o It does not matter if it is user defined or a name of a primitive procedure. 
o If the name does not exist in the environment when the form is evaluated, 

an error is produced. 
• [Lambda Rule]: The value of a lambda-form is a procedure with parameters and 

a body. 
• [Application Rule]: An application is evaluated by evaluating each of its 

elements (Using the Rules) and then use 
o The Primitive rule if the operator is a primitive. 
o The Procedure rule if the operator is a procedure. 

• [Primitive Rule]: Invoke the built-in primitive with the given arguments 
• [Procedure Rule]: A procedure application is evaluated in 2 steps: 

o In the body of the procedure, replace each of the formal parameters by its 
corresponding actual arguments. 

o Replace the entire procedure by the body. 
• [Definition Rule]: The 2nd argument is evaluated. The 1st is not evaluated and 

must be a name. The name/value pair is added to the environment. 
 
As an aside, it is worth noting that the Initialization and the Definition rules are really not 
necessary; if we do not have definitions, then we do not need an environment, and 
definitions are not technically necessary; at least not in order to preserve Turing 
completeness. The Number and Primitive rules can be discarded on the same account. 
 
One might say that a calculus that does not have numbers is not much fun, but in pure 
lambda-calculus, number can be represented as higher-order functions, something which 
a little hairy and we shell not bother with that at this moment. 
 
You might say that if we remove the environment, then how can the Name rule exist? It 
is clear that the name rule corresponds to the first rule of the lambda-calculus definitions. 
We shall see how substitution can also solve this problem later. Furthermore, the Lambda 
Rule corresponds to the second point in the definition of the lambda-calculus, and the 
Application (and the Procedure) Rules correspond to the third part of the definition. 
 
With that in mind we can now start coding the evaluator. 
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The Scheme Evaluator 
 
To make things a little clearer in steps to come I have decided to place all primitives in a 
‘primitive environment’ and only use the global environment for user-defined bindings. 
 
The task ahead can be defined as follows: 
 

“Write a Scheme function called evaluate, which takes in a form and evaluates 
it using the global environment according to the Rules of Evaluation Version 2.” 

 
Thus the start of the evaluate function must look like this: 
 
 (define evaluate 
   (lambda (form ) 
     ... 
 
We have not discussed what a form is in our evaluator, but since all Scheme forms are 
either a variable or a value, or something with ( ) around, then a natural choice is to 
define a form in our evaluator as  
  

• A symbol representing a variable or a value 
• A list representing either a lambda-form, an application or a define form. 

 
Note how this definition is very close to the definition of a lambda expression given 
earlier . We will return to the list part of the above definition a little later. 

The environment 
 
The first step is to decide how to represent the environment. Recall that the environment 
is a collection of bindings of values to names, so it can be viewed as a list of pairs whose 
first element is the name and second element is the value bound to that name. 
 
In Scheme the primitive cons (which takes two arguments) constructs a pair: 
  

 (cons 1 2) 
(1 . 2) 

 
The first element of a pair can be accessed using the Scheme primitive car, and the 
second by the primitive cdr. A note of caution: If x is a pair then (cdr x) is an 
element. If x is a list then (cdr x) is the list with the first element removed: 
 

 (car (cons 1 2)) 
1 
 (cdr (cons 1 2)) 
2 
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 (car (list 1 2)) 
1 
 (cdr (list 1 2)) 
(2) 

 
We can thus represent the global environment as a list of pairs (We start with the empty 
environment): 
 
 (define env ’()) 
 
And we can define the Initialization Rule as follows: 
 
 (define init-rule 
   (lambda () 
     (set! env ’()))) 
 
That is, we use the set! primitive to redefine the global variable env. 
 
The primitive environment is defined in the same way (though here we do not need any 
initialization rule as it always stays the same): 
 

(define prim (list (cons ’+ +) 
                        (cons ’- -) 
                        (cons ’/ /) 
                        (cons ’* *) 
                        (cons ’= =) 
                        (cons ’> >) 
                        (cons ’< <))) 
 
In the list of primitives above I have included just a few of the existing ones, but note the 
content of the various pairs: the fist element (the car) is a symbol representing the 
operator (it is quoted thus a symbol), but the second element of the pair is not quoted, so 
it gets evaluated by the cons function before the pair is created. Let us try typing one of 
the pairs into the Scheme evaluator: 
 

 (cons ’+ +) 
(+ . #<primitive:+>) 

 
And now consider this: 
 

 ((cdr (cons '+ +)) 4 5) 
9 

 
The second element is actually a primitive procedure that can applied by providing 
arguments and placing application brackets around it. At this point it is worth considering 
the following problem though: We know that we can apply the actual primitive to one or 
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more arguments by placing application brackets around the primitive and the 
argument(s); but what do we do if we have a list of arguments and a primitive, say we 
wish to apply the primitive function + to 4 and 5 but 4 and 5 appear in a list as (4 5)? 
Let us try: 
 

 (+ (4 5)) 
 procedure application: expected procedure,  

   given: 4; arguments were: 5 
 (+ ’(4 5)) 

  +: expects argument of type <number>; given (4 5) 
 
That the first one fails is not a surprise! (4 5) is an application of 4 to 5! That does not 
make any sense! But what about the second one? + takes 1 or more arguments (actually, 
(+) is actually a legal form in Scheme, it gives the element that is neutral to the operator, 
i.e., the value 0 for + and 1 for * and so on). The arguments must be something that 
evaluates to numbers, but ’(4 5) is not a number, it is a list!  
 
The solution is the Scheme function apply. Apply takes a function and a list and applies 
the function to the elements in the list in the following way: 
 
(apply f ’(e1 e2 e3 ... en)) := f(...(f(f(e1 e2) e3)...) en) 
 
Or in scheme notation: 
  
 (f (... f((f e1 e2) e3) ...) en) 
 
So we get: 
 

 (apply + ’( 1 2 3 4)) 
10 
 

Now that we have this little trick in place let us move on to the next rules. 
 

The Number Rule 
 
The Number rule is easy! The Scheme evaluator will do all the work for us; In reality the 
Number rule can be implemented simply as the identity function: 
 
 (define number-rule 
   (lambda (number) 
        number)) 
 
We simply return the argument! The scheme evaluator (because it is call by value!) will 
have already turned the textual representation of any number into an actual value by the 
time the body of the Number rule is executed. 
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So far it has not been too complicated, so let us turn to the Name rule. 
 

The Name Rule 
 
The Name rule will be a little more complicated because I decided to have two 
environments: one with user defined bindings and one with primitives. It will not 
complicate matter too much though. Recall that both the primitive environment and the 
global user environment is a list of pairs. We could write a function that takes in an 
environment (a list of pairs) and a symbol (the name we are looking for) and recursively 
traverses the list of pairs, but scheme has a built in function called assv, which can be 
utilized in the following way: 
 

 (assv ’+ (list (cons ’+ +) (cons ’- -))) 
(+ . #<primitive:+>) 
 (assv ’a ’((b 5) (c 7))) 
#f 

 
assv  takes in a symbol x and a list of pairs, and if a pair (x . y) exist it returns (x 
. y). If no such pair exists it returns #f. 
 
If we search the global environment first and in case we do not find anything there we 
can search the primitive environment, then the code looks like this: 
 

(define name-rule 
  (lambda (name) 
    (let ((pair (assv name env))) 
      (if pair 
        (cdr pair) 
        (let ((pair (assv name prim))) 
          (if pair 
            (cdr pair) 
            (error (format "reference to undefined 
                          identifier: ~a" name)))))))) 

 
First we search the user environment; if nothing is found there we search the primitive 
environment; if still nothing is found we produce an error and terminate. Note, since the 
global environment is really global, we do not need to take a parameter representing the 
environment; if we do, we might run into problems later when writing the function for 
define. This is not the most elegant way of doing it, but it will work for now; later we 
will look at the right way of doing it (it works just fine when we are not implementing a 
language that supports commands like set! and captured frames!). 
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The Primitive Rule 
 
Before we continue with the Primitive Rule, it is vital that we understand what data we 
are working with! Let us consider the Scheme form (+ 4 5). How do we represent that 
textually in our evaluator? The easiest ways is a list with 3 elements: the symbol + , the 
number 4 and the number 5 (In Scheme any number quoted becomes just the number) 
This can be illustrated by the use of the equal? predicate: 
 

 (equal? '(+ 4 5) (list '+ '4 '5)) 
#t 

 
So in our evaluator + will be looked up in the primitive environment and turned into the 
Scheme primitive #<primitive:+> and the list of arguments (which could be more 
complex forms than just integers) will be evaluated, and we end up with a list of values. 
Now we need to apply the primitive to the list of values. This is where the use of the 
apply function is handy, if the function to evaluate the Primitive rule takes in a primitive 
and a list of evaluated forms (i.e., a list of values) then we can apply that primitive to the 
list of arguments by using the apply function: 
 

(define primitive-rule 
  (lambda (primitive arguments) 
    (apply primitive arguments))) 

 
For example. If primitive is #<primitive:+> and arguments is (4 5), then 
we have: 
 
 (apply #<primitive:+> (4 5)) = (#<primitive:+> 4 5) 
 
which is exactly what we wanted! (Note, you cannot type the first part of the line above 
into the Scheme evaluator, I just wrote it to illustrate a point!) 
 

The Application Rule 
 
The Application rule is simple; it consists of two major parts: 
 

1 Evaluate all the arguments of the form. 
2 Use either the Primitive Rule or the Procedure Rule to evaluate the form. 

 
We have already described the Primitive Rule; recall it takes in a Scheme primitive 
(obtained from a look up in the primitive environment) and a Scheme list of (evaluated) 
values. 
 
How do we evaluate all the arguments of the form? Since we are writing (or at least have 
started) the evaluate function we can call that function of every element of the list of the 
application and then decide if we should pass it to the function that handles the Primitive 
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Rule (primitive-rule) or the one that handles the Procedure Rule (which we have 
not written yet!). 
 
Let us consider the Scheme list (+ (+ 4 5) 6). Before the Application Rule decides 
to pass the job on to the Primitive Rule, it must evaluate the arguments of the application, 
In this case there are 3 arguments: +, (+ 4 5), and 6. If we pass each of these three 
parameters (which technically are forms themselves) to the evaluate function then we 
should get 3 values back, one for each, and if we then collect them back into a list of 
length 3 (just like the original list for the application) we should get 
(#<primitive:+> 9 6), which we can then pass on to the primitive-rule 
function for further evaluation. In the implementation we pass the primitive (car 
evaluated-args) and the arguments (cdr evaluated-args) in two separate 
parameters, but the idea is the same. In other words, we wish to evaluate the call 
(evaluate ...) for each of the members of the application form. 
 
Again, we could write a recursive function that takes in the application form, calls 
evaluate on each element by taking out the first element (using the car function) and 
cons’ing that together with the result of a recursive call on the tail of the list (using the 
cdr function). Again Scheme already has a primitive (a very powerful one that is) called 
map, which can do all the dirty work for us. 
 
map is a function that takes a function and a list of elements and applies the function to 
all the elements of the list and returns a new list with return values of this operation: 
 

 (map add1 ’(1 2 3)) 
(2 3 4) 

 
Or if you wish to use one of your own functions: 
 

 (map (lambda (x) (* x 3)) ’(1 2 3)) 
(3 6 9) 

 
We can formally define map like this: 
 
 (map f ’(e1 e2 e3 ... en)) := ((f e1) (f e2) ... (f en)) 
 
In reality, map can do much more, but in the spirit of Terry Pratchett’s Discworld, we 
call the above explanation ‘lies to children’; it is enough information for now; it work as 
it is, so don’t ask! Enough to say that the following Scheme form is valid as well: 
 

 (map (lambda (x y) (+ x y)) ’(1 2 3) (4 5 6)) 
(5 7 9) 

 
It could be simplified to (map + ’(1 2 3) ’(4 5 6)). 
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This means that we can use the map function to evaluate all elements in a list and return 
the resulting values in a new list as follows (we assume that lst is a list representing the 
entire application): 
 
  (map evaluate lst) 
 
 
For completeness, an implementation of map could look like this (one that takes in one 
function and one list (so not as fancy as the built-in one)): 
 
 (define map 
   (lambda (f lst) 
     (if (null? lst) 
       ’() 
       (cons (f (car lst)) (map f (cdr lst)))))) 
 
Now we know how to evaluate the arguments, all we need to do now is determine if the 
first element in the application is a primitive or user defined procedure. This is easily 
done by looking for the textual representation (i.e., before evaluating the elements of the 
application) in the primitive environment. We simply use assv to search the primitive 
environment. If the first element is a lambda form or a named procedure (from the user 
environment, the lookup in the primitive environment will fail and we know that we 
should use the Procedure rule,; if it succeeds we can pass the application to the Primitive 
Rule for further evaluation. Thus the Application rule can be implemented as follows: 
 

(define application-rule 
  (lambda (lst) 
    (let ((primitive? (is-primitive? (car lst))) 
          (evaluated-args (map evaluate lst))) 
      (if primitive? 
          (primitive-rule (car evaluated-args)  

 (cdr evaluated-args)) 
          (procedure-rule (car evaluated-args)  

 (cdr evaluated-args)))))) 
 
To improve readability we can implement the is-primitive? predicate in the 
following way: 
 

(define is-primitive? 
  (lambda (e) 
    (assv e prim))) 

 
Recall that assv will return #f if nothing is found (i.e., there is no pair in the list prim 
that has e as the first element). 
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The next step should be the Procedure Rule, but since this is by far the most complicated 
rule, we shall put that off for just a little while. Let us instead turn to the Define Rule, 
which is a lot simpler. 
 

The Define Rule 
 
The Define rule says to evaluate the 2nd form (well, really, it is the 3rd because the word 
define is really the 1st) and bind it to the name given in the 1st form (which then is 
really the 2nd!) of the define form. The evaluation of the 2nd (which is really the 3rd) form 
is as simple as calling the evaluate function with this form: 
 
 

(define define-rule 
  (lambda (name form) 
    (let ((value (evaluate form)) 
          (pair (assv name env))) 
      (if pair 
          (set-cdr! pair value)  
          (set! env (cons (cons name value) env)))))) 

 
 
At first sight, the rule looks a little more complex then described above! We need to 
determine if the name is already bound in the environment. If it is then we simply change 
the second element of the pair returned from assv (the lookup in the environment). If 
there is no existing binding we set the environment to what it was before with the new 
name/value pair added to the front of the list representing the global environment. 
 
If you are not familiar with set!, set-car! and set-cdr!, then see the discussion 
at the end of this write up. 
 
We now have everything we need except the main procedure (evaluate) and an 
implementation of the Procedure Rule, so let us look at the Procedure Rule. 

Procedure Rule 
 
Before we implement the procedure-rule function we need to understand the rule in 
detail. The way it is written in The Rules Version 2 is not entirely correct! It could work 
as stated under one condition: no two procedures (bound in the global environment) or 
anonymous lambda forms share any parameter names! 
 
Let us consider this small example: 
 
 ((lambda (x) (+ ((lambda (x) (* x 2)) (+ x 4)) 5)) 1) 
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What is the value of such a form? Let us blindly use the procedure rule as stated in 
Version 2 of the Rules of Evaluation. The first part says to replace each of the formal 
parameters with its corresponding actual ones. This can be done by a substitution of the 
name of the formal parameter in the list representing the body of the function being 
applied with the value of the actual parameter. In the example above if we perform a 
substitution of x by the value 1, and look at the body, we get: 
 
   (+ ((lambda (x) (* 1 2)) (+ 1 4)) 5) 
 
which if typed into the Scheme evaluator gives us the value 7. This is clearly wrong. If 
we type the original form into the evaluator we get the value 15, which is the correct 
value. The problem is of course the ‘mindless’ substitution of x by 1. This substitution 
should only happen for a certain number of the x’s found in the body, namely the ones 
that are ‘free’ (we will get to this definition shortly). If you look at it and think about it 
you would probably arrive at the conclusion that only the underlined x’s in the following 
should be substituted by the value 1: 
 

((lambda (x) (+ ((lambda (x) (* x 2)) (+ x 4)) 5)) 1) 
 
So only the last x should be substituted because the inner x is bound by the formal 
parameter in the inner most anonymous lambda form. 
 
Let us look at the formal definition of a free variable in a lambda expression. 

Free and Bound Variables 
 
Each variable in a lambda expression is either free or bound. For example the x in (x 
y) is free, while the x in (lambda (x) (x y)) is bound. A bound variable has a 
specific lambda with which it is associated, while a free variable does not. The free 
variables of a lambda expression are defined inductively as follows (we define this for the 
lambda calculus first): 
 

1 In an expression of the form V, where V is a variable, this V is the single free 
occurrence. 

2 In an expression of the form (λ V. E), the free occurrences are the free 
occurrences in E except for V. In this case the occurrence of V in E are said 
to be bound by the λ before V. 

3 In an expression of the form (E E’), the free occurrences are the free 
occurrences in E and in E’ 

 
In general all formal parameters of a lambda form ‘binds’ any occurrences of that 
parameter in the body, making it not free (i.e., bound).  
 
We can now define formally the correct rules for substitution. 
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Substitution 
 
Substitution, written E[V := E’], corresponds to the replacement of a variable V by 
expression E’ every place it is free within E. The precise definition must be careful in 
order to avoid accidental variable substitution. For example, it is not correct for (λ 
x.y)[y := x] to result in (λ x.x), because the substituted x was supposed to be 
free but ended up being bound. The correct substitution in this case is (λ z.x). 
 
The precise rules are defined inductively as follows: 
 

1. V[V := E] == E 
2. W[V := E] == W, if  W and V are different. 
3. (E1 E2)[V := E] == (E1[v := E] E2[v := E]). 
4. (λ W. E’)[V := E] == (λ W. E’[V := E]), if V and W are different 

and W is not free in E. 
5. (λ W. E’)[V := E] == (λ W’. E’[W := W’])[V := E], if V and 

W are the same (i.e., not different) and if W’ is not free in E. 
 
We did not include a rule for arbitrarily substituting the formal parameters, and the rules 
above are only defined for lambda expressions with one parameter, but multi parameter 
expressions follow trivially. 
 
Note that rule 5 solves the problem of accidental variable substitution. Rule 1 and 2 
explain how to substitute simple named variables, rule 3 is for applications and rules 4 
and 5 are for lambda forms. Also note that substitutions only happen for free variables! 
 
We can now rewrite the Procedure Rule as follows: 
 
Old version: 
 

• [Procedure Rule]: A procedure application is evaluated in 2 steps: 
o In the body of the procedure, replace each of the formal parameters by its 

corresponding actual arguments. 
o Replace the entire procedure by the body 

 
New version: 
 

• [Procedure Rule]: A procedure application is evaluated in 2 steps: 
o In the body of the procedure, replace each of the free formal parameters 

by its corresponding actual arguments. 
o Replace the entire procedure by the body 

 
Note the slight difference; the word free has been added to the new version. You might 
think that there is no difference because the formal parameters in the body are bound by 
the enclosing lambda form; yes, you are right, but we are not making the substitution in 
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the entire lambda form, only in the body, where the formal parameter list cannot be seen! 
A small but very important difference. 
 
So if we are considering an application like this: 
 
 (E E’) 
 
where E is a lambda form and E’ is a set of actual parameters, we can expand as follows: 
 
 ((lambda (p1 p2 ... pn) E’’) f1 f2 ... fn) 
 
We now evaluate the forms f1, f2,..., fn, to produce the values of the actual 
parameters v1,v2,...,vn, and then perform the substitution 
 
 E’’[p1 := v1, p2 := v2,..., pn := vn] 
 
and then evaluate this new form! 
 
We could implement the above rules in great detail and compute sets of free and bound 
variables, but there is a simpler (!) way, which we shall utilize. 
 
Let us first write the procedure-rule, and make use of a few helper functions: 
 

(define procedure-rule 
  (lambda (lambda-form args) 
    (evaluate (subst lambda-form args)))) 

 
Looks pretty simple! The one line in the body simply calls the evaluate function 
recursively with the result of the call to the helper function subst called with the 
lambda form and the list of evaluated arguments. subst returns the body of the lambda 
form after performing the substitution. 
 
The subst helper will do the work of substituting all free occurrences in the body of the 
lambda form according to a list of pairs where each formal parameter is bound to the 
corresponding actual parameter value. 
 
Since all procedure calls are call-by-value we never substitute any variable names by 
other variable names, only by values, which makes life a lot easier when it comes to 
getting the substitution correct. 
 
Before we look at the implementation of subst, let us implement another helper 
function that is often handy to have, namely the filter function. The filter function 
takes a predicate function (a function that takes in one argument and returns either #t or 
#f) and a list of elements that are compatible with the function passed to filter. 
 
Example: 
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 (filter odd? '(1 2 3 4 5 6 7 8 9)) 
(1 3 5 7 9) 
 

Where the odd? function could be defined as follows: 
  
 (define odd? 
   (lambda (x) 
     (= (remainder x 2) 1))) 
 
Where (remainder x y) returns the remainder of the integer division x/y. 
 
The code for the filter function looks like this: 

(define filter 
  (lambda (predicate? lst) 
    (if (null? lst) 
        ’() 
        (if (predicate? (car lst)) 
            (cons (car lst)  

                       (filter predicate? (cdr lst))) 
            (filter predicate? (cdr lst)))))) 

 
 
which is a typical structure for a list processing function. 
 
We can now write the subst function, which will call another helper with the body of the 
lambda form as well as a list of pairs that link the formal parameter of the procedure call 
to the actual ones. We can create this list by using the map function again. Consider this 
example: 
  

 (map (lambda (x y) (cons x y)) '(x y z) '(1 2 3)) 
((x . 1) (y . 2) (z . 3)) 

 
If actual-parameters is a list of actual parameters, and formal-parameters a 
list of formals (which can be obtained as the second element of the lambda form) we can 
create a list of pairs and call the helper like this: 
 

(define subst 
  (lambda (lambda-form actual-parameters) 
    (let* ((formal-parameters (cadr lambda-form)) 
           ((assoc-args (map (lambda (x y) (cons x y)) 
             formal-parameters  

          actual-parameters))) 
      (substitute (caddr lambda-form) assoc-args)))) 
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Note the use of let* rather than let, this is necessary because the value of formal-
parameters is used in the second binding in the let* form. 
 
So now we pass the problem on to the substitute function, but at least we are getting 
there. 
 
The substitute function will implement the lambda calculus substitution rules (more 
or less) , so we need to consider the different cases described above. Let us consider the 
substitute functions first few lines (recall that it will take in a form and a list of pairs 
representing the variable bindings of the actual parameters to the formal ones): 
 
 (define substitute 
   (lambda (form bindings) 
 
We now consider the 3 different types of forms that we can have: 
 

1. A value or a variable V. 
2. An applications (E E’). 
3. A lambda form (λ E. E’). 
 

We are going to use a little trick to deal with variables and values; we shall return to that 
shortly. 
 
The easiest of the three cases is probably the application. Recall that an application is 
represented as a Scheme list, and according to the substitution rules above we simply 
perform a substitution in all of the elements in this list. Such a list can contain both 
variables, values or more complex forms (which are represented as lists, and can be dealt 
with by a recursive call to substitute). If an element is not a list, we check to see if it has a 
binding in the binding list, and if it does we substitute the variable name by the 
corresponding value. The easiest way to do this for each element of a list if of course to 
use the map function: 
 

(map (lambda (element)   
            (if (list? element)    
              (substitute element bindings)   
              (let ((pair (assv element bindings)))  
                     (if pair               
                       (cdr pair)  

              element)))) lst)  
 
 
The above action is what we wish to perform if form is a list and not a lambda form. 
What if the form is not a list, that is, a variable or a value. The easiest way to deal with 
this case is to place the variable or value in a list and call recursively and then extract the 
value out of the returned list using the car function; then the last part of the code above 
will take care of it, so we get: 
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 (car (substitute (list form) bindings)) 
 
All we have left to do is to deal with the substitution for lambda forms, and then tie it all 
together. Remember, the first time the substitute function is called, it will be with a 
binding list and a body of a procedure, so if this body is a lambda form we only want to 
substitute the free variables in the this lambda form, or in other words, if this lambda 
form has any formal parameters in common with the enclosing lambda form, then we 
want to assure that these do not get substituted incorrectly. We assure this by making a 
recursive call on the body of the lambda form (which formed the body that we are 
considering in the first place) but with any binding to a formal that also occurs in the 
inner lambda form removed. Once we get the result back we can reconstruct the lambda 
form and return it: 
 

(list 'lambda  
      (cadr form)  
      (substitute (caddr form)  
                  (remove-binding bindings 
                                 (cadr form)))) 

 
The entire substitute procedure thus looks like this: 
 
 (define substitute 
   (lambda (form bindings) 
     (if (list? form) 
       (if (eq? (car form) 'lambda) 

    (list 'lambda  
              (cadr form)  
              (substitute (caddr form)  
                         (remove-binding bindings 
                                        (cadr form)))) 
        (map (lambda (element)   

                    (if (list? element)    
                      (substitute element bindings)   
                      (let ((pair (assv element bindings)))  
                        (if pair               
                          (cdr pair)  

                element)))) lst)) 
  (car (substitute (list form) bindings))))) 

 
 
Now we just need to consider the remove-binding procedure. All it needs to do is return 
the original binding list with any binding whose name is equal to any of the names in the 
formal parameter list removed: 
 

(define remove-binding 
  (lambda (assoc-lst name-lst) 
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    (for-each  
      (lambda (name) 
        (set! assoc-lst 
              (filter (lambda (pair) 

                             (not (eq? (car pair) name)))  
                                assoc-lst)))  
           name-lst) 

    assoc-lst)) 
 

We use the for-each function, which behaves just like map, except it does not return 
anything. For each element in the list of names that we wish to remove from the binding 
list we perform the (set! ...) line, which updates the binding list with the result of 
the call to filter. In other words, each call to filter will either return the original 
binding list, or the original binding list with one pair removed, namely the pair(name . 
???) if it exists in the list. We do this filtering for each name, and update the binding list 
each time using set!, once we are done we return the new binding list. 
 
With everything in place we can now write the evaluate function. 

The Main Evaluate Function 
 
A Scheme form is either of the form V, where V is a name or a number, or of the form 
(...) which is a list. We consider these two different formats as the first part of the 
evaluate function.  
 

(define evaluate 
  (lambda (form) 
    (if (list? form) 
      ;; case statement here 
      ;; if statement here  
     ))) 

 
Let us deal with the if statement first: 
 
Either the form is a number (in which case we call the number-rule function) or it is a 
name (in which case we call the name-rule function) 
 
 (if (number? form) 
   (number-rule form) 
   (name-rule form)) 
 
The case statement looks like this: 

 
(case (car form) 
  ((define) (define-rule (cadr form) (caddr form)))) 
  ((lambda) form) 
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  ((if)     (if-rule (cadr form)  
 (caddr form)  
 (cadddr form))) 

  (else     (application-rule form))) 
    
Note that in our evaluator we really do not do anything to evaluate a lambda form (unless 
it is being applied!), that is why we do not have a lambda-rule like in The Rules of 
Evaluation. Note, I put an If Rule in, we will describe this rule shortly. 
 
Lastly, we can write a loop to constantly read and evaluate input from the user: 
 

(define loop 
  (lambda () 
    (display "> ") 
    (let ((command (read))) 
       (if (eq? command 'stop) 
         #t 
         (begin 
           (let ((result (evaluate command))) 
             (if (not (void? result)) 
               (display (format "Result: ~a" result))) 
             (loop))))))) 

 
 
This concludes this little exercise in writing an evaluator. Keep in mind that there is no 
syntax checking, which of course means that the evaluator will crash if you do not feed it 
syntactically correct programs. You can restart it with the command (loop). 
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Additional Rules 

If Rule 
 
A programming language is not much fun if we cannot make choices. So for 
completeness we add an if statement (just like the if statement in Scheme). 
 
The If Rule is simple: 
 
 Syntax: (if form1 form2 form3) 
 
 [If Rule] Evaluate form1, if it does not evaluate to #f then evaluate form2 else 
     evaluate form3. 
 

(define if-rule 
  (lambda (test-form true-form false-form) 
    (if (evaluate test-form) 
      (evaluate true-form) 
      (evaluate false-form)))) 

 
A small curiosity about the If Rule is that only one of either the true-form or the 
false-form is evaluate. This can be seen in Scheme by the following: 
 

 (define a 1) 
 (define b 1) 
 (if #f (set! a 2) (set! b 2)) 
 a 
1 
 b 
2 

 
This means that an if form is not evaluated as a regular application. We call an if form a 
special form because not all elements are evaluated. The define form is also special as the 
name part is not evaluated (i.e., not attempted looked up in the environment before it is 
bound!) 
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Global vs local environments 
 
Consider the following Scheme forms: 

  
 (define x 1) 
 (define f (lambda (x) 

            (lambda (y) 
              (set! x (+ x y))  
              x))) 

 (define g (f 0)) 
 x 
1 
 (g 10) 
10 
 (g 0) 
10 
 x 
1 

 
We first define a global variable x (bound in the global user environment) and assign it 
the value 1. Next we define a function f, which takes in a parameter x and returns a 
procedure that accepts one parameter y, adds y to x and returns x. 
We then define g to be the function returns from a call to f with the value 0 for the 
parameter x. 
When we make the call (g 10) the return value is 10 and not 11! Why is that? The x 
used by g is not the x in the global environment, but the value of the parameter passed to 
f when g was bound. Thus this parameter x must live somewhere else than the global 
environment. In our version of the Scheme interpreter (the one we just wrote) we cannot 
emulate the above! We do not have set! in our implementation (set! is not a part of 
the λ-calculus). As a matter of fact, if we wish to support functions like set! (which 
alters an existing variable binding, then we cannot implement the evaluator with call-by-
value substitution). We would need to consider the frames that get generated using the 
droid model presented in lecture. A frame is really an activation record, which holds all 
the bindings for the formal parameters, and sometimes these frames are not removed 
when the function call with which they were associated terminate. If a function returns 
another function that accesses some of the formal parameters like in the above example, 
the frame is ‘captured’ and kept around. For our evaluator to support such craziness we 
could need to associate with each binding in the global environment of a function an 
environment, namely the environment in which it was ‘born’. 
 
Most function would be born in the global environment if they are straight forward 
(define <name> (lambda (…) <body))) function. However, if a function is 
bound and placed in the global environment (like g is above), but the function is ‘born’ in 
a different frame (in the case above the function bound to g is born in the frame 
associated with f), then we must associate this frame with the function. This gives us 
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what is commonly referred to as a static-link. A static link is used for scope-resolution, 
that is, it tells us where to look for variables when we need them; we first look in the 
frame in which the function was born, then in its parent’s frame etc. This mimics the well 
known scoping mechanism known as static scoping found in many languages like C and 
Java. A substitution based language like the one we just implemented does not have the 
notion of scoping apart from the global environment and the parameters in a lambda 
form. 
 
This can get pretty hairy, so we will not consider the finer details of this problem, but if 
we wish to extend our evaluator to support set! like functions, we need to do the 
following: 
 

1. Associate with each binding of a function the frame it was born in. 
2. When applying a function to arguments, and when encountering a name, look 

for the name in the associated environment, if nothing is found, look in the 
environment of the closest enclosing lambda form. Keep doing this until the 
global user environment is reached, and if the name is not defined in this 
chain of environments, then the name is not bound. 

3. Drop the substitution method for the Procedure Rule. Instead, the Procedure 
Rule creates a new environment, fills it with bindings and then evaluates the 
body.  

4. Change the Name Rule to work in accordance with 2. 
 
For completeness it should be noted that set-car! and set-cdr! works just like 
set! just operates on pairs and sets the car or the cdr. Furthermore, it should be clear 
that since a function like set! alters state, it breaks the substitution model as there are 
no variables kept when substituting the free variables in the body (except for the free 
variables that are not bound by the binding list of formals to actuals) 
  
One last small curiosity arises when we do add an extra parameter representing the 
environment to all our evaluation functions. In particular consider the problem we get if 
we change the evaluate function to take in a form as well as an environment: In the 
Application Rule we map the evaluate function onto the list of forms like this (map 
evaluate lst), but now we need to add an extra parameter to the evaluate 
function, namely the environment (let us call it env). 
 
Let us experiment with map: 
 

 (map evaluate lst) 
map: arity mismatch for procedure evaluate: expects 2 
     arguments, given 1 

 
or 

 (map evaluate lst env) 
map: all lists must have same size; arguments were: 
  #<procedure:evaluate> (4 5 6) () 
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The last error message is a little confusing; it just happens that env is in fact a list, but 
even if env had the right length, it would all be wrong because subsequent uses of env 
would assume it to be a list of pairs, not just a pair! This can take some time for you to 
understand, but it is well worth spending a little time on; as I said, map is a very powerful 
and useful function to know and understand. 
 
The correct way of doing it is as follows: 
 
 (map (lambda (form) (evaluate form env)) lst) 
 
By wrapping an anonymous lambda form around the call to evaluate, we get a 
function that takes one parameter (which map will supply from the list lst), and calls 
evaluate with 2 parameters: the element supplied by map, and the environment.  

Tracing 
 
In the discussion of the implementation I did not mention anything about tracing the 
evaluator. It is an interesting ability to have, but it would have cluttered the description of 
the implementation, so I left it out. However, in my implementation I have added tracing. 
 
Tracing can be turned on and off with the commands (trace on) and (trace 
off). If you turn trace on you will get information about what the evaluator is currently 
evaluating. 
 
Here is an example showing a trace of the factorial function: 
 
> (define fact (lambda (n) (if (= n 0) 1 (* n (fact (- n 1)))))) 
evaluating '(define fact (lambda (n) (if (= n 0) 1 (* n (fact (- n 1))))))' [Define Rule] 
evaluating '(lambda (n) (if (= n 0) 1 (* n (fact (- n 1)))))' => #<procedure> 
 
> (fact 3) 
Result: 6 
 
> (trace on) 
 
> (fact 3) 
evaluating '(fact 3)' [Application Rule] 
| evaluating 'fact' => (lambda (n) (if (= n 0) 1 (* n (fact (- n 1))))) [Name Rule] 
| evaluating '3' => 3 [Number Rule] 
| [Procedure Rule] 
| Substituting in '(if (= n 0) 1 (* n (fact (- n 1))))' with bindings: ((n . 3)) 
| | Substituting in '(= n 0)' with bindings: ((n . 3)) 
| | => '(= 3 0)' 
| | Substituting in '(* n (fact (- n 1)))' with bindings: ((n . 3)) 
| | | Substituting in '(fact (- n 1))' with bindings: ((n . 3)) 
| | | | Substituting in '(- n 1)' with bindings: ((n . 3)) 
| | | | => '(- 3 1)' 
| | | => '(fact (- 3 1))' 
| | => '(* 3 (fact (- 3 1)))' 
| => '(if (= 3 0) 1 (* 3 (fact (- 3 1))))' 
| evaluating '(if (= 3 0) 1 (* 3 (fact (- 3 1))))' [If Rule] 
| evaluating '(= 3 0)' [Application Rule] 
| | evaluating '=' => #<primitive:=> [Name Rule] 
| | evaluating '3' => 3 [Number Rule] 
| | evaluating '0' => 0 [Number Rule] 
| => #f [Primitive Rule] 
| evaluating '(* 3 (fact (- 3 1)))' [Application Rule] 
| | evaluating '*' => #<primitive:*> [Name Rule] 
| | evaluating '3' => 3 [Number Rule] 
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| | evaluating '(fact (- 3 1))' [Application Rule] 
| | | evaluating 'fact' => (lambda (n) (if (= n 0) 1 (* n (fact (- n 1))))) [Name Rule] 
| | | evaluating '(- 3 1)' [Application Rule] 
| | | | evaluating '-' => #<primitive:-> [Name Rule] 
| | | | evaluating '3' => 3 [Number Rule] 
| | | | evaluating '1' => 1 [Number Rule] 
| | | => 2 [Primitive Rule] 
| | [Procedure Rule] 
| | Substituting in '(if (= n 0) 1 (* n (fact (- n 1))))' with bindings: ((n . 2)) 
| | | Substituting in '(= n 0)' with bindings: ((n . 2)) 
| | | => '(= 2 0)' 
| | | Substituting in '(* n (fact (- n 1)))' with bindings: ((n . 2)) 
| | | | Substituting in '(fact (- n 1))' with bindings: ((n . 2)) 
| | | | | Substituting in '(- n 1)' with bindings: ((n . 2)) 
| | | | | => '(- 2 1)' 
| | | | => '(fact (- 2 1))' 
| | | => '(* 2 (fact (- 2 1)))' 
| | => '(if (= 2 0) 1 (* 2 (fact (- 2 1))))' 
| | evaluating '(if (= 2 0) 1 (* 2 (fact (- 2 1))))' [If Rule] 
| | evaluating '(= 2 0)' [Application Rule] 
| | | evaluating '=' => #<primitive:=> [Name Rule] 
| | | evaluating '2' => 2 [Number Rule] 
| | | evaluating '0' => 0 [Number Rule] 
| | => #f [Primitive Rule] 
| | evaluating '(* 2 (fact (- 2 1)))' [Application Rule] 
| | | evaluating '*' => #<primitive:*> [Name Rule] 
| | | evaluating '2' => 2 [Number Rule] 
| | | evaluating '(fact (- 2 1))' [Application Rule] 
| | | | evaluating 'fact' => (lambda (n) (if (= n 0) 1 (* n (fact (- n 1))))) [Name Rule] 
| | | | evaluating '(- 2 1)' [Application Rule] 
| | | | | evaluating '-' => #<primitive:-> [Name Rule] 
| | | | | evaluating '2' => 2 [Number Rule] 
| | | | | evaluating '1' => 1 [Number Rule] 
| | | | => 1 [Primitive Rule] 
| | | | [Procedure Rule] 
| | | | Substituting in '(if (= n 0) 1 (* n (fact (- n 1))))' with bindings: ((n . 1)) 
| | | | | Substituting in '(= n 0)' with bindings: ((n . 1)) 
| | | | | => '(= 1 0)' 
| | | | | Substituting in '(* n (fact (- n 1)))' with bindings: ((n . 1)) 
| | | | | | Substituting in '(fact (- n 1))' with bindings: ((n . 1)) 
| | | | | | | Substituting in '(- n 1)' with bindings: ((n . 1)) 
| | | | | | | => '(- 1 1)' 
| | | | | | => '(fact (- 1 1))' 
| | | | | => '(* 1 (fact (- 1 1)))' 
| | | | => '(if (= 1 0) 1 (* 1 (fact (- 1 1))))' 
| | | | evaluating '(if (= 1 0) 1 (* 1 (fact (- 1 1))))' [If Rule] 
| | | | evaluating '(= 1 0)' [Application Rule] 
| | | | | evaluating '=' => #<primitive:=> [Name Rule] 
| | | | | evaluating '1' => 1 [Number Rule] 
| | | | | evaluating '0' => 0 [Number Rule] 
| | | | => #f [Primitive Rule] 
| | | | evaluating '(* 1 (fact (- 1 1)))' [Application Rule] 
| | | | | evaluating '*' => #<primitive:*> [Name Rule] 
| | | | | evaluating '1' => 1 [Number Rule] 
| | | | | evaluating '(fact (- 1 1))' [Application Rule] 
| | | | | | evaluating 'fact' => (lambda (n) (if (= n 0) 1 (* n (fact (- n 1))))) [Name Rule] 
| | | | | | evaluating '(- 1 1)' [Application Rule] 
| | | | | | | evaluating '-' => #<primitive:-> [Name Rule] 
| | | | | | | evaluating '1' => 1 [Number Rule] 
| | | | | | | evaluating '1' => 1 [Number Rule] 
| | | | | | => 0 [Primitive Rule] 
| | | | | [Procedure Rule] 
| | | | | Substituting in '(if (= n 0) 1 (* n (fact (- n 1))))' with bindings: ((n . 0)) 
| | | | | | Substituting in '(= n 0)' with bindings: ((n . 0)) 
| | | | | | => '(= 0 0)' 
| | | | | | Substituting in '(* n (fact (- n 1)))' with bindings: ((n . 0)) 
| | | | | | | Substituting in '(fact (- n 1))' with bindings: ((n . 0)) 
| | | | | | | | Substituting in '(- n 1)' with bindings: ((n . 0)) 
| | | | | | | | => '(- 0 1)' 
| | | | | | | => '(fact (- 0 1))' 
| | | | | | => '(* 0 (fact (- 0 1)))' 
| | | | | => '(if (= 0 0) 1 (* 0 (fact (- 0 1))))' 
| | | | | evaluating '(if (= 0 0) 1 (* 0 (fact (- 0 1))))' [If Rule] 
| | | | | evaluating '(= 0 0)' [Application Rule] 
| | | | | | evaluating '=' => #<primitive:=> [Name Rule] 
| | | | | | evaluating '0' => 0 [Number Rule] 
| | | | | | evaluating '0' => 0 [Number Rule] 
| | | | | => #t [Primitive Rule] 
| | | | | evaluating '1' => 1 [Number Rule] 
| | | | => 1 [Primitive Rule] 
| | => 2 [Primitive Rule] 
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| => 6 [Primitive Rule] 
Result: 6 

Syntax Checking 
 
As mentioned earlier, the evaluator that we implemented does not have any syntax 
checking. This means that the evaluator will crash if you type in a syntactically illegal 
form. 
 
I have added a crude syntax checker to my version of the evaluator. The syntax checker 
catches the most frequently made errors. It is still fairly easy to break it. 
 

My Evaluator 
  
You can download and play with my version, and improve it if you like. It can be 
obtained from the course website (www.cs.unlv.edu/~matt) under teaching/CS789. 
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