A Note and Example of constructing an SLR parse table

In this note we consider the following small grammar:

(1) E—-E+T
(2) E—-T
3) T—>TxF
4 T-—>F
(5) F — (E)
(6) F —id

We are trying to produce the action and goto tables found in Figure 4.31 in the textbook. Once
we have these we can deploy the following following parse algorithm (Figure 4.30 in the textbook):

set ip to the first symbol of w$;
repeat forever begin
let s be the state on top of the stack and a the symbol pointed to by ip;
if action[s,a] = shift s’ then begin
push a then s’ on top of the stack;
advance ip to the next input symbol;
end
else if action[s,a] = reduce A — [then begin
pop 2x | B | of the stack;
let s’ be the state now on top of the stack;
push A then goto[s’, A] on top of the stack;
output the production A — 3;
end
else if action[s,a] = accept then
return;
else error();
end

A configuration of an SLR parser is a pair whose first component is the stack and second compo-
nent the unparsed input:
(80 X1 S1 X2 S9 - -Xm Sy Q@ Q41 - Gn$)

which represents the sentential form X7 Xo --- X, a5 @441 --- ap.

We have 4 different moves:
1. If action[sy,, a;) = shift s we get the

(so X1 81 Xo 82+ X S G5 S,0541 *++ ap9)

2. If action|s,,,a;] = reduce by A — 3, we get

(50 X181 Xo 82 Xy Sur A 8,05 Q41 --- an$)

where s = goto[sy,—r, A], and r is the length of 5. We first pop 2r symbols of the stack
exposing state sp,—,, then push A and the state s = goto[sy,—,, A] onto the the stack. The
input is left untouched.

3. If action[sy,,a;] = accept, we are done parsing.

4. If action[sy,, a;] = error, stop parsing and produce an error.

Remember, an item for a grammar G is a production of G with a dot at some position of the
right side. Thus, production A — XY Z yields the four items:

A—-XYZ
A—-X-YZ
A—- XY . -Z
A= XYZ.

and remember a production A — € generates only the item A — -

1 The closure Operation

If I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by
the following two rules:

1. Initially, every item in I is added to closure(I).

2. If A— «-Bpis in closure(I) and B — < is a production, then add B — -y to I, if it is
not already there. We apply this rule until no more new items can be added to closure(I).

Example 4.34

Remembering that we have to add a production S’ — S before using the grammar, where S is
the original start symbol we can consider the augmented expression grammar presented on the
first page. For completeness, let us first list all the possible items that can be generated from this
grammar:

E'-E

E—-E+T|T

T—-TxF|F

F— (E)|id

G with the extra start production.

E' - E: [E' — -E], [E' — E]
E-FE+T: [E—-E+T,[E-E-+T,[E-E+T|,[E-E+T:]
E-T: [E—-T),[E—T-]
TTxF: [T—-T+F),[T—T- -xF],[T—Tx-F],[T—>Tx*F-]
T — F: [T — -F|,[T—F-]
F—(E): [F=-(B),[F—=(E)[F—=(E-),[F—(E)-]
F —id: [F—-id], [F —id -]

Now, if I = {[E' — -E]}, we compute closure(I) in the following way.
1. Start by by setting closure(I) = {[E' — -E|}.

2. Since there is a - immediately left of E we have to add all the items that are derived from
the production £ — o with dots at the left end, that is, items of the form F — -a.
This amounts to the set {[E — -E + T|,[E — -T]}.

We now have closure(I) = {[E' — -E], [E — -E+T],[E — ‘T|}.

3. Since the previous step introduced the item [E — -T|, we need to do step (2) again for
this item. The set of items that will be added because of this consists of items of the form
T — -a, which are the two items in {[T" — ‘T % F|,[T — -F|}, which now gives us the
following;:
closure(I) = {[E' — -E], [E — -E+T), [E — -T|, [T — -T*F), [T — -F]}.

4. The previous step added the item [T' — -F] to closure(I), which means we have to add any
item of the form F' — -a. Two items satisfy this this, and those are in the set {[F' — -(E)],
[F — -id]}. This gives us the final value of closure(I):
closure(I) ={[E' — -E|, [E - -E+T|,[E —» ‘1], [T — ‘T*F], [T — -F|, [F - -(E)],
[F — -id]}.

The closure-set gives rise to two additional sets:

e The set of kernel items, which include the initial item, S’ — -5, and all items whose dots
are not at the left end.

e The set of nonkernel items, which have their dots at the left end.

Note, for any set of items I, closure(I) = closure(kernel(closure(I))); in other words, we only
need to store the kernel items of a set, the rest can be computed using the closure function at
any time.

2 The goto Operation

In order to compute the action and goto tables we need to consider another function, the goto
function or operation. This function is defined in the following way: goto(I, X), where I is a set
of items, and X is a grammar symbol (terminal or nonterminal), is defined as:

goto(I, X) = closure({[A — aX - f] | [A = a- Xp]€ I})

or more intuitively, for a set of items I and a grammar symbol X, we find all the items in I of
the form [A — a - Xf] (call this set J), and for a set J' which consists of the same items as J
with the dot moved to right of X in all items, we can compute goto(I, X) as closure(J').

Example 4.35

If I is the set of two items {[E' — E-],|[E — E-+T]}, and we are looking to compute goto(I,+), we
start by finding all items in I where a dot appears left of a +. Only the second item [F — E- 4T
satisfies that constraint. We thus have J = {[E — E-+T|} and J' = {[E — E+-T]}. Now simply
compute closure(J'), which is {[E — E + -T,[T — ‘T = F],[T — -F|,[F — -(E)],[F — -id]}.

3 The Sets — of — Items Construction

Using the closure and the goto functions we can now compute a set-of-items called C in the
following way:

procedure items(G')
begin
Iy := closure({[S" — -S]});
C := {I()};
1 :=1;
repeat
for each (I € C,X € G') such that (goto(I,X) #0 A goto(I,X) ¢ C) do
I; := goto(1, X);
C:=CuU{L}
1:=1+4+1;
until no more sets can be added to C;
end

Example 4.36 We can now, using the above procedure, compute the canonical collection of sets
of LR(0) items for the grammar shown at the beginning. We start by computing Iy, that is, the
closure of [E' — -E].

Iy:
Iy = closure({[E' — -E]})
= closure({[E' — -E|,|[E — -E+T],[E — T]})
= closure({[E' - -E],|[E —» -E+T|,[E — ‘T),[]T — T « F|,[T — -F|})
= closure({[E' - -E],|[E —» -E+T|,[E — ‘T),[]T — -T « F],[T — -F],[F — -(E)],[F — -id]})

— {[E' = -E)[E > -E +T),[E - T|,[T — T F|,[T — -F|,[F — -(E),[F — -id]}

Having successfully computed Iy we now proceed to computing goto(Iy, X) for
X €{E,T,F,+,%,(,),id}.

I = goto(Iy, E):

We start by finding the items in I of the form [A — a- Ef], that is, the J set as described above.
Since only two items in Iy have the dot left of E, we get: J = {[E' — -E],[E — -E+T]}. Now cre-
ate J' by moving the dot to the right of E in all items in J. We get J' = {[E' — E'|,[E — E-+T]}.
Thus:

goto(ly, E) = closure(J')

closure({[E' — E'|,[E - E- +T]})
closure([E' — E -]) U closure([E — E - +T))
{[E' > E-]JU{[E—>E-+T|}

= {[E—>E-|,[E—>E-+TJ}

= Il

Remember, computing the closure of an item of the form [A — « - af], where a is a terminal is
easy, it only consists of itself, that is, closure([A — a-af]) = {[A — «-ap]}. This is because no
production of the form a — v exists as a is a terminal and G is context-free.

We can now add the first entry to our goto table:

‘goto[O, El=1 ‘

I, = goto(1y, T):

Again, first find J. J = {[A - a-Tf] € Iy} = {[E — -T + F|,[E — -T|}. We then construct
J'={[F—=T-+F],JE - T-]}, and compute like before:

goto(Ip,T) = closure(J')

= cosure({[E =T - +F[E—-T-]})
closure([E — T - + F]) U closure([E — T -])
{[E-T-+F}U[E—>T-]}
{E->T-+F),[E->T-]}
= IQ

We can now add the second entry to our goto table:

gotol0,T] =2

I3 = goto(Iy, F):

J ={[T — -F]}. We then construct J' = {[T" — F -]}, and compute like before:

goto(Iy, F) closure(J")
= closure({[T — F-1]})
{IT - F-]}

= I3

which adds yet another entry to the goto table:

‘goto[O, F]=3 ‘

Iy = goto(Iy, ():

J=A{[F = «(E)]}. J'={[T — (-E)]}, and compute:

goto(Ip,() = closure(J")
= cdosure({[F — (-E)]})
= {[F->(E),[E—-E+T)[E— T[T - Tx*F[T — FJ,
I[F — «(E)[F — -id]}

Since (is a terminal, we do not create any entry in the goto table. We return to this case when
we fill in the action table. In short, it adds an entry to action[0,id] to shift and go to state 4.

goto(1y,)), goto(ly,+), goto(ly, *):

J={[A— «a-)p] € Iy} = 0. No items in I has a dot before a), thus J is empty, and no goto
set can be computed. The same goes for + and *.

I5 = goto(Iy,id):

J={[F — -id]}. J' = {[F — id‘]}, thus we get:

goto(Ily,id) = closure(J")
= cosure({[F — id‘]})
= {[F —id]}
= I5

We have now considered all possibilities for goto(Iy, X), so we can move on to goto(I;, X) for all
grammar symbols X.

goto(I1, X):

Recall, I = {[E' — E -], [E — E - + T}, which makes it obvious that only goto(I;,+) will yield
a non-empty set. For + we have J = {[F - E- +T}. J'={[E — E + -T]}, and

goto(I,, E) = goto(I1,T)

I
Q
QS
~
QS
~
—
&
N

I
Q
QS
~
Q
~
iy

I I

Q Q
SRS

S S

N AN AN AN~
~ ~

— =

X ~— ~

~—

goto(I1,+) = closure(J')
= closure({[E — E+-T]})
= {[E—-E+T.T—- T+F|T—-F|,[F—-(E),[F — -id]}
= Iﬁ

Again, since + is a terminal, we do not add any entry to the goto table.

goto(Iy, X):

Where only + yielded non-empty goto sets for I, so does * for I, so for *, J = {[E = T+ x F]},
and J' = {[E — T * -F]}, so we get

goto(Iz, E)

goto(Io, *)

goto(I3, X):

gOtO(I27)
goto(I, F')
goto(Iy, ()
gOtO(IQa))
goto(Is, +)
0

closure(J")

closure({[E — T * -F]})
{[E = T % -F|,[F — -(E)],[F — -id]}
I

Since I3 = {[T" — F]} no non-empty goto set can be computed.

goto(ly,)), goto(ls,+), goto(1y, *):

Since I, does not contain any items with a dot left of a), a +, or a *, these three goto are empty.

goto(Iy, E):

J=A[F - (-E)], [E = -E+T]}. Sowe get J' = {[FF — (E+)],[E — E-+T]}. So we can compute

goto(Iy, F)

closure(J")

closure({[F — (E-)|,|JE - E- +T|})

closure({[F — (E-)]}) U dosure({[E - E- +T]})
{F=(E-)} U{[E—E-+T]}

{[F = (E-)L[E = E- +T]}

I3

which gives an entry in the goto table:

goto(I4, T):

‘goto[4, El=38 ‘

J=A{[E - T[T - -T«F|}. JJ={[E— T,]T - T- % F]}, and we compute:

goto(14,T) = closure(J')

= cdosure({[E - T-,[T - T- x F|})

= closure({[E—)T]}) U cosure({[T — T - * Fl})
= {[E->T]} Uu{[T =T «FJ}

= §[T[T =T« FJ}

Since the goto set computed is exactly I we don’t add anything new set to C, but we do get the
following entry in the goto table:

goto[4,T] =2
goto(Iy, F):

J={[T — -F|}, so J' = {[T — F-]}, which gives us the following:

goto(I4, F) = closure(J')
= closure({[T — F-]})
- (TP
— I

which doesn’t give any new sets, but the following entry in the goto table:

‘goto[LL, F]=3 ‘

goto(Iy, ():

J=A{[F — (E)]}, so J' = {[F — (-E)]}, which means we get the following:

goto(Iy,() = closure(J')
= cdosure({[F — (-E)|})
—

S0 again, no new set is added to C.

goto(ly,)), goto(ls,+), goto(1y, *), goto(1y,id) :

Since no dot appears before +, * and) in I, we get:

goto(I,+) = goto(Is,*)
= gOtO(Lb))
= 0

and for id, we get J = {[F — -id]}, with J' = {[F — id-]}, which yields

goto(I4,id) = closure(J")
closure({[F — id-|})
([P > id]}

= Ik

again, no new set is added to C.
goto(I5, X):

Since I5 = {[F — id:]} we get:

goto(Is,X) = {, for all X.
goto(Is, F):
No dot appears left of any E in Ig, so goto(Is, E) = (.
goto(Is, T):

J={E—>E+T],[T— -T+F|},soJ' ={[E—E+T],[R— R- xFl]}.

goto(Ig, T) = closure(J')

closure({[E - E+ T, [T - T- % F|})

closure({[E - E+T-]}) U closure({[T — T - * F]})
{[E—-E+T]} U{[T—>T-*F]})
{[E->E+T],[T—>T-xF|})

= Ig

which gives the following entry in the goto table:
goto[6,T] =9
goto(Ig, F):

J={[T — -F|}, so J' = {[T — F-]}, which quickly gives us:

goto(Is, F) = closure(J')
= closure({[T — F-]})
- (T~ F)
— I

No new sets are added to C, but we get an entry in the goto table:

‘goto[ﬁ, F| = 3‘

goto(Is, (), goto(lg,id):

For (we get goto(Is, () = Iy, and for id we get goto(Is,id) = I;.

goto(1g,)), goto(lg, *), goto(Is, +):

No dot appear left of either), * or + in I4, so only empty goto sets are generated.

Only two more sets (119 and I11) are added to C, the rest of the sets computed are either empty

or already in C.

0
0
I5
0
0

I
0

For goto(I7, F) we get the following: J = {[T' —» T % -F|}, and J' = {[T — T * F‘]}, which of
course gives us goto(I7, F) = closure(J') = {[T — T x F']} =: Ijp; in addition we get an entry
into the goto table:

goto(Ig, E)

goto(Ig, +)
gOtO(I87))

‘ goto[7,F] =10 ‘

closure({[F — (E)-|})

{[F = (E)]}
I,

goto(Iy, E)

goto(Iy, x)

goto(I1p, X)

10

goto(Iy,T)
goto(Iy, F')
goto(Iy,id)
goto(Iy, ()
goto(Iy,+)
goto(Iy,))
0

I

goto(I11,X)
@, for all X

4 The goto table

We now have the following entries in the goto table (State 7 is associated with I;):

State | E T F
0|11 2 3
1
2
3
418 2 3
5
6 9 3
7 10
8
9
10
11

We can now turn our attention to creating the rest of the parsing table, that is, filling in the
action entries.

5 The SLR Parsing Table Algorithm

Here is the algorithm for creating both the goto and the action part of the parsing table.

1. Coustruct C = {Iy, I, ..., I}, the collection of sets of LR(0) items for G'.
2. State i is constructed for I;. The parsing actions for state 7 are determined as follows:

(a) If [A = a-af] is in I; and goto(I;,a) = I;, then set action[i,a] to shift j; a must be
a terminal.

(b) If [A — «] is in I;, then set actionl[i, a] to reduce [A —] for all a in FOLLOW (A);
here A may not be S'.

(c) If [S" — S] is in I;, then set action][i, $] to accept.

3. The goto transition is created for all nonterminals A using the rule: if goto(I;, A) = I; then
gotoli, A] = j.

4. All entries not defined by rules (2) and (3) are marked error.

5. The initial state of the parser is the one constructed from the set of items containing
[S" — S].

11

6 The SLR Parsing Table (Part 1)

We can easily fill in the parsing table with shift entries, that is, the ones defined by (2a) above

Since Iy = {[E' —» -E|,[E - -E+T|,[E — -T|, [T —» T« F], [T — -F], [F — «(E)], [F — -id]},
the subset of items of the form [A — « - af] is {[F — «(E)], [— -id]}, so we get the following:

e [F — -(E)]: Since goto(Iy, () = I1, we get the entry action[0, (] = s4.

e [F — -id]: Since goto(Iy,id) = I5, we get the entry action|0,id] = s5.

If we do this for all items [A — « - af] is any I; as described above in (2a) we get the following:

action goto

State |id + * () $ |E T F
0] sd s4 1 2 3
1 s6 acc

2 ST

3

4| sb s4 8 2 3
5

6 | sb s4 9 3
7|85 s4 10
8 s6 sl1

9 ST

10

11

However, we still have not filled in the actions from part (2b), that is, the reduce actions.

In order to do so we need to find all sets of items that contain items of the form [A — «:]. By
inspecting the 11 item sets we get the following table:

Item set Items of the form [A — o]

L [E' — E] — this one gave acc for action[1, $]
I3 [T — F]

I [T — T % F]

I [F — (E)]

In order to finish the parsing table we need to calculate the following FOLLOW sets:

12

A FOLLOW (A)
E {3,+)}

T {8,+,),*}

F o {$,+,),*}

Remember, F can be followed by $ because we have added the extra production E' — FE.

We can now compute the last of the entries in the action table, that is, the ones that will be
reduce entries.

e [E —T]in Iy. Since FOLLOW (E) = {$,+,)} we get the following en-ties:
— action[2,$] = reduce E —» T =12

— action[2,+] = reduce E — T = r2
— action[2,)] = reduce E — T =12

[T"— F-] in I5. Since FOLLOW (T) = {$,+,), *} we get the following entries:
— action[3,8] = reduce T - F =14
— action[3,+] = reduce T' — F =r4
— action[3,)] = reduce T'— F =14
— action[3,%] = reduce T — F =r4

[F' — id:] in I5. Since FOLLOW (F) = {$,+,),*} we get the following entires:

— action[5,$] = reduce F — id = r6
— action[5,+] = reduce F — id = r6
— action[b,)] = reduce F' — id = 16
— action[5, %] = reduce F' — id = r6

[E— E+T-]in Iy. Since FOLLOW (E) = {8$,+,)} we get the following entices:

— action[9,8] = reduce FE - EF+T =1l
— action[9,4+] = reduce E - E+T =rl
— action[9,)] = reduce E - E+T =rl

[T"— T x F] in I . Since FOLLOW (T') = {8, +,), *} we get the following en-ties:

— action[10,8] = reduce T — T % F =13
— action[10,+] = reduce T — T x F =13
— action[10,)] = reduce T' - T x F = r3
— action[10,%] = reduce T'— T x F = r3

[F' = (E)-] in I1;. Since FOLLOW (F) = {8$,+,), *} we get the following en-ties:

— action[11,$] = reduce F — (E) = 1)
— action[11,+] = reduce F — (E) =15
— action[11,)] = reduce F — (F) =15
action[11,%] = reduce F — (E) =15

13

7 The SLR Parsing Table (Part 2)

We can now easily fill the reduce actions into the table and get:

action goto
State | id + * () $ |E T F
0] sd s4 1 2 3
1 s6 acc
2 r2 sv7 r2 r2
3 rd r4d rd r4d
4| sb s4 8 2 3
5 6 16 6 16
6 | sb s4 9 3
7|85 s4 10
8 s6 sll
9 rl s7 rl rl
10 r3 r3 r3 13
11 r5 1b r5 rb

Note, the number associated with the reduce action, e.g., r3 means reduce by the production
numbered (3) in the original grammar on page 1.

14

8 One Last Example

Let us parse the string id * id + id using our SLR parsing table.

Stack Input Action
(1) o id *id + id $ | shift id 5 as action[0,id] = s5
(2) 0id5 *id 4+ id $ | reduce by [F — id] as action[5, *] = r6
goto state 3 as goto[0, F] =3
(3) OF3 *id 4+ id $ | reduce by [T — F] as action[3, %] = r4
goto state 3 as goto[0,T] = 2
(4) 0T2 *id + id $ | shift * 7 as action[2, *] = s7
() 0T2*7 id + id $ | shift id 5 as action[7,id] = sb
(6) 0T2*7id5 + id $ | reduce by [F — id] as action[5,+] = r6
goto state 10 as goto[7, F| = 10
() 0T2*7F 10 + id $ | reduce by [T — T * F| as action[10,+] = r3
goto state 2 as goto[0,T] = 2
(8) 0T2 + id § | reduce by [E — T as action|2,+ = r2
goto state 1 as goto[0, E] =1
9) 0E1 +id § | shift + 6 as action[l,+] = s6
(100 0E1+6 id $ | shift id 5 as action[6,id] = sb
(11) 0E1+6id5 $ | reduce by [F' — id] as action[5, $] = r6
goto state 3 as goto[6, F] =3
(12) 0OE1+6F3 $ | reduce by [T — F] as action[3,$] = r4
goto state 9 as goto[6,T] =9
(13) 0E1+6T9 $ | reduce by [E — E + T as action[9,$] = rl
goto state 1 as goto[0, E] =1
(14) 0E1 $ | accept as action[1,$] = accept

15

