
INTERACTIVE MESSAGE DEBUGGER FOR PARALLEL MESSAGE PASSING

PROGRAMS USING LAM-MPI

by

Hoimonti Basu

Bachelor of Technology (Honors)
Indian Institute of Technology, Kharagpur

1998

Bachelor of Science
San Jose State University, San Jose

2003

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science Degree in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

December 2005

Copyright by Hoimonti Basu 2006
All Rights Reserved

ABSTRACT

Interactive Message Debugger for Parallel Message
Passing Programs using LAM-MPI

by

Hoimonti Basu

Dr. Jan B. Pedersen, Examination Committee Chair
Professor of Computer Science

University of Nevada, Las Vegas

Many complex and computation intensive problems can be solved efficiently using

parallel programs on a network of processors. One of the most widely used software

platforms for such cluster computing is LAM-MPI. To aid develop robust parallel

programs using LAM-MPI we need efficient debugging tools. The challenges in

debugging parallel programs are unique and different from those of sequential programs.

Unfortunately available parallel debuggers do not address these challenges adequately.

This thesis introduces IDLI, a parallel message debugger for LAM-MPI, designed on

the concepts of multi-level debugging. IDLI provides a new paradigm for distributed

debugging while avoiding many of the pitfalls of present tools of its genre. Through its

powerful yet customizable query mechanism, adequate data abstraction, granularity, user-

friendly interface, and a fast novel technique to simultaneously replay and sequentially

debug one or more processes from a distributed application, IDLI provides an effective

environment for debugging parallel LAM-MPI programs.

 iii

TABLE OF CONTENTS

ABSTRACT………………………….…………………………………………………..iii

LIST OF FIGURES…………………...…………………………………………………vii

ACKNOWLEDGEMENTS…………...………………………………………………….ix

CHAPTER 1 INTRODUCTION ... 1

Parallel and Distributed Systems .. 2

Debugging in a Parallel Programming Environment.. 5

Multilevel Debugging ... 7

Objectives of this Thesis... 8

Organization of this Thesis ... 8

CHAPTER 2 BACKGROUND AND PREVIOUS WORK.. 10

The Need for a Debugger for Parallel Programs using MPI........................... 10

Current MPI Debuggers and Tools in use by Developers 12

Source Level Debuggers ... 13

Graphical Visualization Debuggers .. 15

Post Processing Debuggers ... 16

Summary ... 18

CHAPTER 3 THE MPI PARALLEL PROGRAMMING PARADIGM 21

MPI ... 21

LAM-MPI ... 23

MPI Functions... 24

Blocking and Non-blocking Message Passing.. 24

Synchronous and Asynchronous Message Passing... 25

Preliminary Routines .. 26

Point-to-Point Message Passing Routines .. 27

Group Communication Routines .. 29

Summary ... 32

 iv

CHAPTER 4 INTRODUCING IDLI – AN MPI MESSAGE DEBUGGER 33

Architecture and Overview... 33

Wrappers for MPI functions in the native C library of IDLI.......................... 34

The PostgreSQL Database .. 35

Front-end User Interface of IDLI and Query Manager................................... 36

Replay ... 36

Features of IDLI.. 37

The Commands: List and Drop... 39

Query Manager ... 43

Built-in Query: Dump... 45

Built-in Query: Locategroup... 48

Built-in Query: Locatep2p .. 49

Built-in Query: Status ... 51

Built-in Query: Trace.. 51

The command: PSQL.. 54

Replay ... 55

Debugging IDLI with IDLI during its development cycle 63

Summary ... 64

CHAPTER 5 IMPLEMENTATION DETAILS OF IDLI... 65

Backend: Distributed Relational SQL Database... 65

Backend: Multiple users’ sessions data generation and management 66

Backend: Logging Meta data generated for messages for each MPI call....... 67

Backend: Storing data from messages exchanged by MPI routines 68

Backend: Mapping MPI function names to unique integer function ids 70

Middle Layer: Native C Library ... 72

Middle Layer: Methodology used for interception of MPI calls 72

Middle Layer: Flow of control in the wrapper functions................................ 75

Middle Layer: Implementation details of the MPI wrapper functions 77

Point-to-point communication routines: MPI_Isend and MPI_Irecv 78

Group Communication Routines .. 81

MPI_Barrier .. 82

 v

MPI_Bcast... 85

MPI_Gather... 89

MPI_Allgather .. 91

Preliminary Routine: MPI_Finalize.. 92

Middle Layer: Wrappers for other MPI Routines... 93

Front End: User Interface for Query Manager and Replay............................. 94

Commands: list N, drop N, psql N, help and exit.. 94

Command: Query N.. 95

Data displayed by each built-in Query.. 97

Query: dump N .. 97

Query: locategroup N ... 98

Query: locatep2p N... 99

Query: status N ... 100

Query: trace N... 101

Query: replay N... 102

Summary ... 105

CHAPTER 6 CONCLUSION AND FUTURE WORK .. 106

Improvements upon current parallel debuggers.. 106

Future Work .. 110

APPENDIX 1.. 113

Programs used for testing IDLI... 113

BIBLIOGRAPHY... 126

VITA ... 129

 vi

LIST OF FIGURES

Figure 1 Categories of current debuggers for MPI programs. 13
Figure 2 A list of some current parallel debuggers.. 17
Figure 3 General structure of an MPI program and a communicator. 23
Figure 4 Classification and names of widely used MPI routines................................... 25
Figure 5 Signatures of preliminary routines of MPI.. 26
Figure 6 Signatures of point-to-point message passing routines of MPI....................... 28
Figure 7 Signatures of group communication routines of MPI. 30
Figure 8 Overview of execution of an application in debug mode with IDLI............... 35
Figure 9 Overall architecture of IDLI’s Query Manager and Replay............................ 38
Figure 10 Menu navigation map of IDLI... 40
Figure 11 Commands list and drop being executed with error checks. 42
Figure 12 Legend for common header row of data displayed by all query commands... 44
Figure 13 Menu of the built-in queries of IDLI’s Query Manager.................................. 44
Figure 14 Chronological list of executions of all MPI routines....................................... 45
Figure 15 Execution of the command dump 2 which sorts all messages by their ids...... 46
Figure 16 The command dump 3 which sorts all messages by their rank. 47
Figure 17 Executions of the commands dump 4 and dump 5. ... 48
Figure 18 Execution of the command dump 6 which sorts by MPI function name......... 49
Figure 19 Executions of the command locategroup N, N = 1, 2, 3, and 4. 50
Figure 20 Executions of the command locatep2p N, N = 1, 2, 3, 4, 5, 6, 7, and 8. 52
Figure 21 Executions of the commands status 0 and status 1. .. 53
Figure 22 Executions of the command trace N. .. 55
Figure 23 PSQL shell invoked to write customized SQLs to access specific data.......... 55
Figure 24 Simultaneous replay of four processes, checks and error messages. 58
Figure 25 Simultaneous use of the Query Manager and Replay. 59
Figure 26 IDLI’s Replay in action with the sequential debugger DDD. 61
Figure 27 Details of IDLI’s RDBMS... 66
Figure 28 The userinfo relation and tuples of data for a user named amma.................... 67
Figure 29 The loginfo relation and example data for the function MPI_Send. 68
Figure 30 The MPI_Recv relation.. 70
Figure 31 Example of SQL with MPI function names as strings 71
Figure 32 Example of SQL with MPI function ids instead of names.............................. 71
Figure 33 The MPIFuncSigId relation with data for MPI_Allgatherv. 72
Figure 34 Schematic Illustration of Native C Library’s Role.. 73
Figure 35 Diagram showing swapping of header files to intercept MPI calls................. 74
Figure 36 Details of functions MPI_Isend and MPI_Irecv.. 79
Figure 37 C code with embedded SQL used to retrieve the GID for MPI_Recv. 81
Figure 38 Details of function MPI_Barrier.. 82
Figure 39 Example of a scenario with multiple MPI_Barrier calls. 84
Figure 40 C code with embedded SQL used to find the GID for MPI_Barrier............... 85

 vii

Figure 41 Details of the function MPI_Bcast. ... 86
Figure 42 Example of a scenario with multiple MPI_Bcast calls.................................... 87
Figure 43 C code with embedded SQL for extracting the GID for MPI_Bcast. 88
Figure 44 Details of the function MPI_Gather. ... 89
Figure 45 C code with embedded SQL for updating the relation loginfo with the GID.. 90
Figure 46 Details of the function MPI_Allgather. ... 91
Figure 47 Details of the function MPI_Finalize. ... 92
Figure 48 First menu of commands for Message Query Manager. 94
Figure 49 C code with embedded SQL query for the command list. 95
Figure 51 The Query Manager’s menu of queries. .. 96
Figure 52 C code with embedded SQL for the command dump 1................................... 98
Figure 53 C code with embedded SQL for the command locategroup 1. 99
Figure 54 C code with embedded SQL for the command locatep2p 1.......................... 100
Figure 55 C code with embedded SQL for the command status N. 101
Figure 56 C code with embedded SQL for the command trace N................................. 102
Figure 57 Listing of the C program used for testing MPI_Send and MPI_Recv. 113
Figure 58 Listing of the C program used for testing MPI_Scatter and MPI_Reduce.... 114
Figure 59 Listing of the C program used for testing MPI_Allgather. 115
Figure 60 Listing of the C program used for testing MPI_Allgatherv. 116
Figure 61 Listing of the C program used for testing MPI_Allreduce............................ 117
Figure 62 Listing of the C program used for testing MPI_Alltoall. 118
Figure 63 Listing of the C program used for testing MPI_Barrier. 119
Figure 64 Listing of the C program used for testing MPI_Bcast................................... 120
Figure 65 Listing of the C program used for testing MPI_Gather................................. 121
Figure 66 Listing of the C program used for testing MPI_Gatherv............................... 122
Figure 67 Listing of the C program used for testing MPI_Isend and MPI_Irecv.......... 123
Figure 68 Listing of the C program used for testing MPI_Reduce_scatter. 124
Figure 69 Listing of the C program used for testing MPI_Wtime................................. 125

 viii

ACKNOWLEDGMENTS

I would like to thank my supervisor, Dr. Matt Pedersen, for helping with theory,

directing the implementation of our message debugger, IDLI and spending countless

hours in proof reading and correcting the thesis. In addition, many thanks go to the

Department of Computer Science at UNLV, particularly Professors Ajoy K. Datta and

Evangelos Yfantis for providing financial support. I am grateful to Dr. Venkatesan

Muthukumar for being my graduate faculty representative. I thank Professors Ajoy K.

Datta and John T. Minor for being on my committee. I would like to thank all my friends

at UNLV and in the city of Las Vegas, especially Erik Tribou, Doina Bein, Betty and

David Stahl, Dr. Uma Nair and the CS office staff for lending me a helping hand

whenever I needed it as well as treating me to delicious meals.

Finally, I want to thank the most important people in my life, my spiritual teacher

Ammachi [Mata Amritanandamayi, reverently known as “The Hugging Saint” all over

the world], my parents, Amalendu and Anima, my maternal uncle, RaghuRam, my

husband, Amal, my brothers, Ardhendu and Dibyendu (alongwith their families), and my

spiritual brothers and sisters, for their endless love, constant support and multifarious

help. A special expression of gratitude for my husband Amal for his love, kindness,

patience, never questioning any of my decisions especially regarding pursuing higher

studies and sponsoring my summer tours across USA with our beloved guru Ammachi.

 I dedicate this thesis at the lotus feet of our beloved guru Ammachi and to all souls

through whom her eternal love and grace has poured into my heart, now and ever.

 ix

CHAPTER 1

INTRODUCTION

The craze for more computing power has been one of the main driving forces in the

advancement of computers. Traditionally, developments at the high end of computing

have been driven by the need for numerical simulations of complex systems such as

weather, climate, mechanical devices, electronic circuits, manufacturing processes, and

chemical reactions [FOS95]. However, the most significant forces behind the

development of faster computers today are emerging commercial applications like video

conferencing, computer-aided diagnosis in medicine, parallel databases used for decision

support, advanced graphics and virtual reality. These applications require a computer to

be able to process large amounts of data in sophisticated ways.

In the past decade there have been tremendous advances in microprocessor

technology. Not only are the processors capable of executing multiple instructions in the

same cycle, clock rates have increased from about 40 MHz to over 2.0 GHz. Desktop

machines, engineering workstations, and computer servers with two, four, or even eight

processors connected together are becoming common platforms for design applications.

Large scale applications in science and engineering rely on larger configurations of

parallel computers, often comprising hundreds of processors. Clusters of workstations

that provide high aggregate disk bandwidth are often used by data intensive platforms

like database or web servers and applications such as transaction processing and data

mining. Applications requiring high availability rely on parallel and distributed platforms

 1

for cost and performance efficient solutions [GRA03]. Although commercial applications

may define the architecture of most future parallel computers, traditional scientific

applications will remain important users of parallel computing technology.

Trends in applications, computer architecture, and networking suggest a future in

which parallelism pervades not only supercomputers but also workstations, personal

computers, and networks. In this future, programs will be required to exploit the multiple

processors located inside each computer and the additional processors available across a

network thus making concurrency a fundamental requirement for algorithms and

programs. Because most existing algorithms are suited for a single processor, this

situation implies a need for new algorithms and program structures able to perform many

operations simultaneously [FOS95]. Therefore we will briefly discuss parallel computing

systems.

Parallel and Distributed Systems

A parallel computer is either a single computer with multiple processors or multiple

computers interconnected to form a coherent high performance computing platform. Thus

there are two basic types of parallel computers (1) shared memory multiprocessor and (2)

distributed memory multi-computer. In a shared memory multiprocessor system multiple

processors are connected to multiple memory modules through some form of

interconnection network, such that each processor can access any memory module which

is employed in a single address space. The executable and data of a program is stored in

the shared memory for each processor to execute and access respectively, thus enabling a

program to access all the data if needed. From a programmer’s point of view the shared

memory multiprocessor is attractive because of the convenience of sharing data. Since it

 2

is difficult to build hardware that has fast access to all the shared memory by all

processors, most large shared memory systems have some form of hierarchical or

distributed memory structure. In such a system processors can physically access nearby

memory locations much faster than distant ones based on the principle of Non Uniform

Memory Access (NUMA) [WIL05].

By connecting computers through an interconnection network we can enable each

processor to send messages to other processors thus creating a system of message-passing

multiprocessors. Generally such a system consists of self-contained computers that could

operate separately which justifies the name distributed memory multi-computer. A

common approach for programming for such a system uses message-passing library

routines that are inserted into a conventional sequential program for message-passing. A

problem is divided into a number of concurrent processes that may be executed on

different computers. Different types of interconnection networks which are used in such

systems are tree, multistage, mesh, hypercube, and crossbar switch [WIL05]. Also there

are systems that are a hybrid of shared memory multiprocessor and distributed memory

multi-computer known as Distributed Shared Memory.

Flynn [FLY72] created a classification for computers. Single processor computers

which generated a single stream of instructions were termed as a single instruction

stream-single data stream (SISD) computers. Multiprocessor systems where each

processor had a separate program and one instruction was generated for each program for

each processor were termed as multiple instruction stream multiple data stream (MIMD)

computers. Computers where a single control unit is responsible for fetching the

instructions from memory and issuing the instructions to the processors who execute the

 3

same instruction in synchronism, but using different data were termed as single

instruction stream-multiple data stream (SIMD) computers. The fourth combination

multiple instruction stream single data stream (MISD) computer does not exist unless one

classifies some fault tolerant systems or pipeline architecture in this category [WIL05].

A parallel programming structure which is often used is Single Program Multiple

Data (SPMD). In SPMD a single source program is written and each processor will

execute its personal copy of this program although independently and not synchronously.

Depending on the identity of the computers, parts of the program will be executed on

some specific computers and parts on other computers. For example in a master-slave

program structure, the program would have parts for the master and parts for slaves,

where master and slaves are different computers on the network.

Current trends in parallel computing reveal that message passing is more popular than

the shared-memory programming paradigm. Since shared-memory constructs are simpler,

using them to develop a parallel version of a program is often faster than a corresponding

message passing version. While the gain in productivity may be appealing, the increase in

performance depends on the sophistication of the compiler [KON]. A compiler for

shared-memory parallel programs must generate code for thread creation, thread

synchronization and access to shared data. In comparison, a compiler for message-

passing parallel programs is much simpler. It consists of a base compiler with a

communication library. However it is difficult to say definitely whether performance is

enhanced using shared-memory constructs or message-passing. But we can admit that the

message-passing model offers more scope for optimization [KON]. Data collection and

distribution algorithms can be optimized for a particular application. Domain

 4

decomposition can be performed based on communication patterns in the code. Another

advantage of message passing is portability. A message-passing program written using a

standard communication protocol can be ported from a network of PCs to a massively

parallel supercomputer without major changes. Message passing can also be used on a

network of heterogeneous machines [KON]. Consequently message passing parallel

programming is more widely used than shared memory programming practices. Based on

this trend we have focused on building a message debugger which is founded on the

concepts of multilevel debugging [PED03] for a message passing programming

environment.

Debugging in a Parallel Programming Environment

Debugging parallel programs can be a tedious and frustrating job. Parallelism

introduced in the computation brings in a new dimension for errors and unexpected

behavior to occur. Programs when tested on individual nodes may run correctly but when

put together to run on a network concurrently might give unpredictable results. Also a

program execution might not be consistent, sometimes they may run to completion as

expected, at other times they might crash and not complete on inputs that had been tested

successfully earlier. Such situations are often referred to as non-deterministic problems.

Moreover, the issue of debugging is rarely covered in textbooks on parallel programming

since the nature of debugging is heuristic. Debugging is strongly influenced by the

sophistication (or lack thereof) of the commercial debugger available for the

programming language selected and the parallel machine [THI]. It is often left to the

programmer as an art to be mastered on one’s own rather than a series of scientific rules

to be learnt from established sources.

 5

Often debuggers for sequential programming like the GNU Debugger (GDB) [GNU]

or the Data Display Debugger (DDD) [DAT] are used to debug the sequential part of a

parallel program at a particular node. Another popular technique is to insert print

statements in the programs to track what is going on during execution. But the limitation

of these processes is stark when a user has to debug a parallel application running on

many nodes where both functionality and data has been distributed among various nodes

of the network. In such a scenario the user needs to understand the whole picture since

the state of the entire application is dependent on the states of all the involved nodes.

Focusing on debugging programs at particular nodes with a sequential debugger without

understanding the big picture does not go a long way in solving intricate and complex

bugs. Moreover nodes need to communicate and coordinate successfully both in

synchronous and asynchronous manner based on conformance of a protocol to ensure the

completion of an execution. Also, we need to remember that the parallel system may be

heterogeneous and the processes will be executing on machines which might have

different operating systems, architecture, instruction sets, file systems and physical

locations. All these issues make the task of debugging in the parallel scenario extremely

difficult and sequential debugging tools are neither designed nor are sufficient to handle

this mammoth challenge [TRI05].

Another issue which makes debugging quite hard in the parallel programming

environment is the lack of infrastructure. In parallel programs, the cause and effect of an

error are often separated by great distance in time and code making it difficult to locate

and debug. Also, this difficulty is enhanced when the cause and effect do not lie in a

single process [TRI05]. A parallel system is much larger and complex than a single

 6

process and many available tools deluge the programmer with information overload,

making it nearly impossible to zero down on useful information pertinent for debugging.

This information overload is often caused by the tool trying to give the user a global view

of the program [PED03]. To add to these issues we have the problems of detection of

deadlocks and checking adherence to a protocol which are not present in sequential code

development and debugging.

Multilevel Debugging

In contrast to the top down approach used in most parallel debuggers and

visualization tools, multilevel debugging is a bottom up approach to debugging and was

developed in [PED03]. Instead of providing a global view of a program and allowing the

user to look for any kind of error using just one tool, the bottom up approach of

multilevel debugging provides not only tools for creation of error hypothesis but

specialized tools for handling each class of error. These tools assist the user to verify a

hypothesis and refine it if necessary. They are also equipped with the ability to help the

user to track the error back to its source code and fix it.

As discussed earlier, in contrast to sequential debugging there are many new types of

errors that arise in parallel programming. To handle these new types of errors, new tools

specific to each type which will provide detailed information to locate and debug the

error are needed. The bottom up approach of multilevel debugging is very well suited for

development of these tools since it not only provides information for hypothesis of an

error but also helps in locating the source of the bug . In multilevel debugging errors are

classified into three classes’ namely sequential, message passing and protocol level

errors. Each class has bugs that are specific to it and a developer has to have a good

 7

understanding of the classes of errors to be able to develop the tools for catching them.

We shall be focusing on debugging the second class of errors, that is, message passing.

Objectives of this Thesis

Our goal is to develop a simple, yet effective, message debugger based on the

principles of multilevel debugging which locates errors due to faulty message passing in

parallel programs. At the same time we intend to avoid the flaws present in current

message debugging tools. Our message debugger shall be designed to avoid information

overloading by providing built-in queries that shall fetch specific data for message

communications done by each process. We wish to arm our message debugger with both

sequential and parallel debugging abilities through the replay of a parallel application’s

execution for any number of processes at respective physical nodes. Also, our message

debugger shall have the flexibility to integrate and work with a sequential debugger

selected by the user. This will help the user to immediately use our message debugger

without having to undergo a steep learning curve for another new sequential debugging

tool. Along with that we want to provide a feature that will enable a user to write

customized queries to get specific and pertinent data necessary to debug a particular type

of errors.

The name of this project is IDLI which is an acronym for Interactive message

Debugger for parallel message passing programs using LAM-MPI. Henceforth

throughout the thesis we shall be referring to our message debugger as IDLI

Organization of this Thesis

A detailed discussion about the current tools for parallel and distributed computing

 8

environment along with their limitations is provided in Chapter 2. IDLI is built to work

with message passing library LAM-MPI. Chapter 3 introduces LAM-MPI and explains

the functionalities of a set of most commonly used MPI routines for parallel

programming. An introduction to IDLI along with meticulous examples explaining each

of its features is provided in Chapter 4. We delve into the intricacies of IDLI’s

implementation details and algorithms in Chapter 5. Chapter 6 provides conclusions and

recommendations for future work.

 9

CHAPTER 2

BACKGROUND AND PREVIOUS WORK

For last two decades a great deal of research effort has been directed at development

of tools for improving the performance of parallel applications and significant progress

has been made [PAN01]. However, the reason for not having highly popular and

standardized debuggers in the parallel domain akin to sequential debuggers like GDB

[GNU] is that they can be extremely difficult to implement. Tool developers must cope

with an inherently unstable environment where it may be impossible to reproduce

program events or timing relationships [PAN99]. Moreover it is often difficult to find a

comprehensive debugging tool capable of handling of all types of errors that arise in the

parallel programming arena [PAN01]. This chapter briefly explains the process of

parallel debugging, current tools available for debugging parallel programs using the

Message Passing Interface (MPI), and their limitations.

The Need for a Debugger for Parallel Programs using MPI

The inherent nature of parallel programs is complex which makes debugging in the

parallel programming environment a difficult and time consuming task. While debugging

parallel programs a user not only has to deal with standard sequential errors but also with

possible problems arising from communications among processes. This task is made all

the more challenging by the lack of parallel infrastructure where tools integrate

seamlessly in a heterogeneous massively parallel system.

 10

Although there is a domain of different proposed High Performance Computing

(HPC) software programming systems, the de facto standard programming model in use

is a combination of multi-threading and message passing using MPI [DES05]. In

particular, MPI is a difficult programming model to use due to the fact that it is not a

compiled language but a library of routines. Existing tools do not perform static checks

on MPI usage beyond correct use of prototypes. Moreover MPI is large and complex and

there is lot of room for subtle errors. For example, its standard includes routines for

fourteen send calls and five receive calls that can be combined arbitrarily for a total of

seventy ways to implement a single point-to-point communication. A user has to clearly

understand the functionalities and differences in the various point-to-point

communication routines and their respective arguments to make a correct mapping to his

needs. Also, distributed processing can obscure the location of errors thus leading to

diffuse errors. For example, an error may become apparent many messages after an

incorrectly matched message has been exchanged by a process. MPI is one of the most

scalable programming models, which makes using a debugger quite hard when the

number of processes keeps on increasing. Although debuggers can be made scalable, it is

still extremely difficult for a user to debug an error arising in an application using 5000

processes. Changing to a different CPU or network or MPI implementation or changing

the problem size can make potential or latent deadlocks and race conditions appear,

leading to non deterministic errors [DES05]. In spite of the above potential

disadvantages, MPI is widely used for cluster computing because of its portability and

reasonably good performance.

 11

In a survey performed in [BAL04] it was found that 75 percent of the users

developing large parallel programs on the Grid used printf [KER88] statements for

debugging! Among debuggers, GDB [GNU] came out on top with a usage by 65 percent

of the community, followed by TotalView [ETN] at 45 percent, Compaq Ladebug [LAD]

at 25 percent. 55 percent of the developers used a mixture of other debuggers like Visual

Threads [HPV], Visual Studio [MIC], Visual MPI, DDD [DAT]. In another study, it was

seen that 80 percent of the developers used only 0 to 4 processes while debugging, 35

percent used 5 to 16 processes, 20 percent used 17 to 32 processes, while less than 15

percent users used more than 32 processes for debugging [BAL04].

From the above discussions it is quite evident that there is a need for an efficient yet

simple parallel debugger for MPI programs that can significantly reduce the debugging

cycle time. Moreover, we also notice that there is a tendency among users to use less

number of processes during debugging. The reason behind this behavior might be the

inconveniences caused by information overload which increases the time and complexity

of debugging an error. Also if a parallel MPI message debugger could integrate popular

sequential debuggers like GDB [GNU], it would significantly decrease its learning curve

thus enhancing usage and adoption among developer communities.

Current MPI Debuggers and Tools in use by Developers

At present, quite a few tools are available for debugging MPI programs. Most of them

can be broadly classified into three categories based on the functionalities they provide.

These categories are source level, graphical visualization and post processing debug tools

as shown in Figure 1. Some of these tools with their versatile features might belong to

more than one of the above mentioned categories.

 12

Debuggers and Tools for MPI Programs

GRAPHICAL
VISUALIZATION

POST
PROCESSING

SOURCE LEVEL

Figure 1: Categories of current debuggers for MPI programs.

Source Level Debuggers

Source level debugging tools being the simplest of the above mentioned three

categories are extensions of traditional sequential debuggers like GDB [GNU]. Some

tools just instantiate a copy of a standard sequential debugger for each process, while

others may be more sophisticated and have a sequential debugger integrated in an

Integrated Development Environment (IDE). Nevertheless, they do open multiple

windows corresponding to each process being debugged. Since these debuggers are based

on the sequential style of programming they do not fit well into the paradigm of parallel

debugging which has quite a few new classes of errors.

To begin with, these debuggers typically operate at the level of source and assembly

code. As a result they often overwhelm developers with a deluge of information and

unnecessary details. Such a fine level of granularity makes it extremely difficult to debug

an MPI program running over hundreds of processors. Often source level debuggers do

not have views or data pertaining to the big picture containing all the nodes which will

help a developer analyze and locate the exact source of bugs. A programmer has to sift

through a vast amount of data to locate the actual bug which can often distract her from

the real problem.

 13

Each sequential debugging window is capable of providing lots of information about

the attached process. The information is localized in context and is best used for

debugging the sequential part of the code. Though the technique of debugging a parallel

MPI program usually starts at the local context, it eventually requires information

pertaining to a global view of the whole application. Consequently there is a need for

manageable, yet relevant information, for both global and local domains of each process.

However, source level debuggers are devoid of capabilities which provide information in

global context, that is, the big picture. This makes debugging a massively parallel

program using source level debuggers extremely difficult.

In an MPI program some of the most common type of errors arises due to faulty

message passing involving several processes. As the number of processes increase, it

becomes nearly impossible for the developer to manually manage, issue commands,

monitor the output, and control each process in a separate window. It definitely demands

enormous patience from a user to successfully debug a program with such a tool. Further,

such a process is quite prone to human errors. Also, running a debug version of the

program on hundreds of processes for the sake of debugging a set of errors prevalent only

in a few processes is a very expensive and slow process with sub-optimal usage of

resources. For example, it is surely not practical to open 256 windows for an MPI

program running 256 processes! What is needed here is a set of higher level querying

tools that collect information about the inter-process message communication and present

relevant information in a user friendly manner.

 14

Graphical Visualization Debuggers

Graphical visualization debug tools attempt in assisting the developer in a top-down

debugging approach. They graphically present snapshots of the whole system indicating

current states of processes, message queue, message route, pending messages and other

relevant system features of the parallel machine. Their primary strength lies in depicting

the complete system status at different points of time during execution of the program

using various graphical charts and diagrams. Developers get a good idea of the overall

system behavior through the means of different views provided by such a debugger.

Unfortunately these debuggers lie on the other end of the spectrum as compared to

source level debuggers. Most of these debuggers lack sufficient granularity to aid a

developer pin-point exactly what went wrong and where the errors are located. Typically

in an MPI program the bulk of the code is sequential. Hence having no source level

debugging capability at all seriously cripples the usability of such tools. For example, let

us assume that a user has noticed that an MPI_Recv call has received incorrect data. But

to figure out the source from where this data was sent, that is, line number of source code

of a particular file running on a process of a specific rank, the user is left alone! Thus the

burden of mapping an activity at the global level to its causal context at the local level is

left entirely to the user. To further complicate the situation often the user cannot debug

the sequential part of the code using the visualization debugger.

Graphical visualization debuggers typically have a predefined set of views. In other

words they are not flexible or adaptable to a user’s customized needs. Often the debugger

designers’ choice of important and relevant views may not match that of a user. For

example, the user is at a loss when she wants to view all MPI communications that

 15

originated from a particular file but this snapshot is not present in the built-in set of views

that the visual debugger offers. Further more, these debuggers are not only limited by the

imagination of its designers but also by the screen size and resolution of the computers

being used.

Post Processing Debuggers

Post processing debug tools provide post-mortem debugging capabilities. The

working principle behind such tools is that they log program execution in sufficient detail

which enables replaying a part or whole of the program later on. As is apparent, the

replaying and analysis is limited to the data snapshots taken by the tool and the events it

was interested in. For example, a tool that was designed to record only message passing

events would obviously lack any debugging capability for bugs in the sequential part of

the code. Most of these debuggers also fail to provide sufficient granularity when needed.

Generally they posses no integrated sequential debuggers and perform a replay based on

past data stored in the log files. As a result, on-the-fly data manipulation cannot be

supported by these tools thereby seriously limiting their debugging features.

Nevertheless, post-processing tools have their own share of merits. In real life, most

MPI applications are computation intensive and massive in size, hence they take

considerable amount of time to execute. The problems that are solved by models using

cluster or grid computing techniques are inherently complex and large. Debugging

problems of such a scale by repeated execution of the parallel programs using sequential

debuggers or visualization tools not only consumes a lot of time but wastes resources too.

On the contrary doing a replay can be tremendously fast since it does not involve the real

execution of the parallel program. Replay is further sped up by the elimination of wait

 16

times for resource availability and blocking communications, as well as eradication of the

need for the message passing in the MPI communications layer. Figure 2 shows a list of

some debuggers used in the parallel programming environment.

NAME TYPE WEBSITE
Buster Post

Processing
http://166.111.68.162/web/gelato/gelato-3-Buster.htm

Classic Guard Source Level http://www.guardsoft.com/classicguard.html
DDT Source Level http://www.allinea.com/?page=48
Etnus TotalView

Source Level http://www.etnus.com/TotalView/index.html

Intel Trace Collector
(Formerly Vampirtrace)

Graphical
Visualization

http://www.cyf-kr.edu.pl/supeur96/Krotz/node1.html

Intel Trace Analyzer
(Formerly Vampir)

Graphical
Visualization

http://www.intel.com/cd/ids/developer/asmona/eng/9565
6.htm

KDevelop with MPI plugin Source Level http://freshmeat.net/projects/mpiplugin/
MQM Graphical

Visualization
http://web.engr.oregonstate.edu/~pancake/ptools/mqm/fl
yer.html

Panorama Graphical
Visualization

http://www-cse.ucsd.edu/users/berman/panorama.html

Paradyn Graphical
Visualization

http://www.cs.wisc.edu/~paradyn/

PDBX, PEDB and XPDBX Source level http://www.arc.unm.edu/~rsahu/pdbx.html
http://www-03.ibm.com/systems/p/software/pe.html

PGDGB Source level http://www.pgroup.com/products/pgdbg.htm
Prism Source level,

Graphical
Visualization

http://docs.sun.com/app/docs/doc/817-0088-
10?q=PRISM

PVaniM
(for PVM only)

Post
Processing

http://www.cc.gatech.edu/gvu/softviz/parviz/pvanimOL/
pvanimOL.html

XMPI Graphical
Visualization

http://www.lam-mpi.org/software/xmpi/

Figure 2: A list of some current parallel debuggers.

Thus if we could couple a sequential debugger with a post-processing debug tool

which had built-in queries as well as the ability for a user to write customized queries

then we can have best of both worlds! That is indeed what IDLI tries to achieve. The

ability to write custom queries and the flexibility to work with a sequential debugger of

the user’s choice will make IDLI a very adaptable (message) debugger. Also, it would

have a set of built-in queries for specific data retrieval and the ability to replay program

 17

execution for user specified number of processes. This would enable it to cater to the

needs of a wide domain of users without flooding them with unnecessary information.

Arguably a user may try a combination of currently available tools to achieve the

above goal. But such a combination is often hindered by the following obstacles: (a) high

learning curves for each tool, (b) lack of seamless integration since each product is from a

different vendor, (c) different user interfaces and design philosophies for each tool, and

(d) variances in compliance to standards, reliability, portability and levels of available

support.

Summary

Though there many tools available to aid in cluster programming and high

performance computing, only a handful of them are debuggers. Others belong to various

tool classes like static or dynamic error checkers, profilers, event tracers and code

analyzers. Primarily, the usability and effectiveness of available debuggers are severely

reduced due to the following reasons:

• Most of them are designed and built to satisfy only one end of the spectrum,

that is, they are either good at providing localized or global contexts but not

both. For source level debuggers, which are typically modified sequential

debuggers, the user hardly has a clue about the overall system behavior. On

the other hand, graphical visualization tools provide considerable information

in the global context but offer little help to the users to map it to the local

context of individual processes.

• A large amount of data is often not of much relevance to the user and makes

debugging extremely challenging. In source level debuggers a user has to

 18

manage a sequential debugger for each process individually. One can imagine

the scenario for a debugging session with 1024 processes and as many

sequential debugging windows! Almost all graphical visualization tools

provide lots of interesting views and data. But most of these views cannot be

customized according to a user’s needs and hence are insufficient by

themselves to debug a massive MPI program. The post-processing tools

usually take snapshots at certain predefined intervals or record a predefined

set of events. But they lack the flexibility to adapt to the user’s need for

recording customized events or data. Once the user manages to localize the

error, the next step is often a need to actually run and debug only a handful of

processes. Unfortunately most of the post-processing tools do not have this

capability.

• A serious shortcoming of existing tools is that they offer no flexibility to

create customized views or alter existing views. This feature would have

helped users locate relevant information from the vast amount of available

data. It would be of immense help if the user could interactively query the

data, a process which is fast enough in real time and obtain exactly what he is

interested in.

• In order to debug MPI programs effectively, users often need to trace a

particular message or a group of related messages. For example, a user might

be interested in viewing all related message exchanges that participated in a

group communication, like a call to MPI_Allgather at a particular location of

a file. Most existing debuggers do not support such queries. Few tools do offer

 19

tracing of messages but they require instrumentation of users’ applications.

Such instrumentations may be unnecessary if a tool is designed to provide

similar functionality without modifying the source code of a user’s application

programs.

Our message debugger, IDLI, is a sincere attempt to precisely address the above

mentioned issues. It has been designed to provide information at the global level by the

means of several built-in queries. Yet at the same time it enables a user to do source level

debugging within local context of a process using a sequential debugger of her choice. A

Query Manager in IDLI offers a number of predefined built-in queries as well as gives a

user the power to write customized queries to retrieve specific information. This feature

ensures that IDLI does not inundate a user with huge amounts of irrelevant data. Last but

not the least is IDLI’s Replay feature which allows a user to replay a program’s execution

for a selected number of processes simultaneously. This allows a user to replay as many

processes as he is comfortable with, thus helping focus attention on processes which

might be probable sources of errors. Also, it is to be noted that users do not need to

modify their source code in order to use IDLI. In short, IDLI is a message debugging tool

which attempts to fill in the shortcomings present in current tools of its genre in a simple

yet efficient manner.

 20

CHAPTER 3

THE MPI PARALLEL PROGRAMMING PARADIGM

Message passing is a widely used programming paradigm on parallel computers,

especially so for a Network of Workstations (NOW) or Scaleable Parallel Computers

(SPC) with distributed memory. MPI stands for Message Passing Interface and is a

standard that defines the user interface and functionality for a wide range of message-

passing capabilities [SNI96]. One of MPI’s major goals is to achieve a good degree of

portability across different architectures. Since IDLI is designed to work with MPI its

wise to delve into a brief overview of MPI, and have a quick glimpse of a set of its most

widely used functions.

MPI

During the period from 1980s to early 1990s, as parallel computing progressed, a

number of incompatible tools for writing distributed programs were developed usually

with tradeoffs between portability, performance, functionality and price. Soon

recognition for the need of a standard arose. MPI resulted from the efforts of numerous

individuals and groups over the course of a couple of years between 1992 and 1994. MPI

is the only message passing library which can be considered a standard [MES]. It is

supported on virtually all high performance computing (HPC) platforms. Practically, it

has replaced all previous message passing libraries. MPI is highly portable since there is

no need to modify the source code of an application when it is ported to different

 21

platforms that support the MPI standard. A variety of implementations, both in the

vendor and public domains make MPI widely available.

The programming model of MPI lends itself to most, if not all distributed memory

parallel programming paradigms. In addition, MPI is commonly used behind the scenes

to implement some shared memory models, such as Data Parallel, on distributed memory

architectures [MES]. Originally, MPI was targeted for distributed memory systems. As

shared memory systems became more popular, particularly symmetric multi processors

(SMP) and Non Uniform Memory Access (NUMA) architectures, MPI implementations

for these platforms appeared. MPI is now used on just about any common parallel

architecture including massively parallel machines, SMP clusters, workstation clusters

and heterogeneous networks [MES]. MPI makes all parallelism explicit, that is,

programmers are responsible for correctly identifying parallelism and implementing

parallel algorithms using MPI constructs. The number of tasks dedicated to run a parallel

program is static. New tasks can not be dynamically spawned during run time.

MPI uses objects called communicators and groups to define which collection of

processes may communicate with each other. Most MPI routines require the specification

of a communicator as an argument. MPI_COMM_WORLD is the predefined

communicator that includes all MPI processes. Within a communicator, every process

has its unique integer identifier known as rank. Ranks are assigned by the system when

the processes initialize. A rank is sometimes also called a “process ID”, it begins at zero

and is contiguous. Programmers specify the source and destination of messages using

ranks of processes. Often ranks are used conditionally by the application to control

 22

program execution [MES]. The general structure of an MPI program along with a

communicator is shown in Figure 3.

MPI Include File

Figure 3: General structure of an MPI program and a communicator.

LAM-MPI

LAM-MPI is an excellent implementation of the MPI standard by the Open Systems

Laboratory (OSL) at Indiana University. LAM-MPI provides high performance on a

variety of platforms, from small off-the-shelf single CPU clusters to large symmetric

multiprocessor (SMP) machines with high speed networks, even in heterogeneous

environments. In addition to high performance, LAM provides a number of usability

features key to developing large scale MPI applications. Some of these features are

abilities to checkpoint or restart, fast job startup, high performance communication,

Initialize MPI Environment

Functionality and message
passing calls

Terminate MPI
Environment

...............

...............

...............

...............

...............

...............

Communicator
MPI_COMM_WORLD

0 1

2 3

PROCESS
RANK

 23

interoperable MPI in heterogeneous environment, run time tuning and remote process

invocation (RPI) selection, SMP aware collectives, and extensible component

architecture [LAM].

MPI Functions

In the message-passing library a llel programming, a collection of

pro

Blocking and Non-blocking Message Passing

Routines that return a the message transfer

being actually used for the transfer [WIL05].

pproach to para

cesses execute programs written in a standard sequential language augmented with

calls to a library of functions for sending and receiving messages [FOS95]. MPI is a

complex system. In its entirety, it comprises of more than two hundred functions. As our

goal is to convey the essential concepts of message-passing programming, and not to

provide a comprehensive MPI reference manual, we focus on a set of twenty four

functions which provide more than adequate support for a wide range of applications

[WIL05]. To further simplify the study we have classified these functions into three

groups of preliminary, point-to-point message passing and group communication routines

as shown in Figure 4. Before we explain the details of each group of the twenty four

commonly used MPI functions we shall briefly discuss blocking, non-blocking,

synchronous and asynchronous communication using message passing.

fter completing their local actions, even though

may not have been completed are blocking. Those that return immediately are non-

blocking. In MPI, non-blocking routines assume that the data storage to be used for the

transfer is not modified by the subsequent program statements prior to the data storage

 24

Most commonly used MPI functions

PRELIMINARY POINT TO POINT
MESSAGE PASSING

GROUP
COMMUNICATION

MPI_Init

MPI_Comm_size

MPI_Send

Figure 4: Classification and names of widely used MPI routines.

Synchronous and Asynchronous Message Passing

The term synchronous is used for routines that return when the message transfer has

been completed [W ntil the complete

mes

IL05]. A synchronous send routine will wait u

sage has been received by the receiving process before returning. A synchronous

receive routine will wait until the message it is expecting arrives and has been stored

before returning. A pair of processes, one with a synchronous send operation and one

with a matching synchronous receive operation will be synchronized, with neither the

MPI_Comm_rank

MPI_Wtime

MPI_Finalize

MPI_Recv

MPI_Isend

MPI_Irecv

MPI_Wait

MPI_Test

MPI_Probe

MPI_Iprobe

MPI_Barrier

MPI_Bcast

MPI_Alltoall

MPI_Gather

MPI_Gatherv

MPI_Allgather

MPI_Allgatherv

MPI_Scatter

MPI_Reduce

MPI_Reduce_scatter

MPI_Allreduce

 25

source process nor the destination process able to proceed until the message has been

passed from the source process to the destination process [WIL05]. Asynchronous

communications initiate the send or receive but do not block on their completion.

Preliminary Routines

The preliminary routines are needed for establishing the environment and related

matters [WIL05]. They consist ly MPI_Init, MPI_Comm_size,

MP

FUNCTION NAME SIGNATURE

of five functions name

I_Comm_rank, MPI_Wtime and MPI_Finalize. The signatures of each preliminary

function are shown in Figure 5.

MPI_Init int MPI_Init(int *argc, char **argv)
MPI_Comm_size int MPI_Comm_size(MPI_Comm comm, int *size)
MPI_Comm_rank int MPI_Comm_rank(MPI_Comm comm, int *rank)
MPI_Wtime double MPI_Wtime (void)
MPI_Finalize int MPI_Finalize (void)

Figure 5

MP s MP s function must be called only

once, before any other MPI functions in every MPI program. For C programs, MPI_Init

ma

or MPI_COMM_WORLD to

det

rank between 0

and number of processors minus 1 within the communicator MPI_COMM_WORLD.

: Signatures of preliminary routines of MPI.

I_Init initialize I execution environment. Thi

y be used to pass the command line arguments to all processes, although this is not

required by the standard and is implementation dependent.

MPI_Comm_size determines the number of processes in the group associated with a

communicator. It is generally used within the communicat

ermine the number of processes being used by an application [MES].

MPI_Comm_rank determines the rank of the calling process within the

communicator. Initially, each process will be assigned a unique integer

 26

Thi

ppendix 1 is an

exa

s MPI_Init,

MP

Point-to-Point Message Passing Routines

A widely used set of point-to-point message passing routines comprises of

MPI_Send, MPI_Recv, MPI_Isend, MPI_Irecv, MPI_Wait, MPI_Test, MPI_Probe, and

MPI_Iprobe. All these ode. The signatures of

eac

ons may actually use a synchronous

sen

s rank is often referred to as a task ID. If a process becomes associated with other

communicators, it will have a unique rank within each of these as well.

MPI_Wtime returns an elapsed wall clock time in seconds (double precision) for the

calling processor. This is the only MPI function that does not return an error code like all

other MPI routines, instead it returns times in seconds. Figure 68 in A

mple of an MPI program that shows the use of the function MPI_Wtime.

MPI_Finalize terminates the MPI execution environment. This function should be the

last MPI routine called in every MPI program. No other MPI routines may be called after

it [MES]. Figure 56 in Appendix 1 shows the use of the function

I_Comm_size, MPI_Comm_rank and MPI_Finalize in an MPI program.

routines return an integer error message c

h of the above functions are shown in Figure 6.

MPI_Send is a basic blocking send operation and returns only after the application

buffer in the sending task is free for reuse. The MPI standard permits the use of a system

buffer but does not require it. Some implementati

d to implement the basic blocking send. MPI_Recv receives a message and blocks

until the requested data is available in the application buffer in the receiving task. Figure

56 in Appendix 1 lists an MPI program which shows the use of the functions MPI_Send

and MPI_Recv.

 27

FUNCTION NAME SIGNATURE
MPI_Send int MPI_Send (void* buf, int count, MPI_Datatype

datatype, int dest, int tag, MPI_Comm comm)
MPI_Recv int MPI_Recv (void* buf, int count, MPI_Datatype

datatype, int source, int tag, MPI_Comm comm,
MPI_Status *status)

MPI_Isend int MPI_Isend (void* buf, int count,
e datatype, int dest, int tag, MPI_Datatyp

MPI_Comm comm, MPI_Request *request)
MPI_Irecv int MPI_Irecv (void* buf, int count,

MPI_Datatype datatype, int source,int tag,
MPI_Comm comm, MPI_Request *request)

MPI_Wait int MPI_Wait (MPI_Request *request, MPI_Status
*status)

MPI_Test int MPI_Test (MPI_Request *request, int *fl
MPI_Status *status)

ag,

MPI_Probe int MPI_Probe (int source, int tag, MP
comm, MPI_Status *status)

I_Comm

MPI_Iprobe mm int MPI_Iprobe (int source, int tag, MPI_Co
comm, int *flag, MPI_Status *status)

Figure 6: Signat

M identifies cessing

continues immediately w m the

application buffer. A communication request handle is returned for handling the pending

me

MPI_Wait returns after the operation identified by request completes. Information on the

ures of point-to-point message passing routines of MPI.

PI_Isend an area in memory to serve as a send buffer. Pro

ithout waiting for the message to be copied out fro

ssage status. The program should not modify the application buffer until subsequent

calls to MPI_Wait or MPI_Test indicate that the non-blocking send has completed

[MES]. MPI_Irecv identifies an area in memory to serve as a receive buffer. Akin to

MPI_Isend the program’s execution continues immediately after this call is made. The

pending message status is handled using the communication request handle. The program

must use calls to MPI_Wait or MPI_Test to determine the completion of the non-

blocking receive operation. On completion of the call, the requested message is available

in the application buffer. Figure 66 in Appendix 1 lists an MPI program which shows the

use of the functions MPI_Isend and MPI_Irecv.

MPI_Wait makes the program wait for a non-blocking operation to complete.

 28

completed operation is found in the MPI_Status data structure. MPI_Test is used to

determine if a non-blocking request has completed or not. MPI_Test returns flag equal

to

Group Communication Routines

Some of the most commonly used group communication routines are MPI_Barrier,

MPI_Bcast, MPI_Alltoa er, MPI_Gatherv, MPI_Allgather, MPI_Allgatherv,

MPI_Scatter, MPI_Reduce, MPI_Reduce_scatter, and MPI_Allreduce. All these routines

return an integer error me each of the above group

com

alling process, to all tasks in comm. The

contents of the calling process's communication buffer are copied to all tasks on return. In

true (the signature of MPI_Test is in Figure 6) if the operation identified by

request is complete. The MPI_Status object is set to contain information on the

completed operation. MPI_Probe waits until a message matching source, tag, and

comm (the signature of MPI_Probe is in Figure 6) arrives. It lets one check for an

incoming message without actually receiving it. MPI_Probe is a blocking call that returns

only after a matching message has been found. MPI_Iprobe is akin to MPI_Probe, but it

returns flag equal to true when there is a message that matches the pattern specified

by the arguments source, tag, and comm (the signature of MPI_Iprobe is in Figure 6)

can be received [MES].

ll, MPI_Gath

ssage code. The signatures of

munication routines are shown in Figure 7.

MPI_Barrier subroutine blocks until all tasks have called it. Tasks cannot exit the

operation until all group members have entered it. Figure 62 in Appendix 1 lists an MPI

program which shows the use of the function MPI_Barrier.

 MPI_Bcast broadcasts a message from the c

 29

FUNCTION NAME SIGNATURE
MPI_Barrier int MPI_Barrier (MPI_Comm comm)
MPI_Bcast int MPI_Bcast (void* buffer, int count,

MPI_Datatype datatype, int root, MPI_Comm comm)
MPI_Alltoall int MPI_Alltoall (void* send

MPI_Datatype sendtype, void*
buf, int sendcount,
 recvbuf,int

recvcount,MPI_Datatype recvtype, MPI_Comm comm)
MPI_Gather int MPI_Gather (void* sendbuf,int sendcount,

recvcount,MPI_Datatype recvtype,int root,
MPI_Comm comm)

MPI_Datatype sendtype, void* recvbuf,int

MPI_Gatherv int MPI_Gatherv (void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int
recvcounts, int *displs, MPI_Datatype recvtype,

PI_Comm comm) int root, M
MPI_Allgather int MPI_Allgather (void* sendbuf, int sendcount,

 MPI_Datatype sendtype, void* recvbuf, int
recvcount, MPI_Datatype recvtype, MPI_Comm comm)

MPI_Allgatherv int MPI_Allgatherv (void* sendbuf, int
sendcount, MPI_Datatype sendtype, void* recvbuf,
int *recvcounts, int *displs, MPI_Datatype
recvtype, MPI_Comm comm)

MPI_Scatter int MPI_Scatter (void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int
recvcount, MPI_Datatype recvtype, int root,

MPI_Comm comm)

MPI_Reduce int MPI_Reduce (void* sendbuf, void* recvbuf,
int count, MPI_Datatype datatype, MPI_Op op, int
root, MPI_Comm comm)

MPI_Reduce_scatter int MPI_Reduce_scatter (void* sendbuf, void*
recvbuf, int *recvcounts, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

MPI_Allreduce int MPI_Allreduce (void* sendbuf, void*
int count, MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm)

 recvbuf,

Figure 7: Si

Figure 63 in Appendix 1 lists an MPI program which shows the use of the function

MPI_Bcast.

M a e 61 in

App MPI

MPI_Gather collects ask and

stores them in rank order. MPI_Gatherv operates in a similar way as MPI_Gather but

with recvcounts as an array (the signature of MPI_Gatherv is in Figure 7), messages

gnatures of group communication routines of MPI.

PI_Alltoall sends distinct message from each task to every task. Figur

endix 1 lists an program which shows the use of the function MPI_ Alltoall.

individual messages from each task in comm at the root t

 30

can have varying sizes, and displs allows one the flexibility of where the data is placed

on the calling process. Figure 64 and Figure 65 in Appendix 1 list MPI programs which

sho

and

dist

PI_Reduce

app

Scatter and MPI_Reduce.

he tasks [MES]. Figure 60 lists

an MPI program which shows the uses of the function MPI_ Allreduce.

w the uses of the functions MPI_ Gather and MPI_Gatherv respectively.

MPI_Allgather gathers individual messages from each task in the communicator

ributes the resulting message to each task. MPI_Allgatherv is akin to MPI_Allgather

but here messages can have different sizes and displacements. Figure 58 and Figure 59 in

Appendix 1 lists MPI programs which show the uses of the functions MPI_ Allgather and

MPI_Allgatherv respectively.

MPI_Scatter distributes individual messages from the calling process to each task in

the communicator. This subroutine is the inverse operation to MPI_Gather. M

lies a reduction operation to the vector sendbuf over the set of tasks specified by

the communicator and places the result in recvbuf on the calling process (the signature

of MPI_Reduce is in Figure 7). Users can define their own operations or use the

predefined MPI operations. Figure 57 in Appendix 1 lists an MPI program which shows

the uses of the functions MPI_

MPI_Reduce_scatter applies a reduction operation to the vector sendbuf over the

set of tasks specified by the communicator and scatters the result according to the values

in recvcounts (the signature of MPI_Reduce_scatter is in Figure 7). Figure 67 in

Appendix 1 lists an MPI program which shows the uses of the function MPI_

Reduce_scatter. MPI_Allreduce applies a reduction operation to the vector sendbuf

over the set of tasks specified by the communicator and places the result in recvbuf

(the signature of MPI_Allreduce is in Figure 7) on all of t

 31

 This concludes our brief sketch of the set of the twenty four most widely used MPI

functions, which are supported in our message debugger, IDLI.

support these twenty four MPI functions.

Summary

In this chapter we gave a brief introduction to MPI and explored a set of twenty four

most commonly used MPI functions for parallel programming. IDLI has been designed to

 32

CHAPTER 4

INTRODUCING IDLI – AN MPI MESSAGE DEBUGGER

The concept of multi level debugging was developed and demonstrated on PVM by a

debugger named Millipede [PED03] written in the programming language for the PVM

message passing system. Later, a Java GUI was added to Millipede to improve its cross

platform compatibility and incorporate new debugging features [TRI05]. IDLI is a

message debugger designed to extend the concepts of multilevel debugging to LAM MPI

which has become a popular message passing library for parallel computations. In the

subsequent sections we shall explore the architecture and features of IDLI in detail.

Architecture and Overview

Our multilevel message debugger, IDLI, operates with a high quality implementation

of the Message Passing Interface (MPI) standard from LAM which is associated with

Open Systems Laboratory (OSL) of Indiana University [LAM]. The architecture of IDLI

consists of three layers:

• a distributed relational SQL database which is used for persistent data storage

comprises the backend,

• the middle layer is a native C [KER88] library which has wrappers for MPI

functions and

• a simple shell user interface forms the front end. These three layers aid in

logging, displaying and analyzing the debugging information gathered from calls

 33

made to the MPI routines during the execution of a parallel application in a

distributed environment.

Wrappers for MPI functions in the native C library of IDLI

During a debugging session, when a user’s application is compiled in debug mode

with IDLI, it is linked with the native C [KER88] library of IDLI instead of the standard

MPI library. This is done by means of the wrapper functions present in the native C

library. As explained in the previous chapter, IDLI supports twenty four commonly used

MPI functions [WIL05]. Consequently the native C library has wrapper functions for

each of these MPI routines. These wrapper functions intercept the MPI calls placed in the

user’s program. A detailed explanation of the manner in which the wrapper functions

intercept the MPI calls is provided in the next chapter. In addition, the wrappers possess

intelligence for MPI function specific (a) initialization, (b) database processing, (c) lock

management for database transactions like writes and updates (more than one process

might try to simultaneously write or update the same database tables) and (d) determining

the mode for processing, that is, debug or replay mode. When a wrapper function

intercepts an MPI call from an application program, it stores debugging information

specific to the MPI routine in the SQL database at the backend. The stored data is

furnished by the wrappers whenever required by the user for analysis, and debugging of

erroneous scenarios. As a result, IDLI’s native C library has a two way communication

with the SQL database as shown in Figure 8.

 34

SQL

Figure 8: Overview of execution of an application in debug mode with IDLI.

The PostgreSQL Database

We have used the free open source SQL database system PostgreSQL [POS] for

persistent storage [TRI05]. PostgreSQL is a well tested, widely used powerful and

distributed object-relational database management system. It has an efficient and safe

concurrency transaction management. The SQL database need not be installed on any of

the nodes of the network where the user’s application is executing. This is demonstrated

in Figure 8. The architecture of IDLI enables the processes to insert data into the database

in a distributed manner. Each process executing the program with MPI calls stores its

data by opening a dedicated connection to the database server through a TCP/IP network

connection.

IDLI LIBRARY

MPI LIBRARY

USER’S
PROGRAM ON

PROCESS 1

DATABASE USER’S
PROGRAM ON

PROCESS 2

IDLI LIBRARY

MPI LIBRARY

Connection Types

Process to Computer SQL Inter MPI

 35

Front-end User Interface of IDLI and Query Manager

IDLI has a simple shell user interface which acts as the front end. We will provide a

brief overview of the functionality and architecture of the main features of IDLI that can

be accessed from its front end. Later on, detailed explanations of each feature will be

provided in subsequent sections of this chapter. IDLI, as a message debugger, can be

used to view details of messages exchanged by MPI calls through a Query Manager. The

Query Manager has a front-end, which is the shell user interface that interacts with a SQL

database at the backend. A set of well defined built-in queries are provided by the Query

Manager to aid the user in retrieving debugging data for analysis and hypothesis

formation of errors [PED03]. It is also equipped with a feature that enables a user to write

customized SQL queries which fetch specific data directly from database tables. A user

can do post mortem analysis using IDLI’s Query Manager.

Replay

An application’s execution can be replayed simultaneously at a number of selected

processes using a sequential debugger of the user’s choice with IDLI’s Replay feature.

The functionality of Replay will be discussed later in an exclusive section. During replay

all data related to MPI calls are fetched from stored data of a previous run of the

application. Since the MPI communication layer is not invoked during Replay, the

debugging process for a parallel application running on large networks is considerably

speeded. A user may run a Replay of the application in a sequential debugger of her

choice for a selected set of processes from any machine on the network which is enabled

with TCP/IP connectivity. IDLI forks individual connections for each specified process.

During replay of a program, IDLI forks a connection to the chosen process running on a

 36

node using the Secure Shell 2 Protocol (SSH2) over TCP/IP and invokes the user’s

selected sequential debugger. The original session of the Query Manager, from which the

replay was initiated, is the parent while the replays on different nodes are its children.

The Replay feature can be used simultaneously for any number of processes of distinct

ranks. IDLI automatically runs the Replay on the same node on which the process was

originally run during an application’s execution. We do so to simulate the exact hardware

and software environment for the parallel application in which the errors arose. This is

particularly relevant for processes running in a hetereogenous network where each node

might have a different machine architecture and operating system.

It is noteworthy that multiple processes might have run on the same node. IDLI is

capable of handling multiple such Replay sessions on the same node. Further it has built-

in error checking to prevent a user from simultaneously invoking more than one Replay

for the same process rank. IDLI has a robust Replay session management functionality.

During exit from Replay, IDLI checks if there are any replays in action on any of the

nodes. If that is the case, the user is notified to exit only when all nodes have quit replays.

This is done to maintain consistency in replays’ session management data stored in the

user database. Figure 9 shows the overall architecture of IDLI’s Query Manager and

Replay at a couple of nodes.

Features of IDLI

After a user completes locating and correcting sequential errors present in a program, she

proceeds to the next level in multi level debugging which is interactive message

debugging [PED03]. This level involves communication between two or more processes.

It is concerned with correcting errors arising from faulty messaging and incorrect

 37

IDLI USER INTERFACE

Figure 9: Overall architecture of IDLI’s Query Manager and Replay.

message content. Our message debugger, IDLI, can be used to analyze, as well as view,

the contents of communication messages exchanged by MPI routines in an application. It

can also be used for debugging source code of a program. Thus IDLI is a tool that enables

a user to do post-processing as well as source level debugging. We shall hereby explore

each feature of IDLI, and demonstrate its usage by means of real time examples.

SQL

DATABASE

REPLAY QUERY MANAGER

USER’S
PROGRAM ON

PROCESS 1

REPLAY

IDLI LIBRARY

USER’S
PROGRAM ON

PROCESS 2

IDLI LIBRARY

SEQUENTIAL SEQUENTIAL
DEBUGGER DEBUGGER
OF USER’S

CHOICE
OF USER’S

CHOICE

Connection Types

Process to Computer SQL

 38

When a user begins a session with IDLI he gets a welcome screen with a list of

menus. The complete menu navigation map of IDLI is shown in Figure 10. The front-

end, which is a shell user-interface, possesses useful features like command history,

command completion with tabs, prompts showing the selected user database for current

session and other niceties. Data is predominantly displayed as a set of rows. Each row has

columns for different types of data. Each column has a header row which has a suitable

name for that column. IDLI’s user interface uses a dark colored background for the

header row and the text headings are highlighted in a white color. To easily discern the

criteria of sort, columns of sorted data are generally displayed in colors which are

different from the rest of the data.

The Commands: List and Drop

While debugging a stand alone application a developer might need to refer to data

from the application’s previous executions. This helps him to analyze how current

changes incorporated to debug an error have affected the application with respect to its

previous run. Also, most often applications are inter-linked with many executables, each

of which have to be developed and unit tested.

In such a scenario, when a user is debugging an application, she may need to refer to

a previous debugging session of another related application. If the previous session’s

debugging information is not stored or is inaccessible (some debuggers store such data in

hidden files in binary formats), then the user is forced to rerun the previous application to

refer to required data.

To avoid such scenarios and inefficient use of resources, IDLI allows a user to access

and analyze the most recently executed programs, up to a maximum of five sessions.

 39

IDLI

Figure 10: Menu navigation map of IDLI.

1: log time

LIST DROP N PSQL N QUERY N HELP EXIT

DUMP N LOCATEGROUP N

LOCATEP2P N

PSQL REPLAY N

2: message group id

3: rank of a process

4: file name

5: file and line number

6: MPI function name

1: file

2: line

3: line of file

4: MPI function name

1: between 2 processes

2: between 2 files of 2 processes

3: between 2 lines of 2 processes

4: between 2 lines of 2 files of 2 processes

5: between 2 files

6: between 2 lines

7: between 2 lines of 2 files

8: MPI function name

STATUS N TRACE N HELP EXIT

0: incomplete operation

1: successful operation

 40

Once the maximum of five sessions is reached, the user database pertaining to the earliest

session is deleted following the first in first out (FIFO) algorithm. The corresponding

session number is reassigned to the current session and a new user database is created for

storage of debugging data for present execution. To optimize space usage on the database

server we have chosen this policy of recycling sessions by deleting previous user

databases when they exceed the maximum allowed. User databases are named by

appending the username with the session number.

When a user types the command list he is shown a list containing rows with details of

databases which have debugging data from previous executions of his applications. The

header row for the above list consists of headings like sessiono, userdb, execname and

sessiontime. A user’s session numbers are specified by the heading sessiono, names of

user databases from previous executions of applications are headed by userdb, name of

the executable as execname and sessiontime denotes session creation times. Figure 11

demonstrates the execution of the command list.

Deletion of a user database from a particular session can be accomplished using the

command drop N. The session number of the user database to be deleted is specified by

N. After a user deletes a database by entering the command drop N, she may type list to

check if the database has been really deleted. Command execution for drop is shown in

Figure 11.

Considerable error checking is done for the interface commands in IDLI. Instead of

giving one generic message for all types of errors, meaningful messages are provided

explaining the mistakes. This helps a user to understand the exact nature of his error.

 41

Figure 11: Commands list and drop being executed with error checks.

For example, if a user types in the command drop, the error message generated is

“ERROR: number is missing!” Since zero cannot be a valid session number, if a

developer enters drop 0, the error message is “ERROR: number is invalid!” Similarly,

throughout the implementation of IDLI we have adhered to the goal of generating useful

 42

customized error messages instead of generic ones. Figure 11 demonstrates some error

checks.

Query Manager

IDLI’s Query Manager can be used for postmortem analysis of communication

messages. After an application has been run in debug mode, a developer can study

messages exchanged by calls to MPI functions by using a suitable subset of commands

from the set of built-in commands present in the Query Manager. The built-in features

have been designed in a way as not to overwhelm the user with huge amounts of

irrelevant data. A user can also get customizable views of data from the global to local

context of the application by invoking a psql shell and writing custom SQL queries.

Customized SQL queries are explained in a later section.

The Query Manager comes with a set of useful built-in commands for viewing the

details of the executions of MPI routines and messages exchanged by them. The

command query N invokes the Query Manager with its built-in queries for the specific

database used in session number N. For example, if a developer wants to query the

database used to store the debugging information of an application run in session three,

the command for doing so is query 3. This command would bring up the Query

Manager’s menu of built-in query commands. The different column names in the

common header row for the list of data displayed by all the commands in the Query

Manager is explained in Figure 12.

The set of queries provided is dump, locateGroup, locatep2p, status and trace. Each

of these queries has a lot of options to enable a user to view specific data according to her

needs. The commands help and exit are self explanatory. A user may invoke replay of an

 43

msgId : Message Group Id assigned by IDLI
src : Rank of source for an MPI function call
dest : Rank of destination for an MPI function call
myRank : Rank of process placing MPI function call
mpiFuncName : Name of MPI function called
ok : Denotes whether a group communication was successful (1) or not (0)
fileName : Name of file from which MPI function was called
line : Line Number of the source code at which MPI function was called
logTime : Time (logged) at which MPI function was called
returnMsg : Message denoting result of an MPI function call

Figure 12: Legend for common header row of data displayed by all query commands.

application’s execution by using the command replay. In subsequent sections we shall

explain each feature of the Query Manager in sufficient details along with examples of

their use. The Query Manager’s menu of built-in queries is shown in Figure 13.

Figure 13: Menu of the built-in queries of IDLI’s Query Manager.

 44

Built-in Query: Dump

The query command dump is used to list details of all MPI functions executed during

an application’s run. If a user wants to see the exact chronological order in which the

MPI routines were executed, she may use the command dump 1. This command lists the

execution of MPI routines sorted by the column logTime. Viewing chronological order of

calls helps locate any function calls that might not have been executed at all. Figure 14

shows the execution of dump1.

Figure 14: Chronological list of executions of all MPI routines by the command dump1.

At times, it helps to view all the point-to-point as well as group communications

grouped under their respective unique message group ids as assigned by IDLI. This

facilitates better understanding of the execution of communication routines which aids in

locating erroneous processes. For example, in a point-to-point communication with an

MPI_Send – MPI_Recv pair, if the MPI_Send has a message id of x then there must be a

corresponding MPI_Recv with the same message id. If a call to MPI_Recv with the

 45

message id x is missing from the list, then we can safely conclude that there is a bug on

the related process. The command dump 2 lists the executions of MPI routines sorted by

their message ids (msgId). The entire listing of communication routines executed by a

program, using the command dump 2 is shown in Figure 15. Note that the point-to-point

communication with an MPI_Send – MPI_Recv pair is listed under one unique message

group id.

Figure 15: Execution of the command dump 2 which sorts all messages by their ids.

To get a clear picture of all the MPI routines executed by each process we have created

the command dump 3. This command lists all MPI routines sorted by the rank of each

process. When MPI programs are executed on huge networks with a large number of

processes this command helps in focusing attention on a set of particular processes of

interest. The entire listing of MPI routines executed by program which is sorted by their

ranks using dump 3 is shown in Figure 16. Note that the ranks of processes are shown in

green color to make it easy to discern the criteria of sorting.

 46

Figure 16: The command dump 3 which sorts all messages by their rank.

When executables contain a large number of different MPI files instead of just one

file, it becomes a challenge to understand from which file and line number the errors

were introduced. To help a user locate the file and line number of an erring MPI call we

have created the commands dump4 and dump5. They sort all MPI routines executed by

filename, and filename and line respectively, as shown in Figure 17.

The last variation of dump is the command dump 6. It lists all MPI routines executed

at each process sorted by MPI function names. This is particularly useful when we have a

lot of different MPI function calls in a program which is executing on a big network. In

such a scenario using dump 6 we can check if all the processes executed calls to a

particular type of MPI function correctly.

 47

Figure 17: Executions of the commands dump 4 and dump 5.

Figure 18 shows a listing of all MPI routines executed by an application, sorted by MPI

function names, which has been generated using dump 6.

Built-in Query: Locategroup

The command locategroup N, where N equals 1, 2, 3, 4, is used to query executions

of group communication routines. This command locates communications exchanged,

from a specific file (N = 1), at given line number (N = 2), a particular line number in a

file (N = 3), and by the name of an MPI function (N = 4) respectively. This feature is

particularly useful when we want to check the details of exchanged messages from a

specific MPI group communication function at a given line number of a file. It

immediately locates the call and displays its details. When there are lots of files in an

executable, this feature saves considerable time since the user does not need to sift

 48

Figure 18: Execution of the command dump 6 which sorts by MPI function name.

through the entire list of function calls. The execution of the commands locategroup 1, 2,

3, 4 are shown in Figure 19.

Built-in Query: Locatep2p

For debugging MPI point-to-point communication routines, it is necessary to locate the

messages exchanged by specific files at different line numbers as well as get a view of all

messages exchanged by different processes. The query command locatep2p N has been

created to meet the above goal. The details of locatep2p are as follows:

• N=1: locates messages exchanged between two processes

• N=2: locates messages exchanged between two files of two processes

• N=3: locates messages exchanged between two lines of two processes

 49

Figure 19: Executions of the command locategroup N, N = 1, 2, 3, and 4.

• N=4: locates messages exchanged between two lines of two files of two processes

• N=5: locates messages exchanged between two filess

• N=6: locates messages exchanged between two lines

• N=7: locates messages exchanged between two lines of two files

• N=8: locates messages by MPI function names.

For example, if we want to find messages exchanged between processes with ranks 0 and

1 we type in the command locatep2p 1. We enter 0 when a prompt appears asking for the

rank of first process. Similarly we enter 1 when another prompt demands the input for the

above two processes. Similarly, for other choices of N, various prompts demand different

rank of second process. This brings up a detailed list of messages exchanged between

 50

input information from the user, based on which relevant data is furnished from the user

database.

A complete execution of all the options (N = 1 to 8) for locatep2p for an MPI

program with point-to-point communication routines MPI_Send and MPI_Recv is shown

in the Figure 20. Different colors are used for highlighting different columns of data, thus

helping distinguish the criteria by which the messages have been sorted. This feature is

useful for tracking errors in point-to-point communication since we can zero in on the

information we want using a suitable value of N.

Built-in Query: Status

In the built-in queries discussed so far, we had to go to each row and see the data under

the column ok (0 – incomplete, 1 – complete) to check if an operation that resulted from a

call to an MPI routine had completed or not. For large programs running on a big

network, this is an extremely time consuming and painful process which is highly error

prone. To aid such problems, we have introduced the command status N, where N = 0

signifies an incomplete operation while N = 1 denotes a complete operation. A user can

type the command status 0 to get a list of all MPI functions that did not terminate

successfully. This command paves the way for faster and accurate debugging. Executions

for commands status 0 and status 1 are shown in Figure 21.

Built-in Query: Trace

With our current set of built-in queries, if we want to see all messages exchanged by a

specific call to a group or a point-to-point communication routine, we have to use the

commands locategroup 4 or locatep2p 8. In these queries, a prompt asks the user to

 51

Figure 20: Executions of the command locatep2p N, N = 1, 2, 3, 4, 5, 6, 7, and 8.

 52

Figure 21: Executions of the commands status 0 and status 1.

enter the name of the MPI function to be traced. Based on the name of the MPI routine,

data from the corresponding user database will be displayed. The caveat of these

commands is that the list generated will be for all calls in the application to the above

function. Consequently we have to search for our particular function call by scanning

through the line numbers and file names till we arrive at our desired call. This process is

not only time consuming but has high probability for human errors. The risk of making a

mistake increases when we have big applications running on a network of thousands of

nodes.

To simplify the process we have introduced a built-in query named trace N. Using

this query a user can track down a particular MPI function by its unique message group

id, N. For example, let us study a particular MPI_Scatter call, which has been

dynamically assigned a message group id of 14 by IDLI when the application had

 53

executed. When we enter the command trace 14 all messages exchanged by the entire

group, whose message group id is 14, is listed. This saves us the effort of seeking out an

MPI_Scatter call (whose message group id is 14) by its file name and line number from a

list of all MPI_Scatter calls made by an application. Executions for the command trace N

with various message group ids are as shown in Figure 22.

The listings for the C programs, 1_TC_MPI_Send.c and 1_TC_MPI_Scatter.c, used

for testing the built-in queries are shown in Figure 56 and Figure 57 respectively in

Appendix 1.

The command: PSQL

The advanced users can write custom SQL [DAT96] queries to analyze specific data

from MPI function calls. To achieve this, IDLI provides a way to invoke a PSQL shell.

The command so for doing from IDLI’s parent menu is psql N where N is the session

number corresponding to the user database to be queried. If a developer wants to query

the user database of session two, the command for invoking the psql shell is psql 2. Let

us study a customized query. When a big application is running on a large number of

processes on a huge network, a user might want to get a quick view of all the MPI

routines that were executed successfully on a particular process. For example, for

viewing details of all successful calls to MPI routines from a process of rank 0, he types a

custom SQL query as shown in Figure 23.

 54

Figure 22: Executions of the command trace N.

Figure 23: PSQL shell invoked to write customized SQLs to access specific data.

 55

Replay

When we have tracked down the errors and zeroed in on a set of erroneous processes, we

might want to debug the application using a step by step execution of the program on a

particular process (from the above set). In other words, from a global context we want to

zoom in on to a local context. But to rerun the entire program execution involving a huge

set of nodes would not only be time consuming but expensive. On the contrary, if the user

is given a tool which can be used to replay the program’s execution at specific erroneous

processes, it will tremendously enhance the speed of the debugging process. Moreover it

would relieve the user from going through a huge amount of data generated during a

rerun of an entire application on the whole network.

From the Query Manager a user can replay one or more processes, using the

command replay N, where N is the rank of the chosen process for replay. We have

designed Replay in IDLI with the following features:

• A user can replay an application over the network on her chosen set of processes.

She might choose as many erroneous processes as she is comfortable with debugging

simultaneously. Consequently information overloading is avoided.

• From one terminal where IDLI is running, a user can simultaneously replay on

one or more processes at different nodes of the network. It is to be noted that during

the execution of an application on the network, more than one process might have

run on the same node (which is a physical machine on the network). IDLI’s Replay

feature allows a user to simultaneously replay the application for all the processes

executed on a particular node of the network. The user may run multiple replay

sessions for processes of different ranks and debug them simultaneously. The rank of

 56

the process for which replay is being done is displayed as the title of the xterm

window. For example, for a replay of an application on process number 2 the title

shows Idlimq_replay_for_rank_2. Other than the title of the xterm window, the

command prompt for GDB [GNU] also shows the rank as “[gdb on rank 2]”. These

features help a user to identify a process window correctly. Figure 24 shows

simultaneous replays on four processes from a single terminal, using GDB [GNU] as

a sequential debugger.

• An application can be replayed multiple times in the same session on any number

of processes simultaneously. Once a user completes replay of a process, he may

rerun the replay for that process any number of times on the same terminal or quit.

A developer can replay using the sequential debugger of his own choice, for example

GNU DeBugger (GDB) [GNU] or Data Display Debugger (DDD) [DAT]. This is

possible assuming that the chosen debugger is available on the node on which replay

is being run. When a user enters replay N (N = rank of process), she is asked to enter

the name of a debugger to be used for replay. Also, a programmer can replay an

application on different nodes of the network using different sequential debuggers

simultaneously for each distinct process. This feature provides the flexibility to use

GDB at node 1 or DDD at node 2 depending on the availability and need for specific

remote machine and the debugger is opened in a xterm window with display set to

the local machine where IDLI is running. Depending on the debugging scenario, a

user may use different debuggers for each process with a distinct rank running on the

same node. This is demonstrated in Figure 25 where replay is running with two

different sequential debuggers GDB and DDD on a couple of processes at a single

 57

Figure 24: Simultaneous replay of four processes, checks and error messages.

node.

• A user can perform sequential debugging and examine contents of communication

messages at the same time. He may set break points in the program particularly at the

MPI function calls if his intention is to check the content of the messages being

 58

Figure 25: Simultaneous use of the Query Manager and Replay.

exchanged. When the replay reaches the break points at MPI function calls, no calls

are made using the MPI communication layer. The data for the MPI calls is furnished

from the current user database for the application which is being replayed. If a user

finds that the data received by an MPI call was incorrect, he may make changes to

the data that was exchanged by MPI routines using the sequential debugger. This

will help him see how the outcome of the program changed by correcting faulty data

 59

exchanged by messages. A developer may set breakpoints in the sequential part of

the program which does not involve MPI function calls. The sequential debugger

will handle them according to its design and methodology. Figure 26 shows replay

being done with the Data Display Debugger (DDD) [DAT] where breakpoints have

been inserted at calls to MPI functions.

• Query Manager and Replay can be used simultaneously in the same session. A

user can use the Query Manager for post-processing of communication messages

while replay is being used simultaneously for source level debugging on a number of

processes at a node as shown in Figure 25.

Replay has robust error checking. Since we allow simultaneous replays of processes

of multiple ranks, it is necessary to check for the case when a user tries to invoke

replay for the same process more than once at the same time. If a user tries to do so,

error messages are provided and she is not allowed to start more than one replay

session of the same process simultaneously. For example, let us consider the scenario

when a replay is already running for a process of rank 0, and the user enters the

command replay 0. A check is made and the error message “ERROR: currently there

is an active replay on the given rank” is shown to the user. Then control is returned

to IDLI’s Query Manager Shell which can be used for querying. Another erroneous

situation is when a user tries to exit from the Query Manager while there are ongoing

sessions of replay at various processes. Suppose we have replays running for ranks 0,

1, 2, and 3 and the user types in exit to quit the Query Manager. Immediately a

warning of the following type is issued to the user “Replays for ranks: 0, 1, 2, 3 are

still running! Please finish or terminate the active replays before exiting.

 60

Figure 26: IDLI’s Replay in action with the sequential debugger DDD.

Exiting this mode now may lead the database to an inconsistent state.” If a user tries

to exit the Query Manager when there are replay sessions in action then the database

tables managing the secssions would have inconsistent data. For example, a scenario

may arise where replays going on for processes with ranks 0 and 1, when the user

decides to exit the Query Manager without quitting the replays first. If we allow the

user to exit in such a scenario there would be inconsistency in the process of exit.

Consequently the data in the tables storing information for replays’ sessions will not

be updated, that is, sessions will still be marked as active for processes 0 and 1

 61

respectively. As a result when the user tries to replay again on processes 0 and 1 he

will not be able to do so since we do not allow more than one replay for a distinct

process for an application. Figure 24 shows a session with simultaneous replays for

four different processes. When a user tries replay on a process which is already

running one, an error message is thrown as depicted in Figure 24. It also

demonstrates similar checks done during exit.

While replaying a particular process on a specific node, the MPI communication calls

must behave exactly the way it did during actual execution of the program. IDLI ensures

that by furnishing data for MPI calls from a user database which stores data from the

application’s previous execution. It is merely a database read operation and hence

extremely fast. Also, all MPI calls will return the same error code as during the original

execution. Since the data is provided from a past run, the MPI communication layer used

for exchanging messages over the network is not involved. There is no actual execution

of the MPI routines in real time during the replay of an application. Consequently, the

time that was used by the MPI routines for blocking or synchronization, and message

exchanges is thus saved in replay. Hence the process of debugging is significantly

speeded up. In a nutshell, Replay enables a user to debug a large MPI application with

optimal resource usage and without information overloading [PED03].

This concludes our exploration of the features of IDLI. The key motivational factors

during the entire design and development cycles of IDLI were to provide features that

would do the following:

• enhance the quality of debugging capabilities of the tool,

• make it user friendly and intuitive which helped flatten the learning curve,

 62

• provide specific debugging data to the user thus avoiding information overload,

• make it faster and reliable with robust error checking, and

• aid in optimal usage of resources.

The demonstrations also showed how IDLI’s Query Manager and Replay in

conjunction with a sequential debugger enables a user to:

• view global context information and map it to local context,

• customize it by writing user specific SQL queries,

• generate relevant and precise debugging information, and

• simultaneously debug source level sequential code as well as errors in the

messages exchanged by processes.

Debugging IDLI with IDLI during its development cycle

During the development cycle of IDLI, first the databases were modeled and created,

followed by the coding and testing of the Query Manager. After that we started

implementing the wrapper functions in the native C library. The intention behind doing

so was to use the software while it was being developed to debug itself with the aid of the

Query Manager. Quite a few errors were trapped and resolved during the development

process using the above methodology of debugging a product using itself. For example

while developing IDLI, there was a bug which we were not aware of, in a call to the MPI

function named MPI_Comm_rank. While debugging another bug we did a dump 1, when

we noticed that for all processes, there were no entries for MPI_Comm_rank after

execution of MPI_Comm_size. In our program, execution of MPI_Comm_rank should

have followed that of MPI_Comm_size. This brought into view this unknown bug which

 63

was

int statements for

debugging were saved by using IDLI’s Query Manager to debug IDLI.

ion about how IDLI was used to debug its own

software while it was being developed.

 then resolved.

Another instance of the tool’s self-debugging occurred while implementing wrappers

for MPI_Isend and MPI_Irecv. A bug was caught using dump 3 where we noticed that a

call to MPI_Irecv was not getting executed at its destined node. A complex bug was

encountered while writing the wrapper for the MPI function MPI_Wtime. This subroutine

returns the current value of time as a double precision floating point number of seconds.

Each time we printed the time being returned by MPI_Wtime we got the same value!

When we wrote a custom SQL query to see the value of the return data which was stored

in the database, it showed different values for each call to the above function. Finally we

resolved it by correcting the pointer references and arguments being passed in the

wrapper and related functions. In this manner we used our tool several times to debug

itself which also helped in streamlining many of the features for easier usability. Also,

considerable time and effort that would have been spent in writing pr

Summary

In the first section of this chapter we discussed the architecture and organization of

our message debugger IDLI. In the next section we explored the features of IDLI in

details. We demonstrated the functionality of each feature with examples as well as

screenshots of executions of corresponding commands. We also discussed how new

features were developed as a result of reflection upon the limitations of the inbuilt queries

already developed in the debugger. An interesting aspect that demonstrated our tool’s

utility and convenience was the discuss

 64

CHAPTER 5

rs, highlighting complexities faced, algorithms

used and some interesting SQL queries.

buted relational SQL database [POS] at the backend is used to achieve the

fol

’ sessions,

IMPLEMENTATION DETAILS OF IDLI

The architecture of IDLI comprises three layers. A distributed relational SQL

database forms the backend. The middle layer is a native C [KER88] library which has

wrappers for MPI functions and a simple intuitive user shell interface is the front-end.

The user interface can be used to query messages, replay a program and write interactive

customized SQL queries to directly access data from database tables. This chapter gives

implementation details of all three laye

Backend: Distributed Relational SQL Database

A distri

lowing:

• generation and management of data for multiple users

• logging meta-data generated for each MPI call, and

• storing data from messages exchanged by MPI calls in a user’s application.

To facilitate segregation and remove redundancy we have divided data storage into two

parts. The first part consists of data for management of multiple users’ simultaneous

sessions. This data is stored in a database known as system database. It does not contain

debugging information from MPI calls of the application. The second part stores meta-

data and details of messages exchanged by MPI calls in each session. This data is stored

 65

in databases known as user databases. There is a distinct user database for each session of

a user. Unique names of user databases are generated by appending the username and

session number. Figure 27 shows a detailed overview of IDLI’s Relational DataBase

Management System (RDBMS).

Figure 27: Details of IDLI’s RDBMS.

IDLI RDBMS

SYSTEM DB USER DBs
FOR USER 1

………..... USER DBs
FOR USER N

USER DB
USER N-1-1_SESSIO

Backend: Multiple users’ sessions data generation and management

As explained in the previous chapter, IDLI supports sessions for multiple users and

stores debugging data for each user’s session up to a maximum of five sessions.

Consequently a user can access the debugging data of an application executed in any of

his previous five sessions. Once the maximum of five sessions is reached for a user, the

user database for the earliest session (out of the five allotted sessions) is deleted. The

USER DB
USER N-2-1_SESSIO

USER DB
USER N-3-1_SESSIO

USER DB
USER N-4-1_SESSIO

USER DB
USER-1_SESSION-5

USER DB
USER-N_SESSION-1

USER DB
USER-N_SESSION-2

USER DB
USER-N_SESSION-3

USER DB
USER-N_SESSION-4

USER DB
USER-N_SESSION-5

 66

session number thus freed is assigned to the user’s current session. A new user database

for storing debugging information of the present session is created. Thus to help optimize

the usage of space on the database server, session numbers are cyclically reused and

limited to the maximum number for each user. A future version of IDLI might allow the

user to choose the maximum number of sessions he wants to store. A relation named

userinfo, which has been created in IDLI’s system database, stores the users’ session

management data. Figure 28 shows details of the relation userinfo along with some

example data.

session
Name

session
A Created

user

Name No
session
Time

db
ctive

db

amma 1 2005-08-28 23:15:40.809558 amma_1 F T
amma 2 2005-08-28 23:15:40.809558 F F
amma 3 2005-08-28 23:15:40.809558 F F
amma F 4 2005-08-28 23:15:40.809558 F
amma 5 2005-08-28 23:15:40.809558 F F

Figure 28: The userinfo relation and tuples of data for a user named amma.

ser

database. Figure 29 shows the details of the relation loginfo along with example data.

Backend: Logging Meta data generated for messages for each MPI call

LAM MPI does not provide user accessible identification numbers for messages. To

distinctly identify a message we generate unique message group ids. During point-to-

point and group communication, all messages related to a call are grouped together,

hence the name message group id. The message group id facilitates storing of message

related information as a tuple in a relation. During a call to an MPI routine, a substantial

amount of meta-data is generated for each message. This meta-data aids in querying and

debugging. To store meta-data we have created a relation named loginfo in the u

 67

COLUMN NAME N E DATA DESCRIPTIO EXAMPL
msgGroupId Message Group Id [Primary Key] 6
comm Communication Handle 0c77a0 0x8
rankSender Rank of Sender 0
rankReceiver eceiver 1 Rank of R
myRank Rank of process where application is

running
0

opDone incomplete, 1 – Operation Done [0 –
complete]

1

tag Tag of message -
hostIPAddress IP Address of Host 192.168.0.2
hostName ame localhost.localdomainHost N
filename _MPI_Send.c Name of File from which MPI call is

made
1_TC

lineNo Line Number from which MPI call
made

is 17

mpiFuncId Unique Integer Id for MPI routine
instead of storing its name as a string

 155

mpiFuncReturnCode Return code from call to MPI routine 0
mpiFuncReturnMsg

de from call to MPI routine
SS: no Return message corresponding to

return co
MPI_SUCCE
errors

lo
routine 2221:36:38.667086

gTime Time when call was placed to MPI 2005-09-

Figure 29: The loginfo relation and example data for the function MPI_Send.

lumns msgGroupId and myRank as a

refe

Backend: Storing data from messages exchanged by MPI routines

In point-to-point and group communication routines, along with the meta-data, we

also need to store the data received, and the return values sent, by an MPI function. We

do so by storing data specific to a particular MPI function in a relation with the same

name as that of the function. For example, all data related to calls to the MPI function,

MPI_Recv, are stored as separate rows within a table named MPI_Recv in the user

database. The relation MPI_Recv uses the co

rence key to refernce the relation loginfo.

If we had stored data for each MPI call in the relation loginfo instead of a separate

table for each function, it would have made a single relation huge in size. This in turn

would have increased retrieval times. All data related to each MPI call could have been

stored in a binary format in the relation loginfo. In that case, we would have to convert

 68

the data back to the data type of each stored parameter, during data retrieval. This would

have required the maintenance of an ordered list with the count and data type of each of

the stored parameters. This process would have unnecessarily increased the complexity

and

ata types is

con

nged by that routine, he can write a customized SQL query for specific data

retrieval.

 processing time.

Hence to facilitate quick retrieval, optimize space requirements and remove

unnecessary complex processing we have stored data specific to a particular type of MPI

function in a relation of that name. Figure 30 shows the relation MPI_Recv for the

function MPI_Recv. For example, if we had stored this information in the relation

loginfo, we would have to convert the values in all the columns of MPI_Recv, that is,

pBuf, count, datatype, pStatus, statusSource, statusTag,

statusError, statusLength, and data into binary format and then store them.

On the contrary, since we have stored the data in a separate relation MPI_Recv the

retrieval is much faster. This is due to the fact that most of the parameters passed in the

arguments of the function MPI_Recv are stored in separate columns in their original

formats, so no conversion is required except for the column named data. The column

for data stores the information received (in arrays) by MPI_Recv from a corresponding

MPI_Send. As the number of conversions from binary format to original d

siderably reduced during data retrieval, processing is faster and simpler.

Data from the messages exchanged by MPI functions is stored to aid a user to query

the data from a specific function call by writing customized SQL queries. For example,

when a developer has tracked down a specific MPI function call, and needs to know the

data excha

 69

COLUMN NAME TA DESCRIPTION EXAMPLE DA
pBuf Stores initial address of receive buffer ffff634 0xb
Count received 1 Number of elements to be
Datatype ment 2a0 Datatype of each receive buffer ele 0x80c6
Source Rank of the source task in comm

or MPI_ANY_SOURCE
0

Tag Message tag or MPI_ANY_TAG 1234
Comm. Communicator handle 0x80c77e0
pStatus Stores address of status object ffff620 0xb
statusSource Source rank stored in object status 0
statusTag Source tag stored in object status 1234
statusError Error stored in object status 0
statusLength atus Message length stored in object st 4
msgGroupId Message Group Id [Primary Key] 8
rankReceiver Rank of current process [Primary Key] 1
data Data received in binary format .\026\000\000

Figure 30: The MPI_Recv relation.

For a huge parallel application running on a large number of processes, writing a

customized SQL to view the requisite data is probably a faster debugging process than

repl ying

atching has to be done for each tuple with the given MPI function’s name. This will

a the entire application.

Backend: Mapping MPI function names to unique integer function ids

As explained in the previous chapter, the wrapper functions (in IDLI’s native C

library) frequently need to fetch specific data for MPI functions from the relation loginfo,

through SQL queries. Hence, along with other meta-data, we need to store the name of

the MPI function in the relation loginfo. LAM-MPI does not provide user accesible

unique integer ids for the MPI functions. So the names of the MPI functions have to be

stored as strings in each tuple which is not space optimal. Also, in the source code, a

developer has to hard code the names of the MPI functions in the WHERE clause of the

embedded SQL queries. Figure 31 shows an embedded SQL query where the function

name ‘MPI_Allgatherv’ has been hard coded. Moreover, during data retrieval, string

m

 70

sprintf (fgRequestString,

 WHERE mpiFuncName = 'MPI_Allgatherv' AND opDone = %d",
 FALSE);

 "SELECT min(msgGroupId) FROM loginfo

Figure 31: Example of SQL with MPI function names as strings

slo

ach tuple using the integer ids instead of string

mat hing with

uestString,

 "SELECT min(msgGroupId) FROM loginfo

 FALSE);

w down the retrieval process.

A better way of doing the same is to use integer comparison instead of string

matching. To do so unique integer ids are assigned to each of the MPI functions. These

unique integer ids are stored along with their names and signatures in a relation named

MPIFuncSigId. Consequently in the embedded SQL queries, a developer can use the

unique integer ids for each MPI function instead of hard coding its name, as shown in

Figure 32 . This makes the SQL queries generic. Hence they remain unaffected by future

addition or change of names of the MPI routines. Also, data retrieval is fastened, since

integer matching can be done in e

c the function’s name.

sprintf (fgReq

 WHERE mpiFuncId = 9 AND opDone = %d",

Figure 32: Example of SQL with MPI function ids instead of names.

As more routines are added or their names are modified in LAM MPI, we need to add

or modify these functions’ details only in the relation MPIFuncSigId. Consequently the

source code remains unaffected since no function names are hard coded in it. It is to be

noted that in the relation loginfo the unique integer id of each MPI function is stored

instead of its name. As mentioned earlier, this is done to optimize space and processing

tim MPIFuncSigId. e. Figure 33 shows the details of the relation

 71

mpiFunc
Id rn

iFunc
gNum

mpiFunc
Retu

mpiFunc
Name

mp
Ar

mpiFunc
Arg

9 int 8 pe,
“void *”, int *, int *,

MPI_Allg {“void *”, int, MPI_Dataty

atherv MPI_Datatype, MPI_Comm }

Figure 33: The MPIFuncSigId relation with data for MPI_Allgatherv.

is

ex t y does the following:

abase,

base after the MPI function returns, and

previous execution of the application. No calls are made to MPI functions

during replay.

MPI calls are intercepted through the use of C preprocessor #define macros that

Middle Layer: Native C Library

A native C [KER88] library provides a layer between the user’s program being

debugged and LAM-MPI library as demonstrated in Figure 34. It consists of wrapper

functions for each MPI routine that provides interaction between the SQL database [POS]

at the backend, and the user’s program (in debug mode) or the debugger’s front-end user

interface (in replay mode). The wrappers also possess intelligence for initialization,

database processing and locks, understanding whether the debugger has to be started in

debug or replay mode, and MPI function specific processing. When an application

ecu ed in debug mode, a wrapper function in the native C librar

• inserts initial data in the SQL dat

• calls the original MPI function,

• stores data from the call in the user data

• returns control to the user’s program.

In replay mode, the native C library’s wrapper functions provide data for MPI calls from

stored data of a

Middle Layer: Methodology used for interception of MPI calls

 72

Figure 34: Schematic Illustration of Native C Library’s Role.

redirect the MPI call to a wrapper function in IDLI’s native C library. For example, an

interception of a call to MPI_Init, is done in the following manner:

1. The signature of MPI_Init is int MPI_Init (int *pargc, char

***pargv). The corresponding wrapper function in native C library is int

IDLI_MPI_Init (int *pargc, char ***pargv).

2. The call to MPI_Init is intercepted by the C preprocessor #define macro:

#define MPI_Init (A, B) (SET_FILE_LINE, IDLI_MPI_Init (A,

B)). The a macro which sets global variables with the file name and line number

from which the MPI call was made is SET_FILE_LINE.

3. The MPI library is included in the user program with #include “mpi.h”. The

standard MPI header file mpi.h has been renamed to OrigMPI.h and the header

file mpi.h has been replaced with a header file of the same name. This new header

file has has a #inculde IDLImpi.h followed by all the #define macros like

the one shown above. IDLImpi.h is a header file that has the prototypes for

wrapper functions like above mentioned IDLI_MPI_Init. IDLImpi.h has a

IDLI’s Native C Library

User’s Application or
IDLI’s user-interface

SQL DB

MPI

 73

#include OrigMPI.h which enables the inclusion of the MPI libraries. Figure 35

demonstrates the header file swapping process.

//User’s Program //mpi.h
… …
#include mpi.h int MPI_Init (int *pargc, char ***pargv) ;
…. .

..
.

Figure 35: Diagram showing swapping of header files to intercept MPI calls.

4. During compilation of a user’s program, he needs to specify the IDLI directory in

the include path, as in –I…/IDLI. Consequently, the IDLI specific mpi.h is included

.

Rename mpi.h to
OrigMPI.h Replace standard

mpi.h with our mpi.h
with #define macros

//mpi.h
#inculde IDLImpi.h
…
#define MPI_Init(A, B) (SET_FILE_LINE,IDLI_MPI_Init(A, B))
….

// IDLImpi.h

#inculde OrigMPI.h
…
int IDLI_MPI_Init (int *pargc, char ***pargv);
….

// OrigMPI.h
…
int MPI_Init (int *pargc, char ***pargv) ;
….

 74

instead of the standard mpi.h. Also, he must link the IDLI library by using the flags

–L../IDLI –lidli during the linking phase in gcc. At compile time a flag is checked (-

DDEBUG as an argument in gcc [GCC]) in order to determine whether the program

should be compiled in IDLI debug mode or not. If it is not defined the standard MPI

header file is included else we replace the standard MPI header file with our own

header files as explained above.

Middle Layer: Flow of control in the wrapper functions

Once the MPI calls are intercepted we check whether IDLI is running in replay or debug

mode. When a user enters the command to replay an application, a flag is set to replay

mode. The flag is set to debug mode during compile time as explained in the previous

section. At the start of each wrapper function we check this flag to determine whether the

processing should be for replay or debug mode. In debug mode, data is written to the user

database, while in replay mode the stored data is retrieved from it.Each process writes

debugging information directly to the database. During initialization, which is done in the

wrapper function IDLI_MPI_Init, each process opens a connection to the system database

to check the user’s information. The first check is to determine whether the current

(logged on) user is a new user or a returning one who has had previous sessions with

IDLI.

If she is a new user, five rows (maximum number of sessions allowed for each user is

five) are created in the relation userinfo. A session number of 1 is assigned to the user’s

current session and a user database (for storing debugging data) is created with a name

formed by appending the username and session number. The dbCreated and

sessionActive flags in the relation userinfo are set to true. This enables other

 75

processes spawned by the user’s application to know that the current user exists, there is

an active session for her and that a user database has already being created.

Consequently, they can go ahead and retrieve the requisite connection information from

the relation userinfo, open a connection to the relevant user database and start writing to

the tables. The user database is created by the process which executes first (on any of the

nodes of the network being used). While creating the user database a lock is held on the

relation userinfo so that other processes wanting to do the above mentioned checks for

the user do not get ghost data. After the user database is created and the data in relation

userinfo is updated, the lock is released. This enables other processes that were waiting to

continue with their checks to proceed.

If the user already exists, we check whether there is an active session present for the

user. If so, the user database information is retrieved and a connection is opened to that

database. If not, we check whether an inactive session number is available for that user

that can be assigned to her current session. If more than one free (inactive) session

number exists, the minimum one is chosen. After that, the process of user database

creation as mentioned in above paragraph is performed. If no free session exists for the

user, that is, she has already had five previous sessions of debugging, then we cyclically

free a session number. Based on the algorithm first in first out (FIFO), we assign the

earliest (used) session number to her current session, delete the corresponding existing

user database and create a new one.

Once each process has created a connection to the correct user database to store the

current session’s debugging data, the original connection to the system database

containing the relation userinfo is closed. Next each wrapper function gathers data

 76

specific to the MPI function call, generates a unique message group id and inserts a row

in the relation loginfo in the user database. Then a call to the MPI function is made and

the corresponding tuple in loginfo is updated with the return parameters from a successful

call. Since we update the tuple after the call is made, we can keep track of the execution

times of each MPI call.

When an MPI call returns successfully, all return data along with data associated with

parameters passed in the function call are stored in a table with the same name as the

corresponding MPI function. In addition, for point-to-point and group communication

routines, processing intelligence which is unique to each routine is incorporated in the

wrappers.This is done to assign each group the same message group id, to check whether

the group operation has ended successfully or not, and other requisite verifications. Locks

are held on database tables whenever required to stop more than one process from

updating or writing to a table simultaneously and to prevent them from reading ghost

data.

Middle Layer: Implementation details of the MPI wrapper functions

One of the most important tasks performed by the wrapper functions is to group

together related messages exchanged during an MPI call. Whether it is a point-to-point or

group communication, to successfully locate errors occurring at different nodes of the

network a user needs to know the details of messages sent from a node to a group and

vice versa. Unfortunately, there is no built–in mechanism under LAM-MPI which assigns

unique identification numbers to related messages exchanged by point-to-point or group

communication routines. Consequently for each wrapper function, we had to implement

different algorithms for assigning unique message group ids to related messages. As

 77

mentioned in the previous chapter, in IDLI we have implemented wrappers for twenty

four commonly used MPI functions [WIL05]. In the following sections we shall discuss

the implementation details for some of the challenging point-to-point, group and

preliminary routines’ wrapper functions.

Point-to-point communication routines: MPI_Isend and MPI_Irecv

Our discussion starts with the implementation details for an asynchronous point-to-

point communication done by the functions MPI_Isend and MPI_Irecv. Figure 36 shows

details of these functions [MES].

Our task is to group together each set of corresponding MPI_Isend and MPI_Irecv

calls and assign them the same message group id number, say GID. Since these function

calls are asynchronous, once the calls are made the program control immediately goes to

the next program statement, without waiting for the completion of the copying of data

from the application buffer. In other words, an MPI_Isend call returns as soon as copying

of data from application buffer to system buffer begins; an MPI_Irecv call returns as soon

as copying of data from system buffer to application buffer starts. When a process

invokes, MPI_Isend, a row with a unique message group id (generated afresh) is inserted

in the relation loginfo. When the MPI_Isend returns successfully, a corresponding row is

inserted in the table MPI_Irecv with all data about the call. But the opDone column in

relation loginfo is not updated to true (1) since the operation will be considered

successful only when the corresponding MPI_Irecv goes through successfully.

MPI_Isend has to specify a destination in its function parameter dest. But MPI_Irecv

can receive from any source when its function parameter source is set to

MPI_ANY_SOURCE. In that case, we have to determine the source of the message to

 78

Function MPI_Isend is a point-to-point communication routine.

Signature int MPI_Isend (void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request * request)

Arguments buf - is the initial address of the send buffer (choice) (IN)
count - is the number of elements in the send buffer (integer) (IN)
datatype - is the datatype of each send buffer element (handle) (IN)
dest - is the rank of the destination task in comm (integer) (IN)
tag - is the message tag (positive integer) (IN)
comm - is the communicator (handle) (IN)
request - is the communication request (handle) (OUT)

Work Identifies an area in memory to serve as a send buffer. Processing continues
immediately without waiting for the message to be copied out from the
application buffer. A communication request handle is returned for handling the
pending message status. The program should not modify the application buffer
until subsequent calls to MPI_Wait or MPI_Test indicate that the non-blocking
send has completed.

Function MPI_Irecv is a point-to-point communication routine

Signature int MPI_Irecv (void *buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Request * request)

Arguments buf - is the initial address of the receive buffer (choice) (OUT)
count - is the number of elements in the receive buffer (integer) (IN)
datatype - is the datatype of each receive buffer element (handle) (IN)
source - is the rank of source or MPI_ANY_SOURCE (integer) (IN)
tag - is the message tag or MPI_ANY_TAG (positive integer) (IN)
comm - is the communicator (handle) (IN)
request - is the communication request (handle) (OUT)

Work Identifies an area in memory to serve as a receive buffer. Processing continues
immediately without actually waiting for the message to be received and copied
into the application buffer. A communication request handle is returned for
handling the pending message status. The program must use calls to MPI_Wait
or MPI_Test to determine when the non-blocking receive operation completes
and the requested message is available in the application buffer.

Figure 36: Details of functions MPI_Isend and MPI_Irecv.

match the call. The list of function arguments of MPI_Irecv does not have an object of

the type MPI_Status. As a result, we have to devise a way to extract the source from

the opaque object MPI_Request which is a communication handle (refer to Figure 36 for

the function arguments of MPI_Irecv). This is done using the function MPI_Test on the

MPI_Request object. MPI_Test tests for the completion of a send or receive and when

the operation completes successfully it outputs an object of type MPI_Status which

contains the message’s source, tag, error and length.

 79

Once we have extracted the source, the next step is to obtain the message group id of

the corresponding MPI_Isend from the relation loginfo (see Figure 29) and assign it as

the message group id of current MPI_Irecv call. To do so, we retrieve the message group

id of the tuple in the relation loginfo whose:

• mpifuncsigid is equal to unique integer id of MPI_Isend,

• rankSender is that of source obtained above,

• rankReceiver is the rank of process which has received the message through

MPI_Irecv, and

• opDone is false (0).

The result set for the above query might return more than one tuple for the case when

more than one message has been sent from the same source to the same destination. An

example of such a case is the repeated execution of an MPI_Isend in a for loop which is

sending different messages to the same destination. The challenge now is to identify the

correct message group id, GID, pertaining to our specific MPI_Isend from the above

result set. LAM-MPI preserves the order in which messages are sent from a source to a

destination, that is, if there are two messages sent from source A to destination B, the

message sent first will be received first, and so on. Though the order is preserved, in

asynchronous communication the time when the destination process will receive the

message is not guaranteed. Consequently to extract our GID we have to choose the

minimum message group id from the result set obtained above. Message group ids are

generated in increasing order. Once we get the GID, we assign it as the message group id

for our specific MPI_Irecv call in the relation loginfo. Next, we update the necessary

columns in the tuple for our specific MPI_Irecv call and mark the operation as complete

 80

(opDone is true (1)). In the relation loginfo the corresponding MPI_Isend call’s

opDone is also updated to true (1). After that, a row is inserted in the table

MPI_Irecv with all the data received in binary format. This completes the operation of

grouping together a set of corresponding MPI_Isend and MPI_Irecv calls and storing

their data for debugging purposes. Figure 37 shows the C code with the embedded SQL

for getting the GID for a message received by MPI_Irecv. The unique integer id for the

function MPI_Isend is 125.

sprintf (fgRequestString,
 " SELECT min(msggroupid) FROM loginfo \
 WHERE mpifuncid = 125 \
 AND ranksender = %d AND myrank = %d \
 AND rankreceiver = %d AND opdone = %d; ",
 rankSender, rankSender, rankReceiver, FALSE);

 Figure 37: C code with embedded SQL used to retrieve the GID for MPI_Recv.

Group Communication Routines

In LAM-MPI all group communications are blocking. It is very important that we

clearly understand the meaning of blocking in LAM-MPI. Blocking means that the

program execution at the node is blocked only for the time when the data is copied from

the application buffer of the program to the system buffer. Once that is done, the MPI

function returns and the program control goes to the next statement in the program.

Blocking does not mean that the program control (at the process initiating a group

routine) will wait till all the other related processes have executed their corresponding

group MPI functions and returned or acknowledged.

 81

MPI_Barrier

MPI_Barrier is a group communication routine. In this routine LAM-MPI

implementation enforces synchronization. Hence if an MPI_Barrier call returns it implies

that all the other nodes executing the program have reached (not necessarily completed)

their corresponding MPI_Barrier calls. Figure 38 shows the details of the function

MPI_Barrier [MES].

 Function MPI_Barrier is a group communication routine.
Signature int MPI_Barrier(MPI_Comm comm)
Arguments comm - is a communicator (handle) (IN)
Work Creates barrier synchronization in a group. Each task, when reaching the

MPI_Barrier call, blocks until all tasks in group reach the same MPI_Barrier call.
Figure 38: Details of function MPI_Barrier.

When an MPI_Barrier call is encountered, its wrapper inserts a row for it with a

unique message group id in the relation loginfo. We must identify the correct group of

MPI_Barrier calls to which this particular MPI_Barrier call belongs and update its

message group id with that of the group’s message group id, GID, thus creating a group.

If no such group exists then this is the first instance of an MPI_Barrier call, hence its

message group id is the GID. All message group ids are increasing in order with time. For

an MPI_Barrier call the opDone flag, which indicates whether an operation is complete

or not, is updated in the relation loginfo only when all processes of the group

communication return successfully.

To find the unique GID, to which the current MPI_Barrier call belongs, we first select

the set of distinct message group ids from the relation loginfo where the

mpifuncsigid is equal to MPI_Barrier’s unique integer id of 18 and opDone is

false (0). But this is not sufficient for an MPI program having more than one call to

 82

MPI_Barrier. In that case, the above result set may contain message group id of a

previous set of MPI_Barrier calls whose operation has not yet completed. This is possible

because a call to MPI_Barrier returns when all processes reach the MPI_Barrier call in

their program execution; it does not wait for them to complete the calls. Thus some

processes might have completed the first call to MPI_Barrier, reached the second call to

MPI_Barrier and are currently blocked while others might still be executing their first

MPI_Barrier call. Further, since we assign GID at the start of the wrapper function, the

previous set of MPI_Barrier calls must have been already assigned a GID. But since all

the processes of the previous group have not yet completed their MPI_Barrier calls, the

opDone flag for the group will be false (0) and thus they will be included in the

above result set.

We have to exclude the message group id of the previous set of MPI_Barrier calls, if

any, from above obtained results. We create this previous set by collecting rows in

relation loginfo where the mpifuncsigid is equal to MPI_Barrier’s unique integer id

of 18, opDone is false (0) and mpifuncreturnmsg is not null (since at

least one of the calls has returned hence a return message is present). Then we extract our

desired set of message group ids by excluding the above obtained set from the original

result set using a set difference. After that we choose the minimum message group id

from the set difference to get the GID for the current group. The tuple in the relation

loginfo corresponding to the current MPI_Barrier call is updated with the GID obtained

above.

An example would illustrate the above explained scenario. Let the processes be r0, r1,

r2 where r0 is the root, that is, calling process. Let us assume that there are two

 83

MPI_Barrier calls in the program ba1 and ba2 and we have a scenario as demonstrated in

Figure 39. We are at a stage where process r1 is trying to assign GID for ba2. The result

set form our first query as explained in previous paragraphs, will contain the message

group ids {1, 4, 5} while the second query will return the set {1}. The set difference of

the above two sets is {4,5} and the minimum element in the set difference is {4}. Thus r1

gets the GID of 4.

callNo GID myRank root opDone returnCode
ba1 1 r0 r0 false Success
ba1 1 r1 r0 false Success
ba1 1 r2 r0 false

ba2 4 r0 r0 false

ba2 5 r1 r0 false We are here, r1 has to
get GID for ba2

Figure 39: Example of a scenario with multiple MPI_Barrier calls.

Figure 40 shows the C code with the embedded SQL for the query to get the GID for

MPI_Barrier. After getting the GID, the actual call to MPI_Barrier is made; when the call

returns all the relevant columns in the corresponding row, in relation loginfo, are updated.

Next we have to check whether all the processes in the communication group have

completed executing their corresponding MPI_Barrier calls. We do so by counting the

number of rows in relation loginfo where msgGroupId is same as the GID obtained above

and mpifuncreturncode = MPI_SUCCESS. If this count equals the number of

processes in comm (communication object) then all the processes have returned

successfully from the corresponding MPI_Barrier calls. Consequently, we update

opDone to true(1) for all processes with the above GID in the relation loginfo. Last

but not the least a row is inserted in the table MPI_Barrier with debugging data from this

call.

 84

sprintf (fgRequestString,
 "SELECT min(msgGroupId) FROM (\

 (\
 SELECT DISTINCT msgGroupId FROM loginfo \
 WHERE mpifuncid = 18 \
 AND opDone = %d \
)\
 EXCEPT \
 (\
 SELECT DISTINCT msgGroupId FROM loginfo \
 WHERE mpifuncid = 18 \
 AND opDone = %d AND mpifuncreturnmsg IS NOT NULL \
)\
)\
 AS set1",

 FALSE, FALSE);
Figure 40: C code with embedded SQL used to find the GID for MPI_Barrier.

MPI_Bcast

In MPI_Bcast the process which broadcasts is the root. A call to MPI_Bcast at the

root can return as soon as data is copied from the application buffer to a system buffer.

Other processes which receive the broadcast will be blocked till the data is copied from

the system buffer to their application buffer. A scenario may arise where several

MPI_Bcast calls might have been executed at the root while other processes were still

blocked on their first MPI_Bcast call. Further, one or more processes might have also

executed several (less than or equal to the number of calls made by the root) MPI_Bcast

calls (from the same root), while the rest might not have completed their first call to

MPI_Bcast. Hence, if an MPI_Bcast at a non-root process returns then the root must have

at least entered MPI_Bcast, and sent data to its system buffer. The details of the function

MPI_Bcast [MES] are shown in Figure 41.

In the wrapper for MPI_Bcast, a tuple is inserted in the relation loginfo with a unique

message group id, and then a call is made to MPI_Bcast. If the call returns successfully

updates are made to the tuple with above message group id in the relation loginfo with the

 85

Function MPI_Bcast is a group communication routine.
Signature int MPI_Bcast(void* buffer, int count, MPI_Datatype

datatype, int root, MPI_Comm comm)
Arguments buffer - is the starting address of the buffer (choice) (INOUT)

count - is the number of elements in the buffer (integer) (IN)
datatype - is the datatype of the buffer elements (handle) (IN)
root - is the rank of the root task (integer) (IN)
comm - is the communicator (handle) (IN)

Work Broadcasts (sends) a message from the process with rank "root" to all other
processes in the group.

Figure 41: Details of the function MPI_Bcast.

return codes and messages. Next, if the current process is not the root, we must locate the

message group id of the root that initiated this broadcast message. We then update the

tuple for this call in the relation loginfo with the message group id of the root, say GID,

thus creating the broadcast group.

To find the unique GID to which the current MPI_Barrier call belongs, we first select

the set of distinct message group ids from the relation loginfo where the

mpifuncsigid is equal to the unique integer id 19 assigned for the function

MPI_Bcast, myRank is that of root and opDone is false (0). This result set will

contain the GIDs of all MPI_Bcast group operations that have yet not completed.

But this is not sufficient, since the above result set will contain GIDs of previous

incomplete operations of MPI_Bcast groups for which the current process might have

already completed its call and assignment of correct GID. So we have to exclude this set

of message group ids from above obtained results. We create this set by collecting

message group ids from rows in the relation loginfo where the mpifuncsigid is equal

to the unique integer id 19 assigned for the function MPI_Bcast, myRank is that of the

current process, rankSender is that of root and opDone is false (0). We obtain

the desired set of message group ids by excluding the above set from the original result

set. We then choose the minimum message group id from the set difference which gives

 86

us the unique GID for the group. The message group id of the tuple inserted into the

relation loginfo for the current MPI_Bcast call is updated with the GID obtained above.

We demonstrate the above explained process with an example. Let the processes have

ranks r0, r1, r2 where r0 is the root. Assume that there are four MPI_Bcast calls in the

program, bc1, bc2, bc3 and bc4 respectively and we are in the scenario as demonstrated in

Figure 42.

callNo GID myRank root opDone returnCode
bc1 1 r0 r0 true success
bc1 1 r1 r0 true success
bc1 1 r2 r0 true success

bc2 4 r0 r0 false success
Bc2 4 r1 r0 false success

bc3 6 r0 r0 false success

bc3 7 r1 r0 false success We are here, r1 has to
get GID for bc3

bc4 8 r0 r0 false success

Figure 42: Example of a scenario with multiple MPI_Bcast calls.

We are at a stage where process r1 is trying to obtain its GID for the call bc3. We

assume that prior to this point, r1 has successfully assigned correct GIDs for MPI_Bcast

calls bc1 and bc2 as shown in Figure 42. The first query fetches the result set {4, 6, 8}

which contains GIDs for all incomplete MPI_Bcast calls. In this set, the message group id

of 4 has already being successfully assigned by r1 to bc2. Hence there is a need to

eliminate the GIDs already assigned by the current process.

Our second query fetches the set {4, 7}. When we do a set difference of the above

result sets {4, 6, 8} and {4, 7}, we get the set {6, 8}. As mentioned earlier, in LAM-MPI

order of calls is preserved. In IDLI all message group ids are assigned in increasing order

 87

with time. So the minimum of the set {6, 8}, which is {6}, is the GID for the call bc3 for

current process of rank r1.

To summarize, to get GID for an MPI_Bcast for process ri where i = [1, 2, … , (no of

processes) -1] we select the minimum message group id from the set difference of {all

unfinished root GIDs} and {all unfinished root GIDs for ri}. The C code with the

embedded SQL statement used to find GID is shown in Figure 43.

sprintf (fgRequestString,
 "SELECT min(msggroupid) FROM (\
 (\
 SELECT DISTINCT msgGroupId FROM loginfo \
 WHERE mpifuncid = 19 AND myrank = %d AND opdone = %d \
) \
 EXCEPT \
 (\
 SELECT DISTINCT msgGroupId FROM loginfo
 WHERE mpifuncid = 19
 AND myrank = %d AND rankSender = %d AND opdone = %d \
)) AS set1",\
 root, FALSE, gMyRank, root, FALSE);

Figure 43: C code with embedded SQL for extracting the GID for MPI_Bcast.

Next, we check whether all the processes in the communication group have

completed executing their corresponding MPI_Bcast calls. We do so by counting the

number of rows in relation loginfo where msgGroupId is same as the message GID

obtained above and mpifuncreturncode = MPI_SUCCESS. If this count equals

the number of processes in comm (communication object) then the MPI_Bcast calls at all

processes have returned successfully. Consequently, we update opDone to true (1)

for all processes with the above GID in the relation loginfo. According to our norm, a row

is inserted in the table MPI_Bcast with debugging data from this call.

 88

MPI_Gather

For a non-root process MPI_Gather returns as soon as data is copied from the

application buffer to a system buffer. However, when MPI_Gather at the root returns, we

can conclude that all other processes must have completed their corresponding

MPI_Gather calls (at least data must have been copied from the application buffer at each

process to a system buffer). Hence, in an application with multiple MPI_Gather calls,

there can be a scenario where some processes might have completed multiple

MPI_Gather calls while the root may be still blocked at its first MPI_Gather call. The

details of the function MPI_Gather [MES] is shown in Figure 44.

In the wrapper for MPI_Gather, a tuple is inserted in the relation loginfo with a

unique message group id, and then a call is made to MPI_Gather. If the call returns

successfully updates are made in the tuple with the above message group id, in the

relation loginfo, with the return codes and messages.

Function MPI_Gather is a group communication routine.
Signature int MPI_Gather(void* sendbuf,int sendcount,MPI_Datatype

sendtype, void* recvbuf,int recvcount,MPI_Datatype
recvtype,int root, MPI_Comm comm)

Arguments sendbuf - is the starting address of the send buffer (choice) (IN)
sendcount - is the number of elements in the send buffer (integer) (IN)
sendtype - is the datatype of the send buffer elements (handle) (IN)
recvbuf - is the address of receive buffer (choice, significant only at root) (OUT)
recvcount - is the number of elements for any single receive (integer, significant
 only at root) (IN)
recvtype - is the datatype of the receive buffer elements (handle, significant
 only at root) (IN)
root - is the rank of the receiving task (integer) (IN)
comm - is the communicator (handle) (IN)

Work Gathers distinct messages from each task in the group to a single destination task.
This routine is the reverse operation of MPI_Scatter.

Figure 44: Details of the function MPI_Gather.

If the current node placing a call to MPI_Gather is not the root then a tuple is inserted

in the table MPI_Gather with data for this call but there will be no binary data from

 89

recvbuf. This data will be put only in the tuple inserted by the root. Since the nodes

can race ahead with MPI_Gather calls as explained above, we synchronize with an

MPI_Barrier call. This ensures that all inserts into relation MPI_Gather by all processes

in the network are complete before the root updates the message group ids in the

appropriate tuples with its own message group id, which is the GID in this case.

If the node is the root, then a row is inserted in the relation MPI_Gather with the data

in recvbuf. Next the root has to ensure that all inserts in MPI_Gather by other

processes have been completed so it synchronizes with a call to MPI_Barrier (in

correspondence to the MPI_Barrier call placed by the non-root nodes after their inserts in

table MPI_Gather). When MPI_Barrier at the root node returns we now know that all the

non-root processes have returned from their MPI_Gather calls and might have at most

invoked one more MPI_Gather call with the same root. They cannot invoke more than

one MPI_Gather call because they need to synchronize with the root through the

MPI_Barrier call. As a result, the root now updates the message group ids of all the tuples

(for all the processes for this MPI_Gather call) with its message group id which is the

GID. Figure 45 shows the embedded SQL for the above update.

sprintf (fgSQLString,
 "UPDATE loginfo SET msggroupid = %lld \
 FROM (\
 SELECT myRank as rank, min(msggroupid) as id \
 FROM loginfo \
 WHERE rankReceiver = %d AND opDone = %d \
 AND mpifuncid = 77 \
 GROUP BY myRank \
) AS temp \
 WHERE msggroupid = temp.id AND myRank = temp.rank",
 groupMessageId, root, FALSE);

Figure 45: C code with embedded SQL for updating the relation loginfo with the GID.

 90

Next, we check whether all the processes in the communication group have

completed executing their corresponding MPI_Gather calls. We do so by counting the

number of rows in relation loginfo where msgGroupId is same as the message GID

obtained above and mpifuncreturncode = MPI_SUCCESS. If this count equals

the number of nodes in comm (communication object) then the MPI_Gather calls at all

processes have returned successfully. Consequently root updates opDone to true (1)

for all nodes with the above GID in the relation loginfo.

MPI_Allgather

The details of the function MPI_Allgather [MES] are shown in Figure 46. If any

process returns from MPI_Allgather, all other processes must have started MPI_Allgather

and sent data to their system buffers. This also implies all previous MPI_Allgather calls

must have completed.

Function MPI_Allgather is a group communication routine.
Signature int MPI_Allgather(void* sendbuf,int sendcount,

MPI_Datatype sendtype, void* recvbuf,int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

Arguments sendbuf - is the starting address of the send buffer (choice) (IN)
sendcount - is the number of elements in the send buffer (integer) (IN)
sendtype - is the datatype of the send buffer elements (handle) (IN)
recvbuf - is the address of the receive buffer (choice) (OUT)
recvcount - is the number of elements received from any task (integer) (IN)
recvtype - is the datatype of the receive buffer elements (handle) (IN)
comm - is the communicator (handle) (IN)

Work Gathers individual messages from each task in comm and distributes the resulting
message to each task.

Figure 46: Details of the function MPI_Allgather.

In the wrapper for MPI_Allgather, a tuple is inserted into the relation loginfo with a

unique message group id, and then a call is made to MPI_Allgather. If the call returns

successfully updates are made in the tuple with above message group id, in the relation

 91

loginfo, with the return codes and messages. Now we must identify the common message

group id, GID, for this MPI_Allgather call. We do so by selecting all those message

group ids from the relation loginfo where mpifuncsigid is equal to the unique integer

id 8 assigned for the function MPI_Allgather, and where opDone is false (0). Since

LAM_MPI preserves the order in which function calls are made and in IDLI all message

group ids are assigned in increasing order with time, we select the minimum message

group id from above result set as the GID. We then access the relation loginfo and update

the tuple for MPI_Allgather for this process with the GID obtained above. Next, we

check whether all the processes in the communication group have completed executing

their corresponding MPI_Allgather calls. We do so by counting the number of rows in

the relation loginfo where msgGroupId is same as the message GID obtained above

and where mpifuncreturncode = MPI_SUCCESS. If this count equals the number

of processes in comm (communication object) then the MPI_Allgather calls at all

processes have completed successfully. In that case the opDone flag is set to true

(1) for all tuples with above GID in the relation loginfo.

Preliminary Routine: MPI_Finalize

MPI_Finalize should be called exactly once in an MPI program. The details of the

function MPI_Finalize [MES] is shown in Figure 47.

Function MPI_Finalize is a Preliminary or Environment routine.
Signature int MPI_Finalize(void)
Arguments None
Work Terminates all MPI processing. Although MPI_FINALIZE terminates MPI

processing, it does not terminate the task. It is possible to continue with non-MPI
processing after calling MPI_FINALIZE, but no other MPI calls (including
MPI_INIT) can be made.

Figure 47: Details of the function MPI_Finalize.

 92

In the wrapper for MPI_Finalize, a tuple is inserted in the relation loginfo with a

unique message group id, and then a call is made to MPI_Finalize. If the call returns

successfully updates are made in the tuple with above message group id, in the relation

loginfo, with the return codes, messages and opDone is set to true (1). We then

check whether all the processes have executed MPI_Finalize. We do so by counting the

number of rows returned from the relation loginfo where mpifuncsigid is equal to the

unique integer id 74 assigned to the function MPI_Finalize, and where opDone is true

(1). If number of MPI_Finalize calls that have returned successfully is equal to the

number of processes in the comm (communication handle) we can then conclude that all

MPI calls in the program have completed execution. Consequently we close the

connection to the user database and a connection to system database is opened. In the

relation userinfo updates are done for current user whose sessionActive column is

set to false. After that the connection to the system database is closed and memory is

freed for subsequent operations.

Middle Layer: Wrappers for other MPI Routines

Wrapper functions for MPI_Gatherv and MPI_Reduce are implemented along the

lines of the wrapper for MPI_Gather as explained above. MPI_Scatter’s wrapper follows

the implementation details of MPI_Bcast’s wrapper. The wrappers for MPI_Allgatherv,

MPI_Alltoall, MPI_Reduce_scatter, MPI_Allreduce are based on the implementation of

the wrapper for MPI_Allgather. Wrappers for the preliminary routines MPI_Init,

MPI_Comm_size, MPI_Comm_rank, MPI_Wtime, MPI_Wait, MPI_Test, MPI_Probe,

MPI_Iprobe, MPI_Send, MPI_Recv follow the general design of our wrappers and are

straight forward to implement.

 93

Front End: User Interface for Query Manager and Replay

IDLI has an intuitive shell user interface which has been specifically written to

provide features like command completion, command history, and robust error checking.

Each command is checked for errors and the user is informed of the specific error. This

helps the user correct the problem quickly rather than having to figure out the error

himself. When IDLI starts, its parent menu of commands is shown in Figure 48.

Figure 48: First menu of commands for Message Query Manager.

In this section we discuss the implementation details of the commands. The

functional features of each command have already been explained in Chapter 4. When a

user starts a session in IDLI, we obtain the name of the current user. We then open a

connection to the system database for IDLI so that we can query the system table userinfo

which stores data for all users and their multiple sessions.

Commands: list N, drop N, psql N, help and exit

The command list is used to list all the user databases storing information for

programs debugged with IDLI up to a maximum of five sessions for each user. We do so

by selecting all tuples from the relation userinfo where userName is that of current user,

dbName is not null and then sort the result set in ascending order with respect to

sessionTime. The C code with the embedded query for list is shown in Figure 49.

 94

sprintf (fgRequestString,
 "SELECT sessionNo, dbName, sessionTime \
 FROM userinfo \

 WHERE userName = '%s' AND dbName IS NOT NULL \
 ORDER BY sessionTime ASC",

 gUser);
Figure 49: C code with embedded SQL query for the command list.

The command drop N deletes the user database created in session number N. After

the database is deleted, we update the corresponding tuple for current user and session, in

the relation userinfo, by setting dbName to null, dbCreated to false, and

sessionTime with current time.

The command psql N invokes a PostgreSQL shell for the user database of session N.

Using this shell a user can write customized SQLs to query tables for retrieval of specific

data. The text shown in Figure 48 can be printed by a user using the command help. The

command exit quits the debugger after closing connection to system database.

Command: Query N

The command query N, where N is a session number, takes the user to the built-in-

queries shown in Figure 50. These queries can be used for querying the user database for

the program already executed in debug mode for session N. The built-in queries with its

various options provide different sets of data abstraction.

A user can write customized SQL queries, without having to go back to the parent

menu shown in Figure 48, using the command psql which invokes a PostgreSQL shell for

the current user database. He has access to all the tables used for storing the debugging

information in the user database. However, a user does not have access to the system

database.

 95

Figure 50: The Query Manager’s menu of queries.

A user can replay the execution of an application at a particular process by using the

command replay N, where N is the rank of the process. She can choose to replay in a

debugger of her own choice, for example, GDB (GNU DeBugger) [GNU], or DDD (Data

Display Debugger) [DAT]. The help and exit commands to enable a user to print the

Query Manager’s menu shown in Figure 50 and exit respectively.

In the following sections we discuss the implementation details of the queries dump

N, locategroup N, locatep2p N, status N, and trace N. We also devote a section to the

 96

command replay N. For each command we describe the type of debugging information

being displayed, explain some of the complex SQL queries used to retrieve the data and

demonstrate C code with embedded queries whenever necessary.

Data displayed by each built-in Query

The header row for each message displays the following:

• message group id as msgid,

• the source from which the message was sent as src,

• the destination to which the message was sent as dest,

• the rank of the process as myRank,

• the name of the MPI function as mpiFuncName,

• the result of the operation, as plete, 1-complete),

• the name of the file and line number from which MPI function was called as

fileName and line respectively, and

• the time when the information was inserted in the relation logInfo as .

Each built-in query fetches the above information and the criteria of sorting used in the

query is highlighted by coloring corresponding sorted columns of data in each row with a

different colors.

Query: dump N

The query dump N, where N denotes a column to sort by, lists details of all MPI

functions executed during an application’s run. Dump N can sort the above information

in various orders and the column by which it is sorted is displayed in a different color for

ok (0-incom

logTime

 97

ease of identifying the sorting criteria. The different sorting criteria chosen by selecting

different values of N are as follows:

• N = 1: sort by logTime,

• N = 2: sort by msgid,

• N = 3: sort by myRank,

• N = 4: sort by filename,

• N = 5: sort by filename & line,

• N = 6: sort by

The C code with the embedded SQL used for the command dump 1 is shown in Figure

51. The SQL queries for the command dump with other values of N are very similar to

the one shown in Figure 51. In those queries the parameter

changed to the criteria selected by the choice of N.

 Figure 51: C code with embedded SQL for the command dump 1.

Query: locategroup N

The command locategroup N, where N indicates the way to locate the messages, locates

all messages exchanged only by group communication routines during the execution of

an application. The different criteria by which a message can be located by selecting

different values of N are as follows:

fileName, lineNo, \

FuncSigId
DER BY logTime ASC”

 mpiFuncName.

 for the clause order by is

sprintf (fgRequestString,
 "SELECT msgGroupId, rankSender, rankReceiver, \
 myRank, mpiFuncName, opDone,
 logTime, mpiFuncReturnMsg \
 FROM logInfo \
 NATURAL INNER JOIN mpi
 OR

);

 98

• N = 1: locates messages exchanged between two files,

• N = 2: locates messages exchanged between two line numbers,

• N = 3: locates messages exchanged between two line numbers of two files,

se ccording to the criteria selected by the choice of N.

Receiver, myRank,\
, lineNo, \

 ,\
 'MPI_Gatherv' , 'MPI_Allgather' , 'MPI_Allgatherv' ,\

llreduce' , 'MPI_Reduce' ,\

) ORDER BY logTime ASC", \

 file1);

• N = 4: locates messages exchanged between two MPI functions.

The C code with the embedded SQL used for the command locategroup 1 is shown in

Figure 52. The SQL queries for the command locategroup with other values of N are very

similar to the one shown in Figure 52. In those queries the parameter for the inner

lection clause where is changed a

sprintf (fgRequestString,
 "SELECT msgGroupI

d, rankSender, rank

 ne, fileName mpiFuncName, opDo
 logTime, mpiFuncReturnMsg \
 FROM logInfo \
 NATURAL INNER JOIN mpiFuncSigId \
 WHERE msgGroupId IN (\
 SELECT DISTINCT msgGroupId FROM logInfo \
 WHERE fileName = '%s' AND mpifuncid IN (\
 SELECT mpifuncid FROM mpifuncsigid
 WHERE mpifuncname IN (\
 'MPI_Barrier' , 'MPI_Bcast' , 'MPI_Gather'

 'MPI_
 'MPI_S

Alltoall' , 'MPI_A
catter' , 'MPI_Reduce_scatter') \

) \

Figure 52: C code with embedded SQL for the command locategroup 1.

h a message can be located by selecting

dif e

Query: locatep2p N

The command locatep2p N, where N denotes the way to locate the messages, locates all

messages exchanged only by point-to-point communication routines during the execution

of a program. The different criteria by whic

fer nt values of N are as follows:

 99

• N=1: locates messages exchanged between two processes

• N=2: locates messages exchanged between two files of two processes

• N=3: locates messages exchanged between two lines of two processes

f two files of two processes

• N=6: locates messages exchanged between two lines

• N=7: locates messages exchanged between two lines of two files

•

wn in

Figure 53. The SQL queries for the command locatep2p with other values of N are very

sim for the selection

cla

spr

 lineNo, logTime, mpiFuncReturnMsg FROM logInfo \

 NATURAL INNER JOIN mpiFuncSigId WHERE (\
 (rankSender = %d AND rankReceiver = %d) OR \
 (rankSender = %d AND rankReceiver = %d) \

• N=4: locates messages exchanged between two lines o

• N=5: locates messages exchanged between two filess

 N=8: locates messages by MPI function names.

The C code with the embedded SQL used for the command locatep2p 1 is sho

ilar to the one shown in Figure 53. In those queries the parameter

use where is changed according to the criteria selected by the choice of N.

intf (fgRequestString,
 "SELECT msgGroupId, rankSender, rankReceiver,\

 myRank, mpiFuncName, opDone, fileName, \

) \ ORDER BY logTime ASC", rank1, rank2, rank2, rank1);
Figure 53: C code with embedded SQL for the command locatep2p 1.

Query: status N

The command status N, where N = 0 denotes incomplete operations and N = 1

denotes complete operations, is used to list details of executions of all MPI routines based

on the status of their operation, that is, complete or incomplete. For example, status 1

lists details of all executions of MPI routines where the entire operation terminated

 100

successfully. The command status 0 lists details of all executions of MPI routines where

the operations terminated with an error. Operation does not refer to a particular MPI call,

it implies all related MPI calls required to complete a communication. For example,

MPI_Send and MPI_Recv together form an operation. For group routines operation

implies the execution of the corresponding MPI call across all processes of the

communication handle or object comm. If we execute an MPI_Bcast then ‘operation’

means execution of MPI_Bcast by all processes of the group. In such a group if one

process fails then the operation is unsuccessful, though there might be successful

exe plement status

is s

 myRank, mpiFuncName, opDone, fileName,\
 lineNo, logTime, mpiFuncReturnMsg
 FROM logInfo \
 NATURAL INNER JOIN mpiFuncSigId \

cution of MPI_Bcast calls by all other processes. The SQL used to im

hown in Figure 54.

sprintf (fgRequestString,

 "SELECT msgGroupId, rankSender, rankReceiver,\

 WHERE opDone = %d ORDER BY msgGroupId ASC",
 choice);

Figure 54: C code with embedded SQL for the command status N.

mand enables us to see errors, if any, and the processes

on which they have occurred quickly since we trace specific MPI calls instead of going

Query: trace N

The command trace N displays all the messages belonging to the same message

group id (denoted by N). In a group communication, this command is very useful in

viewing messages exchanged by processes, as segregated groups. For example, if we

executed a call to MPI_Scatter whose message group id is N, then trace N will list tuples

with information for this specific MPI_Scatter executed by all processes of the

communication group. This com

 101

throu to implement

trace

CT msgGroupId, rankSender, rankReceiver,\

 lineNo, logTime, mpiFuncReturnMsg
 FROM logInfo \
 NATURAL INNER JOIN mpiFuncSigId \
 WHERE msgGroupId
 ORDER BY msgGroupId ASC",

gh a list of all MPI_Scatter calls in an application. The SQL used

 N is shown in Figure 55.

sprintf (fgRequestString,
 "SELE

 myRank, mpiFuncName, opDone, fileName, \

 = %d

 Id);
Figure 55: C code with embedded SQL for the command trace N.

windows which may be running on the same physical node. Secure Shell 2

Pro

r of replays running simultaneously at different

no is stored about each process in

different columns in the following manner:

Query: replay N

The command replay N replays the execution of the program at a process of rank N

without actually running LAM-MPI. The data for LAM-MPI functions, which have

already executed when the program was run in debug mode, is fetched from the tables in

user database. The user can locate the process which had erred using the Query Manager

and then replay the execution for that particular process using a sequential debugger of

choice. This will enable the user to see the exact data returned by the MPI function calls

and aid in mapping the error back to the source. A unique feature of the command replay

N is that it allows the user to simultaneously replay multiple processes of distinct ranks in

separate

tocol (SSH2) over TCP/IP is used to open a connection to the node on which replay is

to be executed. IDLI’s replay automatically locates the node for the selected process of

rank N.

The information about the numbe

des is stored in the relation replayInfo. Information

 102

• a process’s rank as myRank,

• the ip address of the node as hostIpAddress,

the user database as dbName, •

state whose permissible values are

 or replay_done,

 the process id of debugger as gdbPid, and

• the time when replay was initiated as .

Initially there would be no entries in the replayInfo table. Each time the user chooses to

replay a particular process of rank N from the Query Manager, an entry is entered into the

replayInfo table. The entry is deleted when its corresponding replay is terminated or

shutdown. In the wrapper function for IDLI_MPI_Init (in the native C library of IDLI), it

is first checked if there are any entries in the replayInfo table. If any entry is found IDLI

runs in replay mode else it runs in normal debug mode. A global flag is set to indicate the

mode.

At the beginning of each wrapper function in the native C library for IDLI, the global

flag is checked to determine the mode of processing for the MPI function calls. During

replay mode, stored data is fetched from a previous execution of the application in debug

mode (with IDLI). However, to the user program it appears as if the MPI function is

actually executing. Since no MPI calls are actually executed through the MPI interface,

no time spent on message blocking or synchronization. Consequently, replay is extremely

fast as it performs database reads only. Along with sequential debugging, the data

retrieved for the MPI calls can be examined in the sequential debugger selected by the

• the current state of replay as

replay_not_started or replay_running

•

logTime

 103

use

flag denoting that there is a replay for the process of rank N is set to true.

Thi

 sessions existed. If so, an error

mes

g gracefully at the end. The parent process simply returns

to the interactive command prompt in the Query Manager thus enabling simultaneous

replay and query processing.

r for replay. When a user quits replay, that is, when replay is over at the relevant

nodes, all corresponding tuples for those nodes are deleted from the relation replayInfo.

For a replay, the user specifies the rank of the process and the preferred sequential

debugger at the interactive prompt in the shell of Query Manager. The ip address and

hostname of the node on which the process of chosen rank got executed in its normal

debug run is retrieved from the table logInfo in the user database. A global array of flags

indicates if a replay session for a given rank is already running or not. If there is a replay

already running for the process of rank N, then an error message is generated. Otherwise

the appropriate

s prevents the user from simultaneously running more than one replay for a process of

the same rank.

If the user is allowed to quit the Query Manager while there are active replay

sessions, it may leave the database in an inconsistent state. This is because the

corresponding tuples for the active replays will not be deleted in the relation replayInfo.

When a user tries to quit the Query Manager by entering the command exit, global array

of flags is checked to determine if any active replay

sage is displayed and the user is prevented from quitting by returning the control the

prompt of the Query Manager.

When our checks reveal that there are no active replay sessions for a process of rank

N, then a child process is forked. This process handles the tasks of invoking the replay at

the remote machine and exitin

 104

Summary

In this chapter we explored the implementation details of our message debugger,

IDLI, in three distinct parts. The first part explains the design of the SQL databases at the

backend and the relations used to store debugging information and meta data. The design

of the native C library, its wrapper functions for MPI routines, their algorithms and

examples of different challenges that were encountered for the group routines are

explained in the second part. The user interface at the front-end, IDLI’s Query Manager

with all its built-in queries and Replay are explained in the third part. This part provides

information about the features of each query, its implementation details and C code

snippets of SQL queries as and when deemed necessary.

 105

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we have described IDLI, a message debugger for parallel programs

running in a distributed environment using LAM-MPI. Our message debugger is based

on the concepts of multilevel debugging [PED03] which is a bottom-up parallel

debugging approach. We have designed IDLI after a careful analysis of the limitations

present in the usability [PAN03] of current parallel debuggers. We believe that IDLI

provides effective sequential and message level debugging along with precise mappings

between global and local contexts. Hence it provides sufficient granularity like its

predecessors yet avoids many of their inherent flaws.

 Improvements upon current parallel debuggers

The guiding philosophy behind the development of IDLI was to implement a message

debugger for the LAM-MPI environment based on the principles of multi-level

debugging [PED03]. This concept was designed to avoid several flaws prevalent in

current parallel debugging tools most of which employ a top-down debugging approach.

Also, to improve upon many of the shortcomings, as revealed by our extensive survey of

the current parallel debuggers, we intended to develop an innovative yet simple parallel

message debugger from scratch. We briefly review the limiting issues of the present

tools and debuggers that were identified in Chapter 2 and explain how we used IDLI and

the multilevel debugging concepts to transcend them.

 106

• Partial view of the debugging spectrum:

• Most parallel debuggers are capable of providing debugging information

specific to either an individual process, that is, local context, or the system as a

whole, that is, global context. Some try to provide information for both global

and local contexts but often they are not satisfactory. This is due to the fact that

they are rigid with respect to a user’s specific needs.

• IDLI provides both global and local context debugging information and is

flexible to a user’s specific needs.

• Global level views of all the processes are supported by the means of data

abstraction through a set of built-in queries.

• Detailed information on the local context is provided through built-in

queries. They provide mappings for communication messages, exchanged

between processes of distinct ranks, to their origins at the specific line

number of the source code in a particular file.

• IDLI adapts itself to a user’s need for specific information through a feature

which enables a user to write custom SQL queries.

• Further, the ability to replay an application in a sequential debugger of the

user’s choice provides some of the finest levels of granularity.

• Information Overloading:

• Some of the existing debugging tools generate an overwhelming amount of data

which is detrimental to efficient debugging of parallel programs. Often the

cause and effect of an error are separated by a long distance in a parallel

program. Information overloading thus makes it increasingly difficult to extract

 107

the essential information needed for debugging an error by tracing it back to its

cause.

• Our message debugger IDLI, provides various levels of data abstraction to

display relevant information according to a user’s needs.

• The built-in queries have various options that help to trim down the

debugging data and retrieve requisite specific information.

• Moreover, the user can unleash the full potential of custom SQL queries

according to his debugging needs.

• IDLI provides the flexibility to replay an application simultaneously on a

chosen number of processes. This enables a user to choose as many

processes as she is comfortable debugging simultaneously. Thus the user is

in total control of the amount of data she wants to simultaneously view and

process for debugging.

• Inability to alter or create custom views:

• The lack of this feature in most of the graphical visualization debugging tools

paralyzes a user’s ability to access specific information. Thus a user’s

debugging ability becomes limited by the fixed views provided by the designers

of the graphical tools.

• In IDLI a user has complete freedom to take advantage of the entire range of

Postgres [POS] SQL commands to virtually create any desired view of the

available data in the user database.

• Lack of querying features at message level:

 108

• During debugging of parallel programs, often users need to inspect

communication messages and map them to their origins at the exact line

numbers on the source code on a particular process. In present parallel

debuggers, absence of features enabling queries to provide such details of the

communication messages slows down the debugging process significantly.

Often a user is left to trace the source of an erring MPI call to its exact location

in a file.

• IDLI has a whole set of built-in queries that cater to fine granularity at the

message level.

• It has a range of built-in queries that trace a message to its origin at the line

number of the source code in a particular file. They also locate the rank of

the process from which the message originated. This enables a user to

quickly zero in on the cause of the error. To provide detailed information on

the exchanged messages IDLI does not require any modification of the

user’s application source code.

• In addition, a user can modify the data exchanged by the MPI calls through

messages. He can do so by replaying the application on a process with a

sequential debugger of his choice. During replay the data for the MPI calls is

furnished from the stored data of a previous execution of the application.

The user can view the data through the sequential debugger and if he feels

that it is erroneous he can modify it. Next, he can step through the

application using the sequential debugger to see how the processing would

have progressed with the modified data instead of the erroneous one.

 109

Hence we see that IDLI effectively addresses most of the drawbacks of current

available debugging tools. To summarize in a nutshell, IDLI provides:

• specific debugging information through sufficient levels of data abstraction,

• connects global data with local context,

• has a simple front-end user interface,

• has built-in queries for querying messages and viewing details of executions of

MPI routines,

• allows custom SQL queries to be written by a user, and

• enables fast and multiple simultaneous replays on any process (at its node, that is,

physical machine) with a sequential debuggers of the user’s choice.

These features enable IDLI to act as a source-level as well as a post-processing

debugging tool without overwhelming a user with information overloading.

Future Work

We would like to enhance the features of our message debugger IDLI to include the

following:

• Protocol Conformation:

This feature would allow a user to write specifications of the behavior of the

protocol. Then using information from the actual messages, IDLI would

automatically check that the messages satisfy the above specifications [PED03].

• Deadlock detection

A feature for automatic detection of deadlocks may be provided in IDLI. An

algorithm that provides automatic suggestions for a deadlock induced state given

 110

a protocol specification can be found in [PED01]. Implementation of this

algorithm would add automatic correction to automatic detection of deadlocks

 which would make IDLI a comprehensive tool for debugging any MPI

•

orlds which is used in many large

computing.

•

cution, aid a user to change data and synchronize MPI function calls in real

•

[TRI05].

• Support for all MPI functions implemented by LAM-MPI

 IDLI’s current version supports twenty-four commonly used functions of LAM-

MPI. This support can be extended to cover all the functions of the LAM-MPI

interface

routine.

Execution with simultaneous multiple communication worlds

At present IDLI is designed to work with message passing in one communication

world denoted by the communication handle comm. It would be nice to extend

the functionality to multiple communication w

real time applications for parallel

Real time interactive debugging

A great feature which would make IDLI a complete multi-level debugger would

be to add capabilities for real time interactive debugging of sequential code as

well as MPI messages on selected processes at different nodes. This feature

should display contents in the variables of a program as they are populated during

its exe

time.

Graphical visualization of global level information

Currently IDLI provides global level views of the whole system through data

abstraction. It would be a nice idea to extend this feature to a graphical display of

 111

the entire system complete with pictures of active processes at various nodes,

their executions and contents of messages exchanged [PAN98]. We can also add

 the system as a whole.

•

d enables

e a complete debugger for LAM-MPI based on the

concepts of multi-level debugging.

profilers to view the performance of

A Graphical User Interface (GUI)

Last but not the least a worthy feature could be the addition of a GUI which

supports real time debugging, manages various replay sessions, an

querying of messages along with the above mentioned future features.

These future features would provid

 112

APPENDIX 1

PROGRAMS USED FOR TESTING IDLI

#include <stdio.h>
#include "mpi.h"

int main(int argc, char *argv[])
{
 int myid, numprocs, tag, source, destination, count, buffer;

 MPI_Status status;
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);

 tag=1234; source=0; destination=1; count=1;

 if(myid == source){
 buffer=5678;
 MPI_Send(&buffer, count, MPI_INT, destination, tag, MPI_COMM_WORLD);
 printf("processor %d sent %d\n", myid, buffer);
 }
 if(myid == destination){
 MPI_Recv(&buffer, count, MPI_INT, source, tag, MPI_COMM_WORLD, &status);
 printf("processor %d got %d\n", myid, buffer);
 }
 MPI_Finalize();
 return 0;
}

Figure 56: Listing of the C program used for testing MPI_Send and MPI_Recv.

 113

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
/*
! This program shows how to use MPI_Scatter and MPI_Reduce
! Each processor gets different data from the root processor
! by using MPI_Scatter. The data is summed and then sent back
! to the root processor using MPI_Reduce. The root processor
! then prints the global sum.
*/
/* globals */
int numnodes,myid,mpi_err;
#define mpi_root 0
/* end globals */
void init_it(int *argc, char ***argv);
void init_it(int *argc, char ***argv) {
 mpi_err = MPI_Init(argc,argv);
 mpi_err = MPI_Comm_size(MPI_COMM_WORLD, &numnodes);
 mpi_err = MPI_Comm_rank(MPI_COMM_WORLD, &myid);
}

int main(int argc,char *argv[])
{
 int *myray,*send_ray,*back_ray;
 myray = send_ray = back_ray = NULL;
 int count;
 int size, i, total,gtotal;
 init_it(&argc,&argv);
/* each processor will get count elements from the root */
 count=4;
 myray=(int*)malloc(count*sizeof(int));
/* create the data to be sent on the root */
 if(myid == mpi_root){
 size=count*numnodes;
 send_ray=(int*)malloc(size*sizeof(int));
 back_ray=(int*)malloc(numnodes*sizeof(int));
 for(i=0;i<size;i++)
 send_ray[i]=i;
 }
/* send different data to each processor */
 mpi_err = MPI_Scatter(send_ray, count, MPI_INT, myray, count,
 MPI_INT, mpi_root, MPI_COMM_WORLD);
/* each processor does a local sum */
 total=0;
 for(i=0;i<count;i++)
 total=total+myray[i];
 printf("myid= %d total= %d\n ",myid,total);
/* send the local sums back to the root */
 mpi_err = MPI_Reduce(&total, >otal, 1, MPI_INT, MPI_SUM,
 mpi_root, MPI_COMM_WORLD);
/* the root prints the global sum */
 if(myid == mpi_root){
 printf("results from all processors= %d \n ",gtotal);
 }
 mpi_err = MPI_Finalize();
 return 0;
}

Figure 57: Listing of the C program used for testing MPI_Scatter and MPI_Reduce.

 114

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>

/*
! This program shows how to use MPI_Allgather
! Each node sends its rank and negative of rank to all.
*/

/* globals */
int numnodes,myid,mpi_err;
#define mpi_root 0
/* end globals */

void init_it(int *argc, char ***argv);

void init_it(int *argc, char ***argv) {
 mpi_err = MPI_Init(argc,argv);
 mpi_err = MPI_Comm_size(MPI_COMM_WORLD, &numnodes);
 mpi_err = MPI_Comm_rank(MPI_COMM_WORLD, &myid);
}

int main(int argc,char *argv[])
{
 int i, sendarray[2];
 init_it(&argc,&argv);

/* each processor will send its rank and negative of rank to all */
 sendarray[0] = myid;
 sendarray[1] = -1 * myid;

 int *rbuf = (int *)malloc(numnodes*2*sizeof(int));
 MPI_Allgather(sendarray, 2, MPI_INT, rbuf, 2, MPI_INT, MPI_COMM_WORLD);

/* each processor prints what is received */
 printf("myid= %d\n ",myid);
 for(i=0;i<numnodes;i++)
 {
 int j = 2*i;
 int k = j+1;
 printf("\trbuf[%d] = %d rbuf[%d] = %d\n", j, rbuf[j], k, rbuf[k]);
 }

 mpi_err = MPI_Finalize();
 return 0;

}

Figure 58: Listing of the C program used for testing MPI_Allgather.

 115

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
/*
! This program shows how to use MPI_Allgatherv
! Each node sends data, rank number of times to all.
! ie rank 0 sends 0
! ie rank 1 sends 1
! ie rank 2 sends 2, 102
! ie rank 3 sends 3, 103, 203
! ie rank 4 sends 4, 104, 204, 304
! etc
*/
/* globals */
int numnodes,myid,mpi_err;
#define mpi_root 0
/* end globals */
void init_it(int *argc, char ***argv);
void init_it(int *argc, char ***argv) {
 mpi_err = MPI_Init(argc,argv);
 mpi_err = MPI_Comm_size(MPI_COMM_WORLD, &numnodes);
 mpi_err = MPI_Comm_rank(MPI_COMM_WORLD, &myid);
}
int main(int argc,char *argv[])
{
 int i, j;
 init_it(&argc,&argv);
 int *recvcnts = (int *) malloc (numnodes * sizeof (int));
 int *displs = (int *) malloc (numnodes * sizeof (int));
 int cnt = 0;
 for (j = 0; j < numnodes; ++j)
 {
 recvcnts[j] = j;
 cnt += recvcnts[j];
 }
 int *rbuf = (int *) malloc (cnt * sizeof (int));
 displs[0] = 0;
 for (j = 1; j < numnodes; ++j)
 {
 displs[j] = displs[j-1] + recvcnts[j-1];
 }
 int *sendarray = (int *) malloc (myid * sizeof (int));
 for (j = 0; j < myid; ++j)
 {
 sendarray[j] = 100*j + myid;
 }
 MPI_Allgatherv(sendarray, myid, MPI_INT, rbuf, recvcnts, displs, MPI_INT,
MPI_COMM_WORLD);
 for(i=0;i<cnt;++i)
 {
 printf("\tmyid = %d rbuf[%d] = %d\n", myid, i, rbuf[i]);
 }
 mpi_err = MPI_Finalize();
 return 0;
}

Figure 59: Listing of the C program used for testing MPI_Allgatherv.

 116

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>

/*
This program shows how to use MPI_Allreduce
A sum of first n non-negative integers are done
and sum of first n non-positive integers are done
*/

/* globals */
int numnodes,myid,mpi_err;
#define mpi_root 0
/* end globals */

void init_it(int *argc, char ***argv);

void init_it(int *argc, char ***argv) {
 mpi_err = MPI_Init(argc,argv);
 mpi_err = MPI_Comm_size(MPI_COMM_WORLD, &numnodes);
 mpi_err = MPI_Comm_rank(MPI_COMM_WORLD, &myid);
}

int main(int argc,char *argv[])
{
 int sendarray[2];
 init_it(&argc,&argv);

 /* each processor will send its rank and negative of rank to root */
 /* root prints the sum */
 sendarray[0] = myid;
 sendarray[1] = -1 * myid;

 int *rbuf = (int *)malloc(numnodes*2*sizeof(int));
 MPI_Allreduce(sendarray, rbuf, 2, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
 printf("\tmyid = %d rbuf[0] = %d rbuf[1] = %d\n", myid, rbuf[0], rbuf[1]);

 mpi_err = MPI_Finalize();
 return 0;

}

Figure 60: Listing of the C program used for testing MPI_Allreduce.

 117

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
/*
! This program shows how to use MPI_Alltoall
! rank 0 sends 0, 1, 2, 3, ...
! rank 1 sends 100, 101, 102, 103, ...
! rank 2 sends 200, 201, 202, 203, ...
! rank 3 sends 300, 301, 302, 303, ...
! rank 4 sends 400, 401, 402, 403, ...
! etc
! expected results are as follows
! rank 0 gets 0, 100, 200, 300, ...
! rank 1 gets 1, 101, 201, 301, ...
! rank 2 gets 2, 102, 202, 302, ...
! rank 3 gets 3, 103, 203, 303, ...
! rank 4 gets 4, 104, 204, 304, ...
! etc
*/

/* globals */
int numnodes,myid,mpi_err;
#define mpi_root 0
/* end globals */
void init_it(int *argc, char ***argv);
void init_it(int *argc, char ***argv) {
 mpi_err = MPI_Init(argc,argv);
 mpi_err = MPI_Comm_size(MPI_COMM_WORLD, &numnodes);
 mpi_err = MPI_Comm_rank(MPI_COMM_WORLD, &myid);
}
int main(int argc,char *argv[])
{
 int i;
 init_it(&argc,&argv);
 int *sendbuf = (int *) malloc (sizeof (int) * numnodes);
 for(i = 0; i < numnodes; ++i)
 {
 sendbuf[i] = myid * 100 + i;
 printf("\tmyid = %d sendbuf[%d] = %d\n", myid, i, sendbuf[i]);
 }
 int *recvbuf = (int *) malloc (sizeof (int) * numnodes);
 MPI_Alltoall (sendbuf, 1, MPI_INT, recvbuf, 1, MPI_INT, MPI_COMM_WORLD);
 for(i = 0; i < numnodes; ++i)
 {
 printf("\tmyid = %d recvbuf[%d] = %d\n", myid, i, recvbuf[i]);
 }
 mpi_err = MPI_Finalize();
 return 0;
}

Figure 61: Listing of the C program used for testing MPI_Alltoall.

 118

#include <stdio.h>
#include "mpi.h"

int main(argc,argv)
int argc;
char *argv[];
{
 int myid, numprocs, tag, source, destination, count, buffer;

 MPI_Status status;
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);

 tag=1234; source=0; destination=1; count=1;

 if(myid == source){
 buffer=5678;
 MPI_Send(&buffer, count, MPI_INT, destination, tag, MPI_COMM_WORLD);
 printf("processor %d sent %d\n", myid, buffer);
 }
 if(myid == destination){
 MPI_Recv(&buffer, count, MPI_INT, source, tag, MPI_COMM_WORLD, &status);
 printf("processor %d got %d\n", myid, buffer);
 }
 MPI_Barrier(MPI_COMM_WORLD);

 MPI_Finalize();
 return 0;
}

Figure 62: Listing of the C program used for testing MPI_Barrier.

 119

/**
This is a simple broadcast program in MPI
**/

#include <stdio.h>
#include "mpi.h"

int main(argc,argv)
int argc;
char *argv[];
{
 int i,myid, numprocs;
 int source,count;
 int buffer[4];
 // MPI_Status status;
 // MPI_Request request;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 source=0;
 count=4;
 if(myid == source){
 for(i=0;i<count;i++)
 buffer[i]=100+i;
 }
 MPI_Bcast(buffer,count,MPI_INT,source,MPI_COMM_WORLD);
 for(i=0;i<count;i++)
 printf("\n buffer[%d] = %d ",i, buffer[i]);
 printf("\n");
 MPI_Finalize();
 return 0;

}

Figure 63: Listing of the C program used for testing MPI_Bcast.

 120

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>

/*
! This program shows how to use MPI_Gather
! Each node sends its rank and negative of rank to root.
*/

/* globals */
int numnodes,myid,mpi_err;
#define mpi_root 0
/* end globals */

void init_it(int *argc, char ***argv);

void init_it(int *argc, char ***argv) {
 mpi_err = MPI_Init(argc,argv);
 mpi_err = MPI_Comm_size(MPI_COMM_WORLD, &numnodes);
 mpi_err = MPI_Comm_rank(MPI_COMM_WORLD, &myid);
}

int main(int argc,char *argv[])
{
 int sendarray[2];
 init_it(&argc,&argv);

/* each processor will send its rank and negative of rank to root */
/* root prints what is received */
 sendarray[0] = myid;
 sendarray[1] = -1 * myid;

 if (myid == mpi_root)
 {
 int *rbuf = (int *)malloc(numnodes*2*sizeof(int));
 MPI_Gather(sendarray, 2, MPI_INT, rbuf, 2, MPI_INT, mpi_root,
MPI_COMM_WORLD);
 printf("myid= %d\n ",myid);
 int i;
 for(i=0;i<numnodes;i++)
 {
 int j = 2*i;
 int k = j+1;
 printf("\trbuf[%d] = %d rbuf[%d] = %d\n", j, rbuf[j], k, rbuf[k]);
 }
 }
 else
 {
 MPI_Gather(sendarray, 2, MPI_INT, NULL, 0, MPI_INT, mpi_root,
MPI_COMM_WORLD);
 }

 mpi_err = MPI_Finalize();
 return 0;

}

Figure 64: Listing of the C program used for testing MPI_Gather.

 121

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
/* ! This program shows how to use MPI_Gatherv
! Each node sends its rank, rank number of times to root.
! ie rank 0 sends 0 ! ie rank 1 sends 1 ! ie rank 2 sends 2, 102
! ie rank 3 sends 3, 103, 203 ! ie rank 4 sends 4, 104, 204, 304 ! etc */
int numnodes,myid,mpi_err;
#define mpi_root 0
void init_it(int *argc, char ***argv);
void init_it(int *argc, char ***argv) {
 mpi_err = MPI_Init(argc,argv);
 mpi_err = MPI_Comm_size(MPI_COMM_WORLD, &numnodes);
 mpi_err = MPI_Comm_rank(MPI_COMM_WORLD, &myid);
}
int main(int argc,char *argv[])
{
 int i, j;
 init_it(&argc,&argv);
/* each processor will send its rank, rank times to root */
/* root prints what is received */
 if (myid == mpi_root)
 {
 int *recvcnts = (int *) malloc (numnodes * sizeof (int));
 int *displs = (int *) malloc (numnodes * sizeof (int));
 int cnt = 0;
 for (j = 0; j < numnodes; ++j)
 {
 recvcnts[j] = j;
 cnt += recvcnts[j];
 }
 displs[0] = 0;
 for (j = 1; j < numnodes; ++j)
 {
 displs[j] = displs[j-1] + recvcnts[j-1];
 }
 int *rbuf = (int *) malloc (cnt * sizeof (int));
 int dummy = 0;
 MPI_Gatherv(&dummy, myid, MPI_INT, rbuf, recvcnts, displs, MPI_INT,
mpi_root, MPI_COMM_WORLD);
 printf("myid= %d\n ",myid);
 for(i=0;i<cnt;++i)
 {
 printf("\trbuf[%d] = %d\n", i, rbuf[i]);
 }
 }
 else
 {
 int *sendarray = (int *) malloc (myid * sizeof (int));
 for (j = 0; j < myid; ++j)
 {
 sendarray[j] = 100*j + myid;
 }
 MPI_Gatherv(sendarray, myid, MPI_INT, NULL, 0, NULL, MPI_INT,
mpi_root, MPI_COMM_WORLD);
 }
 mpi_err = MPI_Finalize();
 return 0;
}

Figure 65: Listing of the C program used for testing MPI_Gatherv.

 122

#include <stdio.h>
#include "mpi.h"
#include <math.h>

/**
This is a simple isend/ireceive program in MPI
**/

int main(argc,argv)
int argc;
char *argv[];
{
 int myid, numprocs;
 int tag,source,destination,count;
 int buffer;

 MPI_Status status;
 MPI_Request request;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 tag=1234;
 source=0;
 destination=1;
 count=1;
 request=MPI_REQUEST_NULL;

 if(myid == source){
 buffer=5678;
 MPI_Isend(&buffer,count,MPI_INT,destination,tag,
 MPI_COMM_WORLD,&request);
 }

 if(myid == destination){
 // MPI_Irecv(&buffer,count,MPI_INT,source,tag, MPI_COMM_WORLD,&request);
 MPI_Irecv(&buffer,count,MPI_INT,MPI_ANY_SOURCE,tag,
MPI_COMM_WORLD,&request);
 }

 MPI_Wait(&request,&status);

 if(myid == source){
 printf("processor %d sent %d\n",myid,buffer);
 }

 if(myid == destination){
 printf("processor %d got %d\n",myid,buffer);
 }

 MPI_Finalize();
 return 0;

}

Figure 66: Listing of the C program used for testing MPI_Isend and MPI_Irecv.

 123

/*
This program shows how to use MPI_Reduce_scatter
This program runs on only 3 nodes.
*/

#include <mpi.h>

int main(int argc, char* argv[])
{
 int i;
 int rank, nproc;
 int isend[6], irecv[3];
 int ircnt[3] = {1,2,3};

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &nproc);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 for(i=0; i<3; i++)
 {
 irecv[i] = 0;
 }

 for(i=0; i<6; i++)
 {
 isend[i] = i + rank * 10;
 printf("myid = %d isend[%d] = %d\n", rank, i, isend[i]);
 }

 MPI_Reduce_scatter(isend, irecv, ircnt, MPI_INT, MPI_SUM,
 MPI_COMM_WORLD);

 for(i=0; i<3; i++)
 {
 printf("myid = %d irecv[%d] = %d\n", rank, i, irecv[i]);
 }

 MPI_Finalize();

 return 0;
}

Figure 67: Listing of the C program used for testing MPI_Reduce_scatter.

 124

#include <stdio.h>
#include <unistd.h>
#include "mpi.h"

int main(argc,argv)
int argc;
char *argv[];
{
 int myid, numprocs;
 double timeVal;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);

 sleep (myid * 3);
 timeVal = MPI_Wtime ();

 printf ("\nmyid = %d timeVal = %50.20lf timeVal = %g timeVal = %50.20e",
myid, timeVal, timeVal, timeVal);
 printf ("\nsizeof double = %d", sizeof (double));

 MPI_Finalize();
 return 0;
}

Figure 68: Listing of the C program used for testing MPI_Wtime.

 125

 BIBLIOGRAPHY

[BAL04] Balle, Susanne M. & Hood, Robert T. “Global Grid Forum User Program
Development Tools Survey”, Global Grid Forum, 2004.
http://www.gridforum.org/documents/GFD.33.pdf

[DAT] Data Display Debugger. http://www.gnu.org/software/ddd/

[DAT96] Date, C.J. & Darwen, H. “A Guide to SQL Standard”, Fourth Edition,

Addison Wesley, November 1996.

[DES05] DeSouza, J., Kuhn, B., De Supinski, Bronis R. “Automated, scaleable

debugging of MPI programs with Intel Message Checker”, Second
International Workshop on Software Engineering for High Performance
Computing System Applications, St. Louis, Missouri, USA, May 15,
2005.

[ELL03] Ellen, S., Figgins, S., & Weber, A. “Linux In A Nut Shell”, Fourth Edition,

O’ Reilly Media, Inc., June 2003.

[ETN] Etnus Total View. The Most Advanced Debugger on Linux and Unix.

http://www.etnus.com/TotalView/index.html

[FOS95] Foster, Ian T. “Designing and Building Parallel Programs: Concepts and

Tools for Parallel Software Engineering”, Addison Wesley, February
1995.

[GCC] GCC Home Page – GNU Project – Free Software Foundation (FSF).

http://gcc.gnu.org/

[GNU] GNU DeBugger. http://www.gnu.org/directory/gdb.html

[GRA03] Grama, A., Gupta, A., Karypis, G., & Kumar, V. “Introduction to Parallel

Computing”, Second Edition, Addison Wesley, January 2003.

[HPV] HP Visual Threads. http://h21007.www2.hp.com/dspp/tech/

tech_TechSoftwareDetailPage_IDX/1,1703,5074,00.html

[KER88] Kernighan, B. & Ritchie, D. “The C Programming Language”, Prentice

Hall, 1988.

[KON] Konchady, M. Parallel Computing Using Linux.

http://www2.linuxjournal.com/article/1350

 126

[LAD] Ladebug Debugger Manual. Compaq Tru64 UNIX Version 5.1A, June
2001.http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V
51A_HTML/LADEBUG/TITLE.HTM

[LAM] LAM / MPI Parallel Computing. http://www.lam-mpi.org/

[MES] Message Passing Interface (MPI). http://www.llnl.gov/computing/

tutorials/mpi/

[MES02] “Message Passing Interface (MPI)”, a presentation by National

Partnership for Advanced Computational Infrastructure, San Diego
Supercomputer Center, August 2002.

[MIC] Microsoft Visual Studio. http://msdn.microsoft.com/vstudio/

[PAN01] Pancake, Cherri. M. “Performance Tools for Today's HPC: Are We

Addressing the Right Issues?” in Parallel Computing, Vol. 27, pp. 1403-
1415, 2001.

[PAN03] Pancake, Cherri. M. "Usability Issues in Developing Tools for the Grid –

And How Visual Representations Can Help," in Parallel Processing
Letters, Vol. 13, No. 2, June 2003.

[PAN98] Pancake, Cherri. M. "Exploiting Visualization and Direct Manipulation to

Make Parallel Tools More Communicative," in Applied Parallel
Computing, ed. B. Kagstrom et al., Springer Verlag, Berlin, , pp. 400-417,
1998.

[PAN99] Pancake, Cherri. M. “Applying Human Factors to the Design of

Performance Tools”, Proceedings of Euro-Par ’99, pp. 440-457, 1999.

[PED01] Pedersen, Jan B. & Wagner, A. “Correcting Errors in Message Passing

Systems”, High-Level Parallel Programming Models and Supportive
Environments, 6th international workshop, HIPS 2001, San Francisco,
LNCS 2026, Springer Verlag, April 2001.

[PED03] Pedersen, Jan B. “Multilevel Debugging of Parallel Message Passing

Systems”, PhD Thesis, University of British Columbia, Vancouver, British
Columbia, Canada, June 2003.

[POS] PostgreSQL. http://www.postgresql.org/

[SNI96] Snir, M., Steve, O., Huss-Lederman, S., Walker, D., & Dongarra, J. “MPI:

The Complete Reference”, MIT Press, 1996.

 127

[THI] Thiebaut, D. Parallel Programming in C for the Transputer.
http://maven.smith.edu/~thiebaut/transputer/descript.html

[TRI05] Tribou, Erik H. “Millipede: A Graphical Tool for Debugging Distributed

Systems with a Multilevel Approach”, Masters Thesis, University of
Nevada Las Vegas, Las Vegas, Nevada, USA, August 2005.

[WIL05] Wilkinson, B. & Allen, M. “Parallel Programming Techniques and

Applications using Networked Workstations and Parallel Computers”,
Second Edition, Pearson Prentice Hall, 2005.

[FLY72] Flynn, M. “Some Computer Organizations and Their Effectiveness”, IEEE

Trans. Comput., Vol. C-21, pp. 94, 1972.

 128

VITA

Graduate College
University of Nevada, Las Vegas

Hoimonti Basu

Local Address:
3955 Algonquin Dr, Apt 57
Las Vegas, NV 89119-5373, USA

Home Address:
C/O Mr. A. K. Basu
Santosh Mitra Road, Prembazar
P.O. Kharagpur, West Bengal, INDIA 721306

Degrees:
Bachelor of Technology (Honors), Metallurgical & Materials Engineering, 1998
Indian Institute of Technology (IIT), Kharagpur, India

Bachelor of Science, Computer Science, 2003
San Jose State University, San Jose, USA

Special Honors and Awards:
- Cum Laude Graduate, San Jose, 2003
- Second place at Graduate Level Mathematics Competition, San Jose, 2002
- Indranil Award for Metallurgical Engineering in India, Calcutta, India, 1999
- President’s Silver Medal for leading the curve at IIT KGP, India 1998
- Sarat Memorial Award, Best woman undergrad at IIT KGP, India 1998
- Usha Martin Award, Best Senior Project Work at IIT KGP, India 1998
- J. C. Ghosh Memorial Award, Highest Senior GPA at IIT KGP, India 1998

Publications:
Basu, H., Godkhindi, M. M., & Mukunda, P.G. “Investigations on the reactive

sintering of porous silicon carbide”, Journal of Material Science Letters, London,
U.K., Vol.18, No. 5, pp. 389-392, March 1999.

Thesis Title: Interactive Message Debugger for Parallel Message Passing Programs
using LAM-MPI

Thesis Examination Committee:

Chairperson, Dr. Jan Pedersen, Ph. D.
Committee Member, Professor Ajoy K. Datta, Ph. D.
Committee Member, Professor John T. Minor, Ph. D.
Graduate Faculty Representative, Dr. Venkatesan Muthukumar, Ph. D.

 129

	INTERACTIVE MESSAGE DEBUGGER FOR PARALLEL MESSAGE PASSING PR
	by
	Hoimonti Basu
	ABSTRACT
	TABLE OF CONTENTS
	L
	ACKNOWLEDGMENTS
	INTRODUCTION

	Parallel and Distributed Systems
	Debugging in a Parallel Programming Environment
	Multilevel Debugging
	Objectives of this Thesis
	Organization of this Thesis
	BACKGROUND AND PREVIOUS WORK

	The Need for a Debugger for Parallel Programs using MPI
	Current MPI Debuggers and Tools in use by Developers
	Source Level Debuggers
	Graphical Visualization Debuggers
	Post Processing Debuggers
	Summary
	THE MPI PARALLEL PROGRAMMING PARADIGM

	LAM-MPI
	MPI Functions
	Blocking and Non-blocking Message Passing
	Synchronous and Asynchronous Message Passing
	Preliminary Routines
	Point-to-Point Message Passing Routines
	Group Communication Routines
	Summary
	INTRODUCING IDLI – AN MPI MESSAGE DEBUGGER

	Architecture and Overview
	Wrappers for MPI functions in the native C library of IDLI
	The PostgreSQL Database
	Front-end User Interface of IDLI and Query Manager
	Replay
	Features of IDLI
	The Commands: List and Drop
	Query Manager
	Built-in Query: Dump
	Built-in Query: Locategroup
	Built-in Query: Locatep2p
	Built-in Query: Status
	Built-in Query: Trace
	The command: PSQL
	Replay
	Debugging IDLI with IDLI during its development cycle
	Summary
	IMPLEMENTATION DETAILS OF IDLI

	Backend: Distributed Relational SQL Database
	Backend: Multiple users’ sessions data generation and manage
	Backend: Logging Meta data generated for messages for each M
	Backend: Storing data from messages exchanged by MPI routine
	Backend: Mapping MPI function names to unique integer functi
	Middle Layer: Native C Library
	Middle Layer: Methodology used for interception of MPI calls
	Middle Layer: Flow of control in the wrapper functions
	Middle Layer: Implementation details of the MPI wrapper func
	Point-to-point communication routines: MPI_Isend and MPI_Ire
	Group Communication Routines
	MPI_Barrier
	MPI_Bcast
	MPI_Gather
	MPI_Allgather
	Preliminary Routine: MPI_Finalize
	Middle Layer: Wrappers for other MPI Routines
	Front End: User Interface for Query Manager and Replay
	Commands: list N, drop N, psql N, help and exit
	Command: Query N
	Data displayed by each built-in Query
	Query: dump N
	Query: locategroup N
	Query: locatep2p N
	Query: status N
	Query: trace N
	Query: replay N
	Summary
	CONCLUSION AND FUTURE WORK

	Improvements upon current parallel debuggers
	Future Work
	PROGRAMS USED FOR TESTING IDLI
	BIBLIOGRAPHY
	VITA

