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Abstract

An artificial neural network can be used to solve various statistical problems by approximating

a function that provides a mapping from input to output data. No universal method exists for

architecting an optimal neural network. Training one with a low error rate is often a manual process

requiring the programmer to have specialized knowledge of the domain for the problem at hand.

A distributed architecture is proposed and implemented for generating a neural network capable

of solving a particular problem without specialized knowledge of the problem domain. The only

knowledge the application needs is a training set that the network will be trained with. The appli-

cation uses a master-slave architecture to generate and select a neural network capable of solving a

given problem.
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Chapter 1

Introduction

Certain problems lend themselves toward solutions that are probabilistic in nature and not always

deterministic. These include facial recognition, voice recognition, image recognition, and clustering.

An artificial neural network “ANN” or “NN” is one way to solve problems of this nature. From a

high level, a neural network is a black box, that given an input pattern, produces an output pattern

that is the network’s best guess to be correct. It essentially estimates a function where the domain

is the set of all input patterns and the range is the set of all output patterns. Typical neural network

implementations train a neural network for a specific task, one at a time, sequentially. Preprocessing

of the data for selecting an appropriate feature vector is tuned, as is selecting appropriate training

and test data sets that give low error rates. The tuning of the structure of the neural network itself

is often ignored. This research focuses on tuning those parameters automatically to find a neural

network that performs well for a given training set and feature selection, as opposed to the more

typical approach of focusing on feature extraction and representative training data.

NNGenerator is the software used to train multiple networks at a time and combine the results

to generate a network that will attempt to adapt to the training set. This software is an attempt to

mitigate the problem of choosing a neural network structure by using an iterative search algorithm

similar to a genetic algorithm to find an optimal structure of a neural network for the features of

the training set.

A problem is described to the software as a training set, which is simply a map of inputs (a vector

of features) to actual output, which is a member of the solution space. Three problems are described

in this thesis that were used to test the effectiveness of tuning the structure of a neural network

with little focus on preprocessing to obtain feautures of the input space. The first is the problem

of recognizing the XOR pattern commonly found in digital circuits. This is a simple example of a

non-linear separable pattern. This problem was also used when constructing the NNGenerator, to
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test the functionality of various aspects of the software. The second problem is learning to play a

common casino card game, blackjack. This problem is an example of training agents in games based

on past events. The agent can learn to get better at a specific task or tasks, and can perform better

than a hard-coded heuristic that does not adapt to events in the game. The third problem is to

recognize a test set of handwritten characters based on features extracted from binary images of a

disparate training set of handwritten characters. This problem is an example of pattern recognition

that neural networks are often used in.

With every problem set, we hope to generate a neural network whose structure is demonstratively

better than other structures trained with the same data. The goal is that as the search progresses,

a progressively lower error rate than other structures that were trained for the same amount of

iterations with the same training set will be observed.
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Chapter 2

Neural Networks

2.1 Biological Neural Networks

The human nervous system consists in part of many neural cells that are interconnected and can

communicate with each other via electrical pulses. These cells are called neurons, and they receive

input from other neurons via dendrites, and they can send a signal to a single other neuron via an

axon. A neuron can also receive signals in reaction to outside stimuli. Figure 2.1 is an illustration

of a biological neuron.

A network of neurons stores information at the contact points between the neurons. These

contact points are called synapses and provide a biological neural network with a memory. Figure

2.2 shows the synapses of a connection between two neurons.

Information is stored at the synapses, and the information for a particular neuron synapse can be

viewed as a function f of the sum of the weighted edges that are input to the neuron. The edges in

this case are the one or more axons connected to the neuron, and the weighted values correspond to

the efficiency of the particular edge. When a neuron receives a signal from a group of axons, it will

determine whether or not to send an output signal by applying f to the sum of the weighted value

associated to each input axon. If the neuron does send a signal, this is known as firing or excitation.

The efficiency of an edge can be changed through various biological mechanisms. The changing of

the efficiencies of the edges over time can be viewed as learning. This oversimplification of biological

neural networks is sufficient to draw parallels to the theory for artificial neural networks.

3



Figure 2.1: Biological Neuron.

2.2 Artifical Neural Networks

An artifical neural network or ANN is a way of processing information that is loosely based on the

way the nervous system in a human brain functions. Neural networks have been used as solutions in

pattern recognition problems such as optical character recognition (OCR) [AIDG95, Rog94], facial

recognition [LGTB97], and decision making problems [Bax90, HMOR94]. The purpose of an artificial

neural network is to provide a mapping from a set of input data to output data. In mathematical

terms the goal is to map an n-dimensional real input (x1, x2, . . . , xn) to an m-dimensional real output

(y1, y2, ..., ym), approximating a function [Roj96, 29-30]:

F : Rn → Rm

A neural network builds this mapping in an iterative fashion from training data consisting of

known input/output pairs that are presented to it. The training inputs are a subset of the total

possible inputs to the network, and assuming there is a function of input to output data, a neural

network can be viewed as a black box that may approximate that function for us. Henceforth, the

term neural network will be used for brevity, with the implicit assumption being that an artificial

neural network is meant unless otherwise stated.

4



Figure 2.2: Synapses.

As with biological neural networks, the basic building blocks of artificial neural networks are

neurons. Each neuron is connected to one or more others neurons in the network. Each neuron

outputs a single value based on the evaluation of a function f of the sum of the values of the inputs

to the neuron. This function is known as the activation function.

The activation function can be viewed as a composition of functions g and h. g is an aggregate n-

ary function that takes n arguments and outputs a single value. Typically g is simply the summation

function. h takes the output of g and produces a value that is the output of the neuron.

The output value of a neuron with unweighted edges is a function of its inputs, f(x1, x2, . . . , xn)

where xi is the ith of n inputs as shown in Figure 2.3.

The output value of a neuron with weighted edges is a function of its inputs and weight values

of its input edges, f(x1 ∗w1, x2 ∗w2, ..., xn ∗wn), where xi is the ith of n inputs and wi is the ith of

the corresponding n input edges as shown in Figure 2.4.

5



Figure 2.3: Artificial neuron.

Figure 2.4: Weighted neuron.

Here we only consider neural networks with weighted edges. In general they are more computa-

tionally powerful than neural networks with unweighted edges. The weighted edges connecting the

neurons are simply called weights, and the values associated with these weights can be similarly be

adapted as they are with biological neural networks. In this way a neural network can learn how to

process the information presented to it based on past experience. Unlike biological neural networks,

we impose a restriction on the topology of the connections. A network is broken into layers, with

one or more neurons belonging to a particular layer. The restriction depends on the type of neural

network.

2.2.1 Perceptron

A simple example of a neural network is one with a single neuron known as a perceptron. The

perceptron takes a vector of values as inputs and outputs a single value, 0 or 1:

f(x) =

 1 if w · x > 0

0 else

A perceptron is trained to learn by adjusting its weights after an input/output pair is presented

6



to it.

Algorithm 2.1 describes an algorithm for perceptron training.

Algorithm 2.1 Perceptron training algorithm.

while all input/output pairs have not been classified correctly do
Select a pair of training data, input xn and known output yn
Present the vector to the perceptron and compute z = f(x1 ∗ w1, x2 ∗ w2, ..., xn ∗ wn)
if z <= 0 and yn > 0 then
wi+1 = wi + xn

else if z > 0 and yn <= 0 then
wi+1 = wi − xn

else
no adjustment

end if
end while

Although the perceptron can be trained to classify patterns, there are sets of data that can be

separated into two classes that a perceptron is not capable of learning to classify. A perceptron can

only classify data sets that are linearly separable. The logic operators AND, OR and XOR provide

a simple way of visualizing linear separability. Consider the AND operator with the truth table in

Figure 2.1.

Figure 2.6 shows that the discrete input space of the AND operator can indeed be separated by

a single straight line.

Now consider the OR operator with the truth table in 2.1.

Table 2.1: OR and AND truth table.

X Y X ∨ Y X ∧ Y
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Figure 2.5 shows the separation of input space for the OR operator.

Now consider the XOR operator with the truth table in Figure 2.2.

Table 2.2: XOR truth table.

X Y X ⊕ Y
0 0 0
0 1 1
1 0 1
1 1 0

7



Figure 2.5: OR input space separation.

Figure 2.6: AND input space separation.

In Figure 2.7 notice how there is no way to draw a straight line to distinguish between the positive

and negative classes; at least two lines must be used to separate the positive and negative classes.

If a perceptron is given a problem whose input space is linearly separable, it is guaranteed to

find a solution in a finite number of steps [TK09]. In the worst case the number of iteration steps

can grow exponentially [Roj96, 95-96]. There are better algorithms for finding solutions to linearly

separable problems in polynomial time such as Karmarkar’s polynomial time algorithm [Kar84].

8



Figure 2.7: XOR input space separation.

2.2.2 Feed Forward Neural Networks

One way to solve a problem with a non-linearly separable input space is with a feed forward neural

network. With feed forward neural networks, sets of neurons are grouped into layers and information

flows from the input layer to output layer in one direction only. A neuron in layer n may only send

signals to neurons in layer n + 1, and it may only receive signals from neurons in layer n − 1. The

0th layer does not receive signals from other neurons and the output of the nth layer can be viewed

as the output of the network. Figure 2.8 shows an example of this topology.

Figure 2.8: Feed forward network topology.

Notice that the edges are directed and indicate that the flow of information is from left to right

and that there are no cycles. A network is feed forward if the connections between its neurons do

9



not form a cycle.

Revisiting the XOR problem we want to label the input spaces and create a mapping of each

input vector to a single label. In Figure 2.9 we label the three regions A, B and C.

Figure 2.9: Labeled three regions of the XOR input space.

And we also want the network to remember which input vector x gets mapped to a particular

label, as seen in Figure 2.3.

Table 2.3: Mapping of XOR input space to label.

x1 x2 label
0 0 A
0 1 B
1 0 B
1 1 C

The XOR problem can be solved with a feed forward neural network with one hidden layer. The

neural network has three layers, the input layer, one middle layer, and the output layer. Figure 2.10

shows the structure of the network.

For the neuron function, f(x) = x ∗ 1
2 is used. The goal is to find a set of weights that satisfies

the following equations for the four known inputs and outputs in the XOR truth table:

f1(x) = (x1 ∗ w1
11 + x2 ∗ w1

21) ∗ 1

2

10



Figure 2.10: Weighted feed forward neural network architecture that is capable of solving the XOR
problem.

f2(x) = (x1 ∗ w1
12 + x2 ∗ w1

22) ∗ 1

2

f(x) = (f1(x) ∗ w2
11 + f2(x) ∗ w2

21) ∗ 1

2

Figure 2.11 shows a set of weights that solves the problem.

Figure 2.11: Weighted feed forward neural network that solves the XOR problem.

Feed forward networks provide a powerful computational model capable of correctly mapping

a set of input vectors to a specific output, even for non-linearly separable input spaces. However,

finding a set of weights that solves a problem becomes increasingly expensive as the arity of the

feature vector expands, the number of nodes increases, and/or the number of layers increases. In

addition, traditional methods of solving systems of equations do not work well with noisy data and

11



missing or incomplete data, as is the case in most real world problems. To solve these issues, the

backprogation algorithm can be used.

2.2.3 Backpropagation

The backpropagation algorithm is the most popular algorithm for finding a set of weights for a neural

network to solve a particular problem. It uses a numerical method known as gradient descent to

search for the minimum of the error function in weight space. Gradient descent, also called steepest

descent, attempts to find the local minimum of a function. It starts at one point P0 and moves from

Pi and Pi+1 by minimizing the line extending from Pi in the direction of −∇f(Pi) [Wei].

For gradient descent to work properly, the function produced by the neural network must be

differentiable at each point and continous. Since the value of a network can be seen as a composition

of the functions of its neurons, typically the activation function is sigmoidal and it also known as a

sqaushing function, since it has the ability to squashes all output between two real values [Mit97].

The most commonly used sigmoidal function in neural networks is the logisitic function, defined as:

P (t) = 1
1+e−t Figure 2.12 shows the graph of the logistic function on a cartesian coordinate system.

Figure 2.12: Logistic function.

The NNGenerator software uses a modifed version of the backpropagation algorithm described

in [Roj96, 166-170]. An outline of the algorithm is given in Algorithm2.2. The main difference is

that it keeps track of the error rate for every input presented to it. It does so by keeping a map of

each input to the current error rate, which defaults to one-hundred percent for inputs that have not

yet been presented to the neural network. Here the effectiveness of a neural network is found by
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calculating its error rate for all inputs it has been trained with. A low error rate means the network

is good at estimating the problem/solution function. Finding a neural network with a low error rate

for a particular problem presents a number of challenges:

1. Choosing which features from the data to use to form inputs of a training set.

2. How to represent the features of a data set.

3. Deciding how many hidden layers the neural network will have.

4. Deciding how many nodes in each hidden layer should be used.

5. Deciding the activation function to use for each neuron.

The combination of number of hidden layers, number of nodes per hidden layer, and activation

function of each neuron determines the network structure. With the NNGenerator software, the

structure of a neural network, including the type of activation functions at each hidden node, the

number of nodes per hidden layer, the number of hidden layers, the constant that defines step length

correction at each step, and the constant that defines the momentum factor for help in preventing

oscillation during learning, may all be bounded by the user. The software will work within those

bounds over a large search space to find a neural network structure and accompanying weights that

outperformed all others in the search.

Algorithm 2.2 Backpropagation training algorithm.

while error rate is sufficiently small or training data has been exhausted do
Select a pair of training data, input on and known output tn
Present the vector to the neural network and compute the output vector om for the output
nodes in a feed forward fashion.
Calculate the backpropagated error for the output layer:

δj = oj(1− oj)(oj − tj)

Calculate the first set of partial derivatives for the error:

∂E

∂wij
= [oj(1− oj)(oj − tj)]oi = δjoi

In a similar manner, calculate the backpropagated errors and partial derivatives for the hidden
layers, starting with the jth layer connected to the output layer, and continuing to the j − 1th

layer until all layers have been exhausted.
Use the partial deriviates to update the weights of the neural network in the negative gradient
direction where γ is a constant that defines the step length of correction:

δwij = −γoiδj

end while
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Chapter 3

Genetic Algorithms

Genetic algorithms are a form of stochastic optimization [HS03] commonly used in learning prob-

lems [DPAM02, MSV93, DH95]. They are search algorithms that search over large spaces for gener-

ally good solutions to problems. The search space for these problems is typically large enough to be

computationally inefficient to compute through enumeration methods. They can also be used when

a function is discontinuous and cannot be solved with methods requiring the derivative at points in

the space to be found, such as with neural networks.

3.1 Encoding

Genetic algorithms start with a random sample of possible encoded representations for a problem.

The encoding is typically a binary string of a fixed length, though it can also be represented us-

ing more complex data structures. These encodings are called chromosomes and are analogous to

biological chromosomes that are found in cells.

3.2 Operations

A new generation of samples is created by applying simple operations to the current generation of

samples. Three of the commonly used operations are crossover, reproduction, and mutation [Gol89,

62-65]. The ideas behind these operations are similar to natural selection mechanisms that occur

during evolution, hence the name genetic algorithm.
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3.2.1 Crossover

Crossover combines two samples in the population at some randomly selected index called the cross

site. For example, the string 00110 crossed with the string 10001 at index 2 will produce the strings

10110 and 00001 as shown in Figure 3.1.

Figure 3.1: Crossover on two binary strings.

The crossover in the NNGenerator software crosses over two neural network structures in a

similar manner, it starts by choosing a random cross site to split the structures at. It proceeds by

creating two new children C and D, one with the first part structure A crossed with the second

part of structure B, and a second with the first part of structure B crossed with the second part of

structure A, as shown in Figure 3.2.

3.2.2 Reproduction

Reproduction will copy the sample over to the new population based on some probability depending

on the sample’s fitness. In this way the fittest samples have the best chance of survival as in nature

with natural selection.

3.2.3 Mutation

During mutation there is a low probability that a part of a sample in the population will be changed

in some small way. If a binary encoded string 0100 were selected for example it may become 0101

as shown in Figure 3.3.

The purpose of the mutation operator is to help the large search to not get stuck in a local minima.

In the NNGenerator software, mutating the data structures was not straightforward to implement.

To help introduce a similar random nature into the search, the software generates a random neural

network structure for two to five percent of each new population. These are generated within the
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Figure 3.2: Crossover of neural network structures

Figure 3.3: Mutation on a binary string.

same bounds as the initial population, so the structures respect the user’s specified bounds on the

number of nodes per layer and maximum number of layers.
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3.3 Fitness Function

At each iteration of a genetic algorithm, a function that evaluates the fitness of each sample is applied

to every sample. In the NNGenerator software, the root mean squared or rms training error of a

neural network is the only parameter used to judge the fitness of each neural network. The fittest

samples have the best chance of being considered for the crossover, reproduction, and mutation

operations. A simple way to select the fittest samples is to order them in descending fashion from

highest fitness to lowest fitness, then remove a number of the least fit from the population.

3.3.1 Roulette Wheel Selection

In the NNGenerator software, each chromosome has a probability of surviving proportional to its

fitness compared to the others in the same generation. So the least fit chromosomes have the least

chance of reproduction and crossover when forming the next population of samples. This algorithm

is known as roulette wheel selection [Gol89, 237]. Each item along the roulette wheel is a separate

chromosome and the probability of selecting a chromosome is directly proportional to its fitness.

For example, given eight samples labeled: A,B,C,D,E, F,G,H, and respective fitness propor-

tional to the entire population’s fitness: 5, 23, 10, 10, 5, 37, 5, 5, then the sample F will have the best

chance of reproducing itself and crossing over with another sample at 37%, followed by sample B

with a chance of 23%, and so on. Figure 3.4 shows a pie chart representing the described probability

distribution.

Figure 3.4: Roulette wheel selection example.
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Chapter 4

Architecture

4.1 Master/Slave Pattern

From a high level, the NNGenerator software is modeled on the popular master/slave pattern. This

is a pattern that is meant to be used when breaking up a particular task into many smaller tasks

and doing the work in parallel. A single master is responsible for delegating the work to the slaves

and collecting and combining the results into a solution. These smaller tasks may not necessarily

work at the same rate. This can be due either to external issues outside of the programs control,

such as high CPU load, or to the nature of the data or problem at hand.

4.1.1 Computing the Mandelbrot Set

An example of this pattern in action is as a solution to calculating the Mandelbrot set. The Man-

delbrot set consists of a set of points in the complex plane. The boundary of the set forms a fractal.

Take the set of functions f(x) = x2 +C where C is a constant complex number and x ∈ R For a par-

ticular complex number C, C is a member of the Mandelbrot set if the recurrence relation generated

by repeatedly applying f to increasingly large values of x, starting with x = 0 diverges to infinity.

A two-dimensional binary image of the Mandelbrot set can be generated in order to visualize the

set using the real and imaginary parts of a set of complex points on a bounded two-dimensional

plane. Black pixels will represent complex numbers that are members of the set and white pixlels

will represent complex numbers that are not members of the set. Since we have to evaluate a re-

currence for each pixel, the runtime of the generation of an image is O(rNM) where r is a constant

representing number of recurrence patterns that are evaluated, N is the width of the image and M

is the height of the image. This algorithm is CPU intensive and grows polynomially as the size of

the image grows. An interesting property of generating this image is that each pixel i, j of the image
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can be calculated independently of the other pixels. This is because each complex number C can be

tested for membership of the Mandelbrot set regardless of all other complex numbers membership

status.

Such a problem is called embarassingly parallel and is a prime candidate for using a master/slave

architecture in a shared or distributed memory setting for speedup. The master will split the image

up into smaller images, and it will give each slave a small image region to calculate. The slaves will

calculate these smaller images in parallel and send the results back to the master. When the master

has received all of the smaller images, it will assemble them into the resultant image.

Consider a distributed environment with five nodes, one master node and four slave nodes, and

an image of size 256 x 256. The algorithm begins with the master assigning the slaves a region of

the image to calculate. Each slave will get assigned one of 4 regions of size 128 x 128 as shown in

Figure 4.1.

Figure 4.1: Distribution of image regions from master to slave.

Each slave calculates its region of the image and sends the resultant sub-image to the master

node as shown in Figure 4.2.

The master then assembles the resultant sub-images into the resultant image as shown in Figure

4.3.

4.1.2 Training Neural Networks

The NNGenerator consists of two modules; one of these is the master and runs on a single computer

with a display and keyboard so that it can accept user input. The second of these is the slave module

which is run multiple times depending on the environment. The master and slaves communicate

with each other via network sockets, and so the slaves can run in a hybrid distributed environment
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Figure 4.2: Slaves sending fragmented pieces of the complete image region to the master.

as one or more instances on a single box with a network connection. The slaves do not communicate

with each other and are not aware of each other’s presence. In fact, there does not have to be more

than one slave for the software to function. In the case of only a single slave, the inherent parallelism

of the algorithm is not exploited but a solution will still be found, albeit rather slowly.

Each slave is a trainer of neural networks and the master, as the implementor of the genetic

algorithm, is responsible for overseeing and coordinating the search. The master starts by generating

a number of random neural network structures based on the inputs given by the user. A typical

structure may look like Figure 4.4.

This is an example randomly generated structure by the software. It can be used for a data

set with two inputs and one output. There is one hidden layer with six nodes, the last node of a

hidden layer is always a bias node whose value is always equal to 1.0. There are three input nodes

because the last input node is always a bias node. In general, for an N ×M data set, there will be

N + 1 input nodes and M output nodes. The upper bound on the number of generated layers is

four in this case, and the upper bound for the number of nodes per layer, except for the input and

output layers which are fixed, is five. Notice the connectivity of the structure, each node in layer N
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Figure 4.3: Master assembles resultant image.

Figure 4.4: Structure of a neural network in NNGenerator.
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is connected to every other node in layer N + 1.

The slave nodes understand how to train these structures against various data sets. After gen-

erating a set of random structures constituting the first population, the master then puts these

structures into messages that also contains a type field that indicates to a slave which data set to

train the structure with as shown in Figure 4.5.

Figure 4.5: Sample XOR training message.

It pushes each of these structures to a message queue that holds training messages that have not

yet been processed by a slave as shown in figure 4.6.

The slaves on the network consume messages from the queue in first in, first out fashion as shown

in Figure 4.7.

Each slave trains the neural network structure it consumed from the queue starting with a

random set of initial weights and a training data set common across all slaves. Upon finishing

training, each slave has computed a weight matrix for the neural network structure and data set.

The final combined structure may look like Figure 4.8.

The numbers along each weight indicate the weight value of each input node to its corresponding

output node.

Each member of the population are encoded as Clojure data structures called struct maps. These

struct maps contain information about the structure and fitness of a trained neural network. The

specific information is the number of hidden layers, the activation function and derivative of the

activation function at each hidden node, the number of nodes at each layer, the connectivity of the

nodes, the α and γ constants of the network, and the training error of the network. The α constant is

the momentum factor for help in preventing oscillation during learning. The γ constant is a learning

constant that defines step length of correction at each step of the training. The slave places the
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Figure 4.6: Training message queue.

resultant neural network structure along with the other information into a training result message

as shown in Figure 4.9.

Afterwards, the slave enqueues the message to a resultant message queue for the master to process

as shown in Figure 4.10.
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Figure 4.7: Slaves consuming training messages.

Figure 4.8: Neural network generated by NNGenerator that solves the XOR problem.

The master consumes these messages from the queue in a first in, first out fashion as shown in

Figure 4.11.

Messages are stored in memory until the master has gathered all of the current populations’ resul-

tant messages. The size of each population is specified by the user before the algorithm starts. The

master then performs reproduction, crossover, and mutation operations to the network structures to
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Figure 4.9: Sample NNGenerator training result message.

Figure 4.10: Training result message queue.

create a new population of structures for the slaves to train. The master discards the bottom half

of the population sorted in order of fitness; so the least fit of the population. The remaining results

consist of the possible parents for the new generation. A number of children are generated from two

parents by applying crossover and reproduction to the possible parents using a roulette wheel based
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Figure 4.11: Master consuming training result message.

selection for each set of parents. The probability of selecting a parent is determined based on the

fitness of the parent in comparison to the fitness of all other parents. This way the fitter of any two

parents has a higher probability of getting selection for reproduction and/or breeding.

The process continues in this manner until a certain number of generations have been bred. This

number is specified by the user. The fittest network of the last generation is selected as the neural

network most capable of solving the particular problem.
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Chapter 5

Implementation

This section describes the tools used to create the NNGenerator software. The language, libraries,

and runtime used are described as well as the motivation for each. A few of the data structures used

are also discussed.

5.1 Clojure

The application is written in Clojure [Hicb] which is a LISP [SG93] implementation for the Java

Virtual Machine [Orac], or JVM. Clojure is fully interoperable with Java [GJSB05] and so the parts

of the application that interface with existing Java libraries are also written in Clojure. Programmers

that have used languages in the LISP family may be familiar with some concepts that are present

in Clojure, such as functions as arguments, dynamic typing and lazy evaluation. Other features

present in Clojure used in NNGenerator are interesting enough to be worth mentioning here also,

including multimethods and software transaction memory.

5.1.1 Functions as Data Types

In functional languages, functions are first class data types; they can be passed to other functions

as arguments, thereby allowing specific behavior not related to the calling function to be coded

separately from the calling function. Object oriented languages accomplish similar behavior with

polymorphism which is facilitated through inheritance. Having functions as first class data types in

a language is more flexible than inheritance because the runtime only needs to check a function’s

signature and does not need to examine the type hierarchy that a function belongs to.

27



5.1.2 Closures

The name for Clojure is based on the term closure, which describes a function that has access to

all variables bound in the closure’s current scope. In the case of a closure, in addition to a function

definition, pieces of state that are not in global scope can be optionally bound. In this a function

can be created that uses state that is hidden from the function that invokes it. A simple example

of this concept is the following function incrementAndGet. It keeps track of a variable to increment

and return without using global state:

( l et [ i ( ref 0 ) ]

(defn incrementAndGet [ ]

(dosync ( ref−set i ( inc @i ) ) ) @i ) )

Here is the example output from calling this multiple times in a Clojure REPL:

user=> ( incrementAndGet )

1

user=> ( incrementAndGet )

2

user=> ( incrementAndGet )

3

5.1.3 Dynamic Typing

Java is a statically typed language; its function arguments are checked at compile time and the

programmer must explicitly mark all object references with a type declaration. This can help to

catch errors in calling functions at compile time rather than at run time, but the code becomes

littered with types, and changing the structure of a type or adding functionality to an object is

difficult.

Clojure is a dynamically typed language; it determines the actual type of method parameters

at runtime, and it accomplishes this via the Java reflection Library [Orab]. In the rare case that

reflection is causing performance issues, such as a tight CPU bound loop, type hints can be provided

for variables. In Java 7, a new bytecode instruction called invokedynamic [Ros09] has been added.

This instruction allows dynamic languages on the JVM to have native support for dynamic typing

without using the Reflection library. This instruction is similar to the invokevirtual instruction

which is used whenever a virtual method is called in Java. By default all methods in Java are virtual

unless marked as private or static. This is because static and private methods cannot be overridden in
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a subclass, so there is no need to lookup their location at runtime since it can be hardcoded at compile

time. The addition of the invokevirtual instruction will allow future Clojure implementations to

see performance improvements as opposed to using reflection, which is much slower in comparison.

5.1.4 Lazy Evaluation

Clojure supports lazy evaluation, meaning that program statements are not evaluated line by line

as they are with imperative languages. The result of any particular computation is not actually

computed until the exact moment it is needed. The result may be needed in order to evaluate

the result of another computation. It may also be needed in a method that has side effects, such

as writing data to a socket or writing some data to a video buffer, or in the case of Clojure/Java

interop where the Java functions are not typically pure and need to be executed to force some side

effect. This lack of pureness in Java functions is typical in object oriented programs and means that

most methods are not idempotent. In other words, calling the same set of functions repeatedly with

the same arguments does not necessarily produce the same result. This makes reasoning about the

code particularly hard. The result may never actually be needed in the course of the program and

in this case it will never be calculated. Special syntax is provided for when it is necessary for the

programmer to force evaluation. The following in a snippet from NNGenerator that uses the doall

keyword to force the side effect of the rmdir Java method:

(defn rmdir [ d i r ]

( i f ( . i s D i r e c t o r y d i r )

( doall (map rmdir ( . l i s t F i l e s d i r ) ) ) )

( . d e l e t e d i r ) )

Lazy evaluation allows Clojure to represent things such as infinite sequences, which are otherwise

very hard to represent in imperative languages. The following defines the infinite set of positive even

integers:

(def evens ( iterate ( fn [ x ] (+ 2 x ) ) 0 ) )

Obviously realizing this full set at once is not possible because it is an infinite set and the machine

has a finite memory. Parts of this set can be realized in smaller pieces. Here is some output of using

the take method to fetch pieces of the set:

user=> ( take 4 evens )

(0 2 4 6)

user=> ( take 10 evens )

29



(0 2 4 6 8 10 12 14 16 18)

user=> ( take 15 evens )

(0 2 4 6 8 10 12 14 16 18 20 22 24 26 28)

A particular downside of laziness is that it makes debugging harder. While stepping through code

line by line, some expressions may not ever be calculated even though the code for the expression

has already been seen by the runtime.

Another interesting case of lazy evaluation is that it is possible to blow the call stack if the level

of unevaluated expressions gets too deep. While writing the NNGenerator software this happened

in the Slave module for large training sets. The matrix multiplication calls were not being evaluated

since the result was not needed until the training of the entire neural network was complete. To

circumvent this issue, the doall is used in the matrixAdd method:

(defn matrixAdd [ matrixA matrixB ]

( i f (and (not (empty? matrixA ) ) (not (empty? matrixB ) ) )

( conj

( matrixAdd ( rest matrixA ) ( rest matrixB ) )

( doall (map + ( f i r s t matrixA ) ( f i r s t matrixB ) ) ) ) ) )

5.1.5 Multimethods

Many object oriented languages such as Java and C# support dynamic method dispatch through

a concept called polymorphism. The runtime selects an appropriate method to call for an object

based on the runtime type of the object. One reason for this is to be able to pass functionality into

methods via interface type declarations because the languages do not support functions as first class

objects. Clojure goes beyond polymorphism and offers a more general concept of dynamic method

dispatch in which the programmer defines the dispatch function as opposed to always using the

runtime type of a particular object.

The following uses polymorphism in Java:

interface Foo {

St r ing foo ( ) ;

}

class FooBar implements Foo {

public St r ing foo { return ” foobar ” ; }

}
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class FooCat implements Foo {

public St r ing foo { return ” f ooca t ” ; }

}

To implement polymorphism in Clojure using the same Java types:

(defmulti f oo ( fn [ obj ] ( . getName ( . ge tC la s s obj ) ) ) )

(defmethod f oo ”FooBar” [ obj ] ” foobar ” )

(defmethod f oo ”FooCat” [ obj ] ” f oo ca t ” )

The defmulti macro is used to define the name of the function, in this case foo. It also defines

the dispatch function for the argument or arguments that gets passed to the function. In this case, a

single argument will be passed to the function, and the classname of the argument will be returned

by the dispatch function. The defmethod macros create and install two new methods of multimethod

foo associated with the dispatch-values FooBar and FooCat.

The following is a switch statement in Java:

MyCalendar c a l = new MyCalendar ( ) ;

switch ( c a l . getMonth ( ) ) {

case 1 : System . out . p r i n t l n ( ”January” ) ; break ;

case 2 : System . out . p r i n t l n ( ”February” ) ; break ;

case 3 : System . out . p r i n t l n ( ”March” ) ; break ;

case 4 : System . out . p r i n t l n ( ” Apr i l ” ) ; break ;

case 5 : System . out . p r i n t l n ( ”May” ) ; break ;

case 6 : System . out . p r i n t l n ( ”June” ) ; break ;

case 7 : System . out . p r i n t l n ( ” July ” ) ; break ;

case 8 : System . out . p r i n t l n ( ”August” ) ; break ;

case 9 : System . out . p r i n t l n ( ”September” ) ; break ;

case 10 : System . out . p r i n t l n ( ”October” ) ; break ;

case 11 : System . out . p r i n t l n ( ”November” ) ; break ;

case 12 : System . out . p r i n t l n ( ”December” ) ; break ;

default : System . out . p r i n t l n ( ” I n v a l i d month . ” ) ; break ;

}

This can be broken up into many methods using a multimethod in Clojure:
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(defmulti getMonthString ( fn [ c a l ] ( . getMonth c a l ) ) )

(defmethod getMonthString 1 [ c a l ] ”January” )

(defmethod getMonthString 2 [ c a l ] ”February” )

(defmethod getMonthString 3 [ c a l ] ”March” )

(defmethod getMonthString 4 [ c a l ] ” Apr i l ” )

(defmethod getMonthString 5 [ c a l ] ”May” )

(defmethod getMonthString 6 [ c a l ] ”June” )

(defmethod getMonthString 7 [ c a l ] ” July ” )

(defmethod getMonthString 8 [ c a l ] ”August” )

(defmethod getMonthString 9 [ c a l ] ”September” )

(defmethod getMonthString 10 [ c a l ] ”October” )

(defmethod getMonthString 11 [ c a l ] ”November” )

(defmethod getMonthString 12 [ c a l ] ”December” )

(defmethod getMonthString : d e f a u l t [ c a l ] ” I n v a l i d month . ” )

If simply writing a String is all that a switch statement does, the advantage of breaking it up

into many methods is not noticeable. For complex logic that would typically be handled with a long

else if or a switch statement, multimethods help keep code clean and more readable.

5.1.6 Simplicity and Verbosity

Functional programs take the programmer farther away from the hardware than non-functional ones.

Consider the following simple example when asked to write a function that takes a list of integers as

its input and outputs a list of integers of the same arity whose values are the incremented value of

the corresponding value of the original list. For example, given the input (-1 -2 -3 1 2 3), the output

is (0 -1 -2 2 3 4). If asked to write this in C, Java, Pascal, or any other non-functional language, a

typical implementation might look like the following Java code:

int [ ] increment ( int [ ] x ) {

int [ ] y = new int [ x . l ength ] ;

for ( int i = 0 ; i < x . l ength ; i++) {

y [ i ]=x [ i ]+1;

}

return y ;

}
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A typical Clojure implementation may look like the following:

(defn i n c f u n c [ x ] (map inc x ) )

Syntactically, the Clojure version is much less verbose than the Java one. Ignoring syntactical

differences, one piece of code in the Java version that we see is uninteresting is the declaration,

checking, and incrementing of the variable i. Here we must explicitly create and use a separate

piece of state for indexing into the arrays. This temporary state is unnecessary and can be replaced

with Clojure’s map function. The map function returns a lazy sequence consisting of the result of

applying f to the set of first items of each collection, followed by applying f to the set of second items

in each collection, until any one of the collections is exhausted. map is a n-ary function, and when

called with a single list, it applies a function f to every item in the list and returns the result. There

is no temporary state to be able to index into the list. Although it can become natural to create

and use temporary state in performing an operation on each item in a list of items, it is usually not

necessary to use the state in the computation, and it clutters the solution.

Another uninteresting piece of code in the Java version is the line where y is defined. This

declaration is really just an artifact of how von Neumann based architectures work. In order to

write this function without making changes to the original list, a new list of the same size must first

be created, making the code unnecessarily verbose.

5.1.7 State

Many functional languages are called pure functional languages. They are ”pure” in the sense that

every function takes some state and returns some state and does not modify any global state. In

fact there is no global state. This makes reasoning about code and verifying certain properties much

simpler than a procedural or object oriented language where state is everywhere and functions can do

whatever they want with that state [Wel02]. In fact, these languages do not even enforce correctness

when working with state from multiple threads; programmers are required to design correct solutions

to these problems themselves. All of the data types native to Clojure support the concept of purity.

When you perform operations on lists for example, the results of those operations are actually new

lists and the original one passed in remains unchanged. This has the same semantics as call by value

with performance comparable to call by reference without the danger of destroying the reference.

In some LISP implementations this causes performance problems since lists are getting copied a lot.

Clojure uses a much more efficient way of doing this, which underneath the hood shares the data

structures [Hica] and so can give the same performance guarantees as using mutable data structures

in Java without the added complexity of mutable state.
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Another problem with state and object oriented languages is misuse of mutability. By default,

member variables are mutable unless declared as final by the programmer. Even the final modifier

only enforces that the referenced object cannot be changed after being set in the constructor; it

does not enforce any immutability with respect to the object’s data members. In Clojure, the

opposite is true, every data definition is immutable by default unless it is explicitly made mutable

by the programmer. When defining a Java data type, it cannot enforce anything with regard to

mutating that object’s state, and this is one thing to watch out for when using the Clojure/Java

interop feature. Although lack of global and mutable state can be nice for theorem proving and code

reasoning, in the real world programs that do something useful usually have some mutable state

somewhere and are not just collections of pure functions and immutable data.

Threads

Clojure fully acknowledges the fact that mutable state is needed somewhere in most real world

applications, however, it does not use the problematic thread model to provide for reading and

writing mutable state. Here we briefly examine a few of the problems with using threads. For a

more thorough inspection refer to [PGB+05].

Problems can arise if one decides to edit a list inline either for terseness or to save memory and

therefore compromise on the ”without making changes to the original list” constraint:

int [ ] incrementInPlace ( int [ ] x ) {

for ( int i = 0 ; i < x . l ength ; i++) {

x [ i ]++;

}

return x ;

}

For single threaded programs, there is no issue; in a multi-threaded environment, though, consider

how the above code causes issues even with just two threads calling it at the same time. If thread A

attempts to access list at the same time as thread B is modified the list, then the result that thread

A computes is also invalid. It gets worse; the thread solution to this is to use a monitor or mutual

exclusion block to ensure that no two threads can call the function at the same time. In Java, the

monitor can be implicit by using the method modifier synchronized to the method definition. If

the method is static, the monitor is implicitly the singleton instance of an object’s getClass method:

stat ic synchronized void f oo ( ) { }
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If the method is a non-static method of a class, the monitor is a particular instance of the class

and is shared among all non-static synchronized methods of a particular object:

synchronized void f oo ( ) { }

You can also declare arbitrary objects and use them as monitors:

Object x = new Object ( ) ;

synchronized ( x ) {

// h o l d i n g monitor o f x

}

In C#, the monitor is a library:

System . Object obj = ( System . Object ) x ;

System . Threading . Monitor . Enter ( obj ) ;

try

{

DoSomething ( ) ;

}

f ina l ly

{

System . Threading . Monitor . Exit ( obj ) ;

}

With some syntactic sugar:

l o ck ( x )

{

DoSomething ( ) ;

}

Whether built into the language or provided as a library, locks create problems [Lee06]. Consider

what happens when thread A acquires a lock to object X and then waits for a lock on object Y to

be released, then gets interrupted, then thread B, which is holding a lock on object Y , gets switched

in and immediately begins waiting on the lock to object X, deadlock. This makes it hard to create

robust multithreaded API’s, since the client code may acquire the locks out of order not knowing

the lock ordering rules of the API.

Another problem with locks is that, when used in non-functional language, they cause readers

to block readers and writers, and writers to block readers and writers. All of this blocking leads to
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performance problems when many threads are reading or writing some shared state.

Software Transactional Memory

In addition to the desirable properties offered by functional languages which including composabil-

ity of functions and lack of shared state, Clojure provides a model for concurrency that is easier to

understand, implement, and verify than that of Java threads. Software transactional memory, or

STM, is a pattern that is used for providing transactional memory in a distributed shared mem-

ory [ST97]. STM in Clojure is completely non-blocking. Readers do not block readers, and writers

do not block readers. Readers read the value of a reference at the time requested; in other words,

the latest committed value. Writers do not block writers, and readers do not block writers. Many

writers can run in parallel, and, before they commit their transactions, they check the value of the

shared state they are going to write to. If the value has changed since the start of the transaction,

the writer does its work again with the new value of the shared state. In this way, writers do not

block each other, and high contention to write a particular value results in writers repeating their

work more than once. In Java, this would prove difficult as most functions are not pure and cannot

be run repeatedly in transactions blindly.

Another benefit of STM in Clojure is that nested transactions are handled without other functions

knowing the order and nature of the transactions. As previously described, using the thread model in

Java, locks shared among classes must be acquired in a certain order to avoid deadlocking multiple

threads. The correct use and/or the knowledge of this ordering is often missing from programs.

Providing the ordering couples classes together in a way that is not necessary with Clojure’s STM.

Clojure combines many of the benefits of functional programming with the power of the JVM to

allow for a very powerful tool for creating a distributed and multithreaded application such as this

one.

5.2 User Interface

When the master module is started, a graphical user interface, or GUI, is displayed that allows for

controlling various parameters of the application. Figure 5.1 shows this user interface when run on

OS X Snow Leopard. A similar interface will appear when run on a Linux or Windows operating

system.

The table to the right shows how many slaves are connected, the hostname followed by a global

counter for each host, and the last time a heartbeat message was received from the slave. The

screenshot shows there are 9 slaves connected to the network. Two of them are from a dual core
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Figure 5.1: NNGenerator Software Graphical User Interface.

iMac running OS X 10.6, two of them are from a dual core Intel running Windows 7, and five of

them are from a quad core Intel running SuSE Linux 11.0.

One of the parameters the user can enter is the population size, which does not have to match

the number of actual network slaves; it is the number of networks to train at each step. So if you

have only eight slaves and you enter sixteen, then each slave will train two neural networks at each

iteration of the search algorithm. Another parameter is the number of generations to train. As you

increase this parameter, the time to complete the algorithm increases linearly. Another parameter

sets the amount of iterations a slave should train a single neural network. This is a constant for all

slaves so that each generated neural network has been given a fair chance at training its weights.

The remaining parameters place upper bounds on the neural network structures themselves. A

maximum number of hidden layers parameter sets an upper bound of the number of hidden layers

for a neural network. A maximum number of nodes per layer parameter sets an upper bound on the

number of nodes for a hidden layer. The number of input and output nodes depends on the map

of input vectors to outputs used during training and cannot be changed by the user. Tweaking the

number of iterations to train a network, the number of nodes per layer and number of layers can

have a substantial effect on the time it takes for the algorithm to complete. To get the output of

each hidden layer and the output layer is on the order of NM , or the product of the weight matrix

between the previous layer and the current layer and the nodes in that layer. As the number of
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nodes increases, the time to complete the operation for a layer increases.

The user interface is written using the Java Swing library [Orad]. This library comes bundled

with the Java Runtime Environment and allows creating cross-platform GUI’s that look native to the

OS or can be skinned in a customizable way. Swing uses a single threaded model and embraces the

Model-View-Controller or MVC design pattern [mvc88]. This pattern keeps the view code separate

from the model code, and the view can update the model only though the controller. In Swing, the

controllers are action listeners which are fired based on events such as a mouse click or keyboard

input. The action listeners all spawn a new thread to do their work, and later the UI may be updated

asynchronously on the main GUI thread called the Event Dispatch Thread or EDT. Unfortunately,

the library cannot enforce this behavior, it is up to the programmer to keep this pattern in mind.

If work is done on the EDT that should be done in a background thread, the user interface will

become slow and unresponsive.

5.3 Java Messaging Service

Although the concurrency features of Clojure are nice, they are limited in that they only provide

support for shared memory concurrency on a single JVM. The distributed architecture uses a mes-

saging model that is facilitated via the Java Messaging Service or JMS API [Oraa, TS02]. JMS is

a Java API that provides applications with the ability to communicate via objects called messages.

A program that uses JMS to produce and/or consume messages is called a JMS client. Message

passing in JMS uses an asynchronous send in which a producer produces a message and does not

block waiting for it to be consumed, though it does block waiting for the message broker to confirm

receipt. On the consumer side, receiving a message can either block until it has a message, or it

can process messages asynchronously through an event listener. In the latter case, an event will fire

for every single message that the client receives. JMS is also reliable, it ensures that every message

successfully produced by a JMS client gets consumed by a subscriber if one is available.

There are two available approaches to messaging in JMS. The first is a publish/subscribe model in

which JMS clients publish messages to queues called topics. A topic can have one or more subscribers

and will send all messages in the topic to all current subscribers, meaning that a particular message

may get processed more than once. A client must be subscribed to a topic before it can receive

messages from that topic. This implies an ordering on the time a publisher publishes a message to

a topic, and the time a subscriber consumes that message from the topic; the publish must happen

first. Figure 5.2 is an illustrative example of the publish/subscribe model in JMS.

The second approach is a point-to-point model which is very similar to the publish/subscribe

approach. With this approach, messages are queued to named queues. Each message will only get
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Figure 5.2: JMS publish/subscribe model.

consumed once by a single JMS client. There is no ordering on the when a client consumes a message

from a queue and when a client publishes that message to the queue. This is not unlike languages

that use tuple spaces such as Linda [Gel89]. Figure 5.3 shows how the point-to-point model works

in JMS.

Figure 5.3: JMS point-to-point model.

The NNGenerator software uses the point-to-point model. We do not want either training mes-

sages or training result messages to ever be processed more than once. The messaging model is

simple, and as described in the architecture, there are two message queues. One queue is for the

single master node to write to and for the slaves to read from, and the other is for the entire set

of slaves to write to and for the master to read from. As soon as a master or slave node sends a

message, it does not block waiting for a response.

JMS message queues and topics are provided via JMS brokers. All message queueing and deque-
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ing is handled through one or more JMS brokers. These brokers behave like proxies and have logic

for making sure that messages get sent and received. In a production environment, these brokers

are usually replicated in case one of them fails. The NNGenerator software expectes a single JMS

broker to be available to the master and slaves nodes. Implementors of the brokering services come

in many different implementations. An implementation must implement the JMS specification for a

broker in order to work with JMS clients. During testing and while collecting results we are using a

message broker provided by Apache ActiveMQ [Fou]. The software could just as easily use another

JMS broker to connect to. The ActiveMQ broker listens on a single TCP socket for messages from

other nodes on the network. Nodes never have to talk directly to each other on the network; they

only need to be able to connect to the broker. This allows the master and the slaves to operate on

different networks and they never have to communicate directly.

The NNGenerator master and slave JMS clients both use asynchronous receives. An event listener

is wired up for both the slaves and master for when messages are received. The slave will sit idle

until it has a training message to consume, at which point it will become CPU bound while it trains

a neural network. After it finishes training, it will sit idle again until another training message comes

in. The master also has a thread that sits idle and waits for result training messages in the same

manner. The master receives a message for each neural network that a slaves trains. It also receives

heartbeat messages from slaves to determine when slaves disconnect, or might have run into some

other problem that will prevent them from being able to train a network. Clojure multimethods

are used to process incoming messages based on the type of the message. Slaves receive a different

message type for each different problem. A problem is specified by its training data set. The type

allows the slave to select the training data set to use for training the network. For example, the

XOR input output map will be selected when a slave receives a TRAIN-XOR message. The training

sets are distributed along with the slave jars to keep the master from having to send the data set

over the network. The data can get very large in the case of binary formats such as images and

sound. As stated in the architecture chapter, the algorithm can continue as long as one slave on the

network is still able to receive messages. This is undesirable, however, as the algorithm is meant to

fully exploit the inherent parallelism of genetic algorithms by having a one to one mapping between

the number of slaves on the network and the size of the population.

5.4 Data Structures

The neural network structures that are generated and bred are all backpropagation neural networks

with at least one hidden layer. They are encoded as strings representing serialized maps in Clojure.

These strings are relatively small compared to serialized Java objects and are also human readable

40



since they are just Clojure data. The serializing and deserializing functions are also simple compared

to what would be needed to serialize a Java object. Here is serialization:

(defn s e r i a l i z e [ x ]

(binding [∗print−dup∗ true ] (pr−str x ) ) )

and here is deserialization:

(defn d e s e r i a l i z e [ x ]

( l et [ r (new PushbackReader (new Str ingReader x ) ) ]

( read r ) ) )
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Chapter 6

XOR Problem

The test problem that was used while building the application is a simple XOR problem. The

input/output map is provided to the program as the following Clojure map:

(def XOR−table {[−1 −1] [−1]

[−1 1 ] [ 1 ]

[ 1 −1] [ 1 ]

[ 1 1 ] [−1 ]} )

The networks are trained with random samples from the map.

6.1 Results

6.1.1 First Result Set

Table 6.1 shows the results for running the NNGenerator software with the following parameters:

42



Table 6.1: XOR Trainer Test Results 1.

Generation Lowest RMS Error Average RMS Error

1 6.749198082231432E-28 0.05717612521054472

2 1.6652497156304906E-22 0.011905249628373422

3 3.887822085290851E-26 4.5259383247370363E-7

4 5.3155295284848575E-21 2.3281523385011523E-4

5 5.372827720630989E-59 0.007860022032154978

6 2.785665071561689E-29 0.12405979617855686

7 2.737285346503349E-23 0.1892872997753143

8 1.2154326714572542E-63 0.18667527335585038

The software generated the neural network shown in Figure 6.1.

Figure 6.1: Resultant neural network for first XOR trainer result set.

6.1.2 Second Result Set

Table 6.2 shows the results for running the NNGenerator software with the following parameters:
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Table 6.2: XOR Trainer Test Results 2.

Generation Lowest RMS Error Average RMS Error

1 2.5054577337217813E-25 7.306048546794003E-6

2 1.3866695599587982E-28 3.3460553362913697E-20

3 1.0871489350077044E-29 1.566204032546096E-21

4 7.457200744667331E-29 4.705563879914948E-11

5 4.438190128677072E-53 1.419312648141364E-21

6 9.880180029664589E-46 1.7111405648511735E-8

7 1.2325184417509783E-30 1.6042524538056823E-11

8 1.4626339857138885E-27 6.712774782870025E-12

9 1.889609509681072E-30 1.521749396876346E-9

10 1.3634966915758752E-33 1.5937700670241007E-10

11 2.6011938055248963E-30 5.742581610923849E-12

12 2.1154096662283722E-27 3.4111424869786424E-11

13 1.040421067398336E-25 1.087397588423917E-11

14 1.863208120020399E-26 3.1986877746298507E-9

15 1.2696810965157856E-34 1.8087324593907032E-11

16 7.425113805196876E-31 7.489259430539917E-12

17 1.130774542447281E-32 4.94706855516273E-12

18 1.5538009240947378E-29 1.783129695012996E-10

19 6.257678976796708E-37 4.457178593375146E-11

20 4.206190914291976E-28 7.574632975943686E-9

21 1.7054132911551076E-25 1.3174383099546557E-10

22 3.4438143119862094E-29 5.852895369947579E-7

44



23 2.1320443017741385E-29 1.363858203279037E-9

24 3.507923759549089E-23 3.7802210639103527E-11

25 1.6624417039146802E-34 1.589033712660971E-6

26 1.0717512757427784E-34 1.7692135458311465E-10

27 3.119804464516293E-47 6.606650434571091E-7

28 4.3780840755578434E-35 4.033116569745029E-12

29 6.309267783614088E-41 1.4425621254468801E-11

30 1.7080256423619204E-38 3.565016064982958E-12

31 1.2406943383084812E-41 2.6223417933475996E-12

32 1.766760416476497E-31 1.4927307016594083E-7

33 2.2982642291056944E-37 1.0593184690594624E-11

34 1.2109701276932383E-27 1.0066696433031767E-6

35 2.62676195083333E-29 5.802242694634442E-11

36 7.29512571536478E-25 1.201484738365783E-11

37 5.29765521394315E-41 3.091446648820336E-12

38 1.3582567589713704E-39 6.368793201739928E-12

39 4.21517535679883E-39 3.218907087442485E-9

40 5.5940177088011746E-27 2.9139084880615986E-11

41 1.2638630346285576E-26 1.2010070663605773E-7

42 1.4717817274666266E-49 2.646020640251503E-12

43 1.628304840062059E-48 2.600339181182816E-12

44 2.359295819405455E-40 5.593464941213629E-13

45 3.5354224829021327E-34 3.572130163274878E-11

46 1.0899580456980869E-43 1.830531785227526E-12

47 5.4557045941430794E-48 2.1749658514322455E-12

48 1.1572427749164428E-37 2.4847863730405124E-12

49 1.5120086121347679E-34 9.5679993576262E-13

50 2.8714558184013917E-27 7.019401364503659E-12

51 9.376308302862078E-39 9.115604418703448E-13

52 1.4950316868745454E-26 2.1511512209630587E-8

53 2.7397806035973195E-27 1.4966826339695197E-8

54 3.3607520640408625E-33 1.4261670845673156E-8
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55 2.341358052886801E-25 5.83192063995526E-12

56 1.8268831620392305E-29 6.536166923975071E-11

57 3.6088254267876384E-22 1.6360408104704007E-11

58 3.233787670137434E-26 5.941969350364327E-12

59 4.816863814274461E-28 3.472295729616766E-10

60 4.1449988755171495E-24 8.541371100340901E-11

61 2.7344054988979634E-54 1.877341508736524E-16

62 1.890955555743946E-37 1.5985221490921967E-12

63 7.333721252753549E-37 7.389430914285899E-11

64 3.034446173726286E-53 6.682432218587649E-9

65 7.596454196607839E-65 2.6165515609367735E-10

66 3.2285543292592315E-39 3.0418566647132515E-11

67 8.608885138783913E-44 3.144721509624129E-9

68 4.215463433161572E-37 5.000405208006925E-12

69 3.6712526174074825E-39 1.8021116189820054E-11

70 3.272165084913714E-42 1.3884046503245164E-7

71 5.050771981831241E-38 2.4287373567393382E-12

72 7.626825647336907E-28 3.243008579555274E-8

73 6.174205148205196E-29 1.798845882265808E-11

74 2.9232226919095886E-28 9.829923007268686E-11

75 2.6064511402455526E-18 2.188827197125955E-9

76 1.5772613482836327E-16 4.867564735682575E-7

77 1.0003200793065999E-24 2.257414831458416E-10

78 4.8922473781801076E-27 5.708921055194993E-10

79 9.710800829327612E-25 3.7781006460765763E-10

80 4.591293727902238E-26 6.961953626054578E-17

81 2.1816492647895572E-24 9.868108873282733E-16

82 8.780219090332052E-25 8.943730967857937E-19

83 8.287969885478218E-29 1.715005282042369E-11

84 2.9353514283273056E-27 1.308911336428805E-19

85 7.194726999976752E-26 5.367242065729736E-14

86 3.940537715282238E-26 1.0997773068358775E-19
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87 4.3750423018779045E-26 1.716479369944157E-12

88 7.928101401277392E-27 1.3503912231590541E-13

89 9.525988468609332E-28 5.640291554308247E-14

90 1.2939290997885318E-25 3.33095330120416E-12

91 1.7927307805405478E-26 8.421661830501178E-13

92 8.167126255556022E-25 4.6303226655305065E-9

93 1.0452091449814626E-25 0.02929982143704606

94 2.0377702061864192E-25 2.422528592468592E-19

95 8.697191480061614E-29 7.908968688024457E-19

96 8.788543545034392E-25 6.986436200064787E-18

97 1.6367305783044875E-25 3.177439957111431E-18

98 4.930380657631319E-30 1.3585826061122317E-18

99 1.9568680830137355E-26 4.608799951673015E-20

100 2.3863042382935022E-27 1.9904898035610088E-8

The software generated the neural network shown in Figure 6.2.

Figure 6.2: Resultant neural network for the second XOR trainer result set.
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The fittest neural network was actually found in the 65th generation with a RMS error of

7.596454196607839 × 10−65. The best overall generation is the second generation with an aver-

age RMS error of 3.3460553362913697 × 10−65. This test run did not indicate that the neural

networks were getting fitter with each generation.
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Chapter 7

OCR Trainer

Another one of the problems used to test the program with is an optical character recognition

problem, a technique used for converting handwritten text to a digital format. In this case the

characters to be recognized are the arithmetic numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

The training and data sets are from the MNIST database[LeC]. The characters used for training

the classifier are a set of a subset of 60,000 samples of handwritten numerals of 30,000 patterns from

SD-3, and 30,000 patterns from SD-1 from the NIST character set. The characters used for training

the classifier are a set of a subset of 10,000 samples of handwritten numerals of 5,000 patterns from

SD-3, and 5,000 patterns from SD-1 from the NIST character set. The intersection of the training

set and test set is null as they are disjoint.

The training and test sets are comprised of 2 files each, a binary file containing the image data

for the numerals, and a label file containing the correct output of the image to a digital format. The

test image file is 45MB and so to save time in the feature extraction step, the input/output map for

the set is preprocessed once and stored as a Clojure data structure. For training, the 45 MB image

file and 60K label file is represented as a 5.6 MB input/output file. The input consists of extracting

a binary string of length 16 that represents a threshold of pixel counts in the input image. The

string is constructed of taking a 4x4 piece of the image row-wise. If the average pixel value is greater

than a certain threshold, the value is 1, otherwise the value is 0. The output is a string of length 4

that represents the digital numeral as a binary string. The values 10,11,12,13,14,15 are never fed to

the neural network during training.

When a slave starts the OCR trainer, it first reads the training file from disk and deserializes

it into a Clojure data structure that the backpropagation function uses to train a neural network.

Once this structure is loaded into memory, training begins. After training for the specified number

of iterations, the slave posts a message to the master containing the results. If the master posts a
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message back, it will be another train OCR message and the slave will repeat the process. If not, the

master has finished breeding and will display the resultant neural network structure. This structure

can be saved and used to test the neural network against the test data set.

A single network is be generated by presenting the application with a training set, then a test

data set that is disjoint from the training set will be used to test the accuracy of the network.

7.1 Results

7.1.1 Result Set 1

Table 7.1: OCR Trainer Test Results 1.

Generation Lowest RMS Error Average RMS Error

1 4.3502045626631517E-14 0.016356935630774453

2 2.0285182716361427E-8 0.010798833096735282

3 5.016625900942483E-12 0.009313208954575207

4 9.654223812029E-12 0.009764548655503679

5 8.822783538883067E-12 0.007621033973619068

6 6.432802850701297E-6 0.007046347953596382

7 5.3697890904199377E-14 0.013685965230928254

8 3.949459206373761E-10 0.00832293977963215

9 1.9570865437930458E-24 0.0077764095579861804

10 2.506513021332053E-6 0.010869428910938178

Table 7.1 shows the results of running the NNGenerator software with the following parameters:
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Figure 7.1: Resultant neural network for first OCR result set.

A screenshot of the resultant network is shown in Figure 7.1.

The resultant neural network was unable to converge and gave the following results when run

against the test set and only classifed 1,135 of the 10,000 test characters correctly.
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7.1.2 Result Set 2

Table 7.2: OCR Trainer Test Results 2.

Generation Lowest RMS Error Average RMS Error

1 7.891880999221867E-8 0.0173904761395515

2 2.013460555515104E-4 0.013774106331458341

3 1.277980970409587E-4 0.012982988605805981

4 1.2173258203796399E-5 0.00992557079845578

5 1.1493958742463188E-13 0.009978878509184833

6 3.4014167363083914E-12 0.00936778989360004

7 7.754248857947593E-9 0.01387680402589895

8 1.2555831561710939E-8 0.012832542111672472

9 4.3633615514969336E-8 0.009243350832757954

10 1.1771243219151047E-15 0.008222115616230612

11 4.176121633494215E-15 0.009546788434460465

12 1.2740827726504187E-14 0.008903159909956734

13 4.237583140121324E-15 0.01073538313750781

14 4.109851463789817E-15 0.008514012583273027

15 1.9732404636638029E-16 0.004604095778052103

16 4.117632915636444E-9 0.008408504165641664

17 6.476978089350002E-18 0.007001315851873932

18 6.292739877595802E-11 0.010569325971334793

19 1.5056421055145552E-15 0.007515515537989361

20 5.193350484983424E-18 0.009144290171367774

Table 7.2 shows the results of running the NNGenerator software with the following parameters:
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A screenshot of the resultant network is shown in Figure 7.2.

Figure 7.2: Resultant neural network for second OCR result set.

The resultant neural network was able to classify 3,980 of the 10,000 test images correctly.

7.1.3 Result Set 3

Table 7.3: OCR Trainer Test Results 3.

Generation Lowest RMS Error Average RMS Error

1 7.989291092433633E-5 0.019821599105480103

2 4.004050993350956E-11 0.00781206556488213

3 2.953372921182323E-8 0.011670288713386441

4 3.561004565825299E-10 0.013758225968169701
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5 4.969952505241766E-12 0.012584144555919543

6 9.620313006394983E-13 0.010457804379950851

7 1.3588012614107163E-8 0.01021952393825524

8 3.1156755853397372E-12 0.00900057086660724

9 2.900200837302653E-13 0.010918656380408584

10 1.0123949301175608E-12 0.008882579007562777

11 3.272790896905573E-11 0.009509713284177332

12 2.809366733938291E-11 0.009178001985773981

13 1.6355062166394745E-6 0.01386270936376654

14 6.541201436743673E-14 0.009129671062543086

15 2.3385156478767894E-11 0.012915654815698315

16 1.9655423855241817E-11 0.010588685426136333

17 1.6125954810677866E-13 0.009769752475599788

18 7.890250832783692E-15 0.0092041872140139

19 3.2510336758984747E-12 0.00768497129908572

20 1.561943265362401E-15 0.0086760219170695

Table 7.3 shows the results of running the NNGenerator software with the following parameters:

A screenshot of the resultant network is shown in Figure 7.3.

The resultant neural network was able to classify 3,135 of the 10,000 test images correctly.
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Figure 7.3: Resultant neural network for third OCR result set.

7.2 Evaluation

All three test runs gave admittedly poor results, with the third (and best) neural network only able

to classify about 40% of the test characters correctly. This is probably due to a poor selection of

features for recognizing the characters. The RMS error did get better over time for the second and

third result sets. For the first result set, the RMS error over each generation indicates no trend in

either direction.
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Chapter 8

Blackjack Trainer

One of the problems used to test the program is a blackjack player. Blackjack is a card game whose

basic premise to get a hand value that is closer to 21 than that of the dealer, without going over 21.

Each player plays against the dealer and does not compare hands with other players. The players

can only see the dealers top, or second dealt, card. The value of an Ace can count as either 1 or 11.

The cards 2 through 10 are valued at their face value. The Jack, Queen, and King are all valued at

10. The players and dealer are initially dealt 2 cards each, and a player can choose to either hit one

or more times in succession or to stay. Each time a player hits, the dealer deals him another card.

When a player stays, it is either the next player’s turn or the dealer’s turn in the case all players

have played. There are a few variations of rules in casinos that determine when a dealer should hit

or stay. The most common, and the one used in this program, is that the dealer must hit until the

combined value of his cards is greater than or equal to 17. There are also more variations on the

options a player has in addition to hitting and staying, such as doubling down and splitting pairs.

For simplicity of the trainer, these variations are not included in the blackjack trainer.

The input consists of a binary string of length nine. The first five digits represent the value of

the player’s hand. The last four digits represent the value of the card the dealer is showing. The

value of the dealer’s hand is unknown to the player in an actual blackjack game, so the dealer’s first

card is not used in the input. For example, if the players hand totals thirteen and the dealer’s top

card is a three, the input string would be: 011010011.

The output pairs are found by playing simulated hands between a dealer and a single player. The

output is 1 if hitting resulted in the player winning, -1 if staying resulted in a win, and 0 otherwise.

The output is determined by using the dealer’s rule of continuing to hit until the value of the hand

is greater than or equal to 17. Note that this is not always the optimal strategy, therefore the data

used during training does not always train the network with the optimal strategy.
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The simulator used during training deals cards out of a shuffled deck for each hand. Because this

shuffling is random, each slave will train its neural network structure with a different input/output

map than every other slave. The chance that every possible combination of player’s hand and dealer’s

top card will be considered increases as the as the number of training iterations increases.

The trainer also has two simulators for testing a neural network. One is a simulator that will play

a specified number of games where the player uses dealer’s rules of hitting. The second simulator

also runs for a specified number of games using the output of a neural network to determine whether

or not to hit. These two simulators are used to determine if a neural network solution can do better

than dealer’s rules for hitting.

The following results are compared against playing 50,000 simulated games by dealer rules. When

playing by these rules, the player won 20,309 of the games, tied 9,107 of the games, and lost 20,584

games.

8.1 Results

8.1.1 Result Set 1

Table 8.1 shows the results of running the NNGenerator software with the following parameters:

Table 8.1: Blackjack Trainer Test Results 1.

Generation Lowest RMS Error Average RMS Error

1 0.0058351248061235105 0.008098956382062575

2 0.005124453989806542 0.008788577240515025

3 3.112780421164862E-4 0.006815992145352396

4 0.001878277865251978 0.00615390146502372

5 0.0033683109943283512 0.005027418011111019
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6 7.906376846118689E-26 0.0055728544464406365

7 5.0558238025193206E-20 0.0013660235242617068

8 2.669238353451669E-13 0.0019471455135151232

9 7.581691939386478E-23 0.0013389815986515853

10 5.125102775087759E-25 0.001963155659988856

A screenshot of the resultant network is shown in Figure 8.1.

Figure 8.1: Resultant neural network for first blackjack trainer result set.

When run in a simulation of 50,000 games, this neural network won 18,508 games, tied 1,021

games, and lost 30,471 games.

8.1.2 Result Set 2

Table 8.2 shows the results of running the NNGenerator software with the following parameters:

58



Table 8.2: Blackjack Trainer Test Results 2.

Generation Lowest RMS Error Average RMS Error

1 0.0058344177408309154 0.00859211658180253

2 0.0012314974802662725 0.006396436601464739

3 1.832749859906455E-40 0.005518007349382453

4 1.016123779257207E-37 0.00350240342538391

5 1.8813030044936772E-44 0.0029734361621361685

6 5.424008130994838E-57 0.0029949668046492634

7 8.927587203600315E-21 0.0029488302211954707

8 4.066574120048379E-31 0.004020245969844272

9 1.0725743127877895E-18 0.0024621419830630643

10 1.1626319699415398E-18 0.0022126537564833263

A screenshot of the resultant network is shown in Figure 8.2.

When run in a simulation of 50,000 games, this neural network won 19,329 times, tied 2,442

times, and lost 28,229 times.

8.1.3 Result Set 3

Table 8.3 shows the results of running the NNGenerator software with the following parameters:
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Figure 8.2: Resultant neural network for second blackjack trainer result set.

Table 8.3: Blackjack Trainer Test Results 3.

Generation Lowest RMS Error Average RMS Error

1 2.3423043495161635E-26 0.006191972674194506

2 7.713975827865027E-49 6.838882427375859E-4

3 5.721639714233759E-57 5.002852391625394E-4

4 3.6604008616284524E-85 9.243851674850428E-4

5 1.3564129229122493E-50 0.002334027724635785

6 7.24117696366482E-75 4.0741007962774844E-4

7 9.677630945830647E-51 0.001490403899462393

8 3.1960667016232624E-39 0.0013689573037240581

9 2.0188362353764715E-22 0.0017899872694982126
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10 2.687682804584388E-38 0.0017233290574511732

11 1.00056337236465E-31 7.372035015047415E-4

12 6.273404585352309E-26 0.001600616607656577

13 7.411613627765053E-32 0.0012268277057698822

14 6.255386051894567E-33 8.57762034135896E-4

15 1.026430750315555E-17 5.413214621155046E-4

16 6.318718192501435E-14 0.003901462810525832

17 1.4977732263195537E-13 0.002312616310845903

18 4.729569714675701E-17 0.0021665634257936285

19 2.4822739049956817E-14 0.0014517697603192259

20 3.640692567568787E-8 0.004668787663319438

A screenshot of the resultant network is shown in Figure 8.3.

Figure 8.3: Resultant neural network for third blackjack trainer result set.

When run in a simulation of 50,000 games, this neural network won 19,228 games, tied 2,422

games, and lost 28,350 games.

8.1.4 Result Set 4

Table 8.4 shows the results of running the NNGenerator software with the following parameters:
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Table 8.4: Blackjack Trainer Test Results 4.

Generation Lowest RMS Error Average RMS Error

1 3.1979624169420553E-54 0.008392887198522927

2 3.30216753382502E-43 0.0028339109048548337

3 4.137248662374247E-24 0.002393305467378612

4 2.0628888009514347E-43 0.0027378438647991917

5 3.9401305363732547E-66 0.0019394102403545153

6 1.1489214206448965E-125 0.0019468026470207734

7 5.464385832218055E-75 0.0015102479284637865

8 5.398728180968858E-62 0.0018208462575754194

9 3.992851654112311E-119 3.447240940886299E-4

10 2.0077849357581424E-98 0.0019742919779239016

11 1.0016231392808343E-79 4.1683002715808907E-4

12 1.2092205492144992E-77 2.64295023685051E-4

13 3.0134752103069107E-72 5.718378452389642E-4

14 8.708137045296341E-73 0.002023881777690861

15 3.5891639877316514E-82 8.135181476220314E-4

16 2.8940654582081857E-81 0.0014602246841304558

17 3.4158309414591465E-61 0.0015632776592233925

18 6.919913252262711E-58 0.0015526383370014752

19 1.6585856333254463E-53 0.0015046932600912208

20 2.43435766306799E-44 0.0014879965817727319
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A screenshot of the resultant network is shown in Figure 8.4.

Figure 8.4: Resultant neural network for fourth blackjack trainer result set.

When run in a simulation of 50,000 games, this neural network won 19,259 times, tied 2,515

times, and lost 28,226 games.

8.2 Evaluation

The software was not able to beat a player who plays by dealer rules in any of the four test runs.

The first test run had the worst performance with only a 37% win rate. The last three result sets

had marginally better win rates, at an average of about 38%. The fact that all of the result sets

produce a very similar win rate, even though the network structures are not the same, indicates that

the data used to train the network would need to be improved in order to achieve a win rate of over

38%. None of the result sets indicated that the RMS error gets lower with each generation; in fact

the trend appears seemingly random.

8.3 Conclusion

Examining the blackjack and OCR result sets leads to some interesting observations. The first is

that the generated neural networks with low RMS errors did not necessarily correspond to neural

networks that performed well on the test data sets. This is partly due to a weakness in the fitness

function, since it only uses the RMS error to determine fitness. It is also due to a poor selection of

feature selection, particularly in the OCR trainer.
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When determining if the genetic algorithm breeds better neural networks with each successive

generation, in the case of the OCR trainer it did. However, in the case of the blackjack trainer, the

RMS errors did not appear to trend in any direction with each successive generation.

The results refute the original hypothesis that a neural network structure that performs well can

be generated without focusing on the preprocessing and feature vector selection of an input/output

data set. The very simplistic features pulled in the OCR set were not enough to even get to a

classification success rate of 50%, much less the usually desired high ninety percent ranges. The

blackjack features were much better in comparison, however the results indicate that there was a

limit to how well a neural network could perform in a simulated game with the features, namely

around a 38% win rate. That limit was not able to be exceeded no matter what structure the

NNGenerator software generated.
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Chapter 9

Related Work

Research regarding combining the artificial intelligence methods of genetic algorithms has been done

in the past. A brief overview of some of these methods is given here. Note that the terms architecture,

topology, and structure are all used interchangeably depending on the author.

9.1 Training Neural Networks with Genetic Algorithms

The most common technique of combining these two powerful learning mechanisms is to use a

genetic algorithm to train a neural network with a fixed architecture rather than the standard

backpropagation technique.

[MD89] used genetic algorithms to train a neural network for the problem of classifying sonar

images. Their approach was to use a genetic algorithm instead of backpropagation to train the

weights for a neural network. The chromosomes are the weights of the network encoded as a list

of real numbers. Special operators are used for adapting the weights. Their results show that they

were able to get better training results using a genetic algorithm for training when compared to

standard backpropagation.

9.2 Learning Neural Network Topologies with Genetic Algorithms

A less commonly used method of combining genetic algorithms and neural networks is to use a

genetic algorithm to find a neural network topology for a given problem. This is the technique used

by the NNGenerator software. Other such methods are described briefly here.

[WSB90] used genetic algorithms to search for topologies that were better at learning than feed

forward neural networks. The topologies they considered are not layered, are allowed to contain
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cycles, and can have connections from any node to any other node. They used a 2-bit adder

to to show that topologies exist that can learn to add much faster than a feed forward neural

network. Figure 9.1 shows the topologies they used. They also ran into the same problem that the

NNGenerator software has; namely that the time to compute backpropagation is prohibitive when

attempting to consider a large number of architectures.

Figure 9.1: Neural Network Topologies for the 2-bit adder problem [WSB90].

[ZM93] also used genetic algorithms to find optimal neural network architectures. Their algo-

rithm is different, however, because it also uses a genetic algorithm for weight training rather than

the more common backpropagation method. They allow partial connectivity, and, like [WSB90],

allow connectivity between any two nodes. They represent each neural network as a set of N tree

structures. Here the weights are binary so that a less expensive hill climbing method can be used

since gradient descent is computationally expensive. The fitness function used employs Occam’s

razor [Dom99] to construct a neural network with minimal complexity. They define the complexity

of a neural network in terms of the weights, minimizing the number of weights and the size of each

weight. The stopping condition uses both an acceptable fitness function as well as a maximum

number of iterations. They used the top 20% of each population for mating. They tested their

algorithm in the 4-input parity problem [SA92] and they were able to generate the minimal solution

for the problem with their algorithm.

[Kit90] also used genetic algorithms for finding neural network architectures. There approach was

different from [WSB90] in that they propose a grammatical encoding of the network architecture
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rather than a direct mapping of the network architecture into a chromosome. This helps their

algorithm to scale better for large networks. They encode the structure as a using an L-system [RS80]

which is a mathematical theory commonly used for modeling biological plant development. The

encoding they used greatly reduced the length of the chromosomes that represent a neural network

architecture. The problem they used was N-X-N encoder/decoder problem with N of length 4 and

8. They were able to show that their L-system encoding performed better on the problem sets than

a direct encoding of the architecture.
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Chapter 10

Future Work

Although a great deal of time was spent writing the NNGenerator software, there is plenty of room

for improving upon it.

10.1 Improving the Fitness Function

The fitness function used is simply the RMS error of each neural network. This proved to not be a

very good fitness function; there were some cases where the calculated RMS error was low but the

neural network could not converge. There were also observations of neural networks that performed

better on the test data sets than other neural networks with lower RMS errors. Similar to having a

pluggable function that determines the training set for each problem, the fitness function could be

abstracted out, allowing any arbitrary fitness function to be used for a particular problem. Perhaps

a better fitness function would be one that evaluates a given neural network architecture and weight

set against a test data set.

10.2 Speeding Up Backpropagation

The strength of a genetic algorithm cannot be exploited for very small numbers of generations,

such as the ones used for the result sets in this paper. The software was meant to run on a large

cluster, and when that cluster became unavailable, the software was run on commodity hardware

available to me in my own home. However, there are platforms available that provide for large scale,

massively parallel computations at a very small cost. One of particular interest is NVIDIA’s CUDA

platform [Cor, San10]. This platform allows the programmer direct access to the grapics processing

unit, or GPU, available on any modern NVIDIA card. The latest Tesla cards boasts:“Delivers up to
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515 Gigaflops of double-precision peak performance in each GPU, enabling a single workstation to

deliver a Teraflop or more of performance. Single precision peak performance is over a Teraflop per

GPU.” Backpropagation could be implemented in C using the CUDA toolkit, then wrapped by the

Java Native Interface, or JNI [Lia99]. In this way, one or more commodity computers with CUDA

enabled GPU’s could run the backpropagation algorithm quickly, then JMS could be used to gather

the results and give back to the master for breeding.

10.3 Reducing the Encoding Size

The software encodes the chromosomes as Clojure data structures that directly represent a neural

network’s architecture. Perhaps a more compact encoding, such as the one used in [Kit90] could

be used to get a fixed length binary string that is not too large. If this were done, the specialized

genetic operations could be replaced with the more generic ones that operation on binary strings.

This may help the genetic algorithm find fitter neural networks.
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