
Recursive Partitioning Multicast: A Bandwidth-Efficient Routing for

Networks-On-Chip

Lei Wang, Yuho Jin, Hyungjun Kim and Eun Jung Kim

Department of Computer Science and Engineering

Texas A&M University

College Station, TX, 77843 USA

{wanglei, yuho, hkim, ejkim}@cse.tamu.edu

Abstract

Chip Multi-processor (CMP) architectures have become

mainstream for designing processors. With a large num-

ber of cores, Networks-on-Chip (NOCs) provide a scalable

communication method for CMP architectures. NOCs must

be carefully designed to meet constraints of power con-

sumption and area, and provide ultra low latencies. Ex-

isting NOCs mostly use Dimension Order Routing (DOR)

to determine the route taken by a packet in unicast traf-

fic. However, with the development of diverse applications

in CMPs, one-to-many (multicast) and one-to-all (broad-

cast) traffic are becoming more common. Current unicast

routing cannot support multicast and broadcast traffic ef-

ficiently. In this paper, we propose Recursive Partitioning

Multicast (RPM) routing and a detailed multicast worm-

hole router design for NOCs. RPM allows routers to select

intermediate replication nodes based on the global distri-

bution of destination nodes. This provides more path di-

versities, thus achieves more bandwidth-efficiency and fi-

nally improves the performance of the whole network. Our

simulation results using a detailed cycle-accurate simulator

show that compared with the most recent multicast scheme,

RPM saves 25% of crossbar and link power, and 33% of

link utilization with 50% network performance improve-

ment. Also RPM is more scalable to large networks than

the recently proposed VCTM.

1. Introduction

As the clock speed race turns into the core count race in

the current microprocessor trend, providing efficient com-

munication in a single die is becoming a critical factor for

high performance CMPs [15]. Traditional shared buses

that can connect only a handful number of components do

not satisfy the need for a chip architecture containing tens

to hundreds of processors. Moreover, the shrinking tech-

nology exacerbating the imbalance between transistors and

wires in terms of delay and power has embarked on a fer-

vent search for efficient communication designs [9]. In this

regime, Networks-On-Chip (NOCs) are a promising archi-

tecture that orchestrates chip-wide communications towards

future many-core processors. NOCs are implemented as a

switched network connecting cores in a flexible and scal-

able manner, which achieves higher performance, higher

throughput, and lower power consumption than a bus-based

interconnect.

Recent innovative tile-based chip multiprocessors such

as Intel Teraflop 80-core [10] and Tilera 64-core [20] gain

high interconnect bandwidth through 2D mesh topologies.

Mesh networks match well a planar silicon geometry and

provides better scalability and higher bandwidth than 1D-

based bus or ring networks. However, the implementation

cost of NOCs is constrained within tight chip power and

area envelopes. In fact, NOCs power consumption is sig-

nificant enough to occupy 28% of the tile power in Ter-

aflop [10] and 36% of the total chip power in 16-tile RAW

chip [18]. In the (5×5) mesh operand network of TRIPS,

the router takes up to 10% of the tile area mostly due to

FIFO buffers [8]. Therefore, any existing high-cost feature

or new functionality needs to be carefully examined if it un-

duly increases the design cost.

Looking to the future, supporting one-to-many commu-

nication such as broadcast and multicast in NOCs will pro-

vide many potentials in diverse application domains and

programming models. In cache-coherent shared memory

systems with a large number of cores, partitioned cache

banks, and multiple memory controllers, hardware-based

multicast is critical in maximizing performance. In fact,

cache coherence protocols heavily rely on multicast or

broadcast communication characteristics to maintain order-

ing amongst requests [14] or to invalidate shared data spread

on different caches using directory. Motivated by the impor-

tance of multicast and broadcast support, recent work pro-



posed these functions in the design of the routers [11, 17].

The key problem is to decide when and where to replicate

multicast packets. Poor replication decisions can signifi-

cantly degrade network performance and increase the power

consumption of links because multicast or broadcast com-

munications easily exhaust the network bandwidth.

Figure 1 shows two different routing examples in a

(4×4) mesh network for the same traffic pattern where the

source is 9 and its four destinations are 0, 1, 2, and 3. In

Example 1, packet replication occurs in routers 9 and 10,

while in Example 2, packet replication occurs in routers 1

and 2. Note that the total number of replication operations

is the same (three) in both examples. However, Example

2 performs packet delivery with only 5 links while Exam-

ple 1 does with 11 links. As a result, Example 1 consumes

2.2 times link bandwidth of the network than Example 2.

This increased bandwidth usage may cause contention in

links and router ports, hence, increasing the latency. Fur-

thermore, Example 1 dissipates more power due to more

operations (buffer read/write, crossbar traversal, and link

traversal) than Example 2. Examples in Figure 1 clearly

show the need for intelligent routing algorithms for mul-

ticasting. Motivated by this problem, we propose a novel

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Source

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Destination

(a) Example 1 (b) Example 2

Figure 1. Different Bandwidth Usage in Mul-
ticasting for Four Destinations: Example 1
requires 11 link traversals, 12 buffer writes,

15 buffer reads, and 15 crossbar traversals,
while Example 2 requires 5 link traversals, 6
buffer writes, 10 buffer reads, and 10 cross-

bar traversals.

routing algorithm called Recursive Partitioning Multicast

(RPM). The basic idea is that a routing path is computed

based on all the destination positions in a network, and the

network is recursively partitioned according to the position

of the current router. The current node computes the out-

put ports using a new partition and its destination list of the

packet, and makes one packet replica for each output port.

The replicated packet has an updated destination list, which

excludes destinations in different delivery directions. This

is required to prevent redundant packet delivery.

Because each intermediate router uses RPM to make a

routing decision, the whole packet traversal path is opti-

mized. In this way, RPM can reduce the whole network link

utilization. As a result RPM improves network bandwidth-

efficiency and decreases power consumption.

Our main contributions are summarized as follows:

• We propose a new routing algorithm, Recursive Parti-

tioning Multicast (RPM), to support multicast traffic in

NOCs.

• We explore the details of the multicast wormhole

router architecture, especially the virtual channel ar-

biter and switch arbiter designs.

• We evaluate different multicast schemes by varying the

traffic pattern in unicast traffic, multicast traffic por-

tion, and the average number of destinations. Addi-

tionally, we show a good scalability of our scheme as

the network size increases.

• Detailed simulation results show that RPM saves 25%

of crossbar and link power and 33% of link utilization

with 50% latency improvement compared with the re-

cently proposed VCTM.

The rest of this paper is organized as follows. We briefly

analyze the recent multicast work in Section 2. We propose

the multicast router design in Section 3. RPM routing is

discussed in Section 4. In Section 5, we describe evaluation

methodology and summarize the simulation results. Finally,

we draw conclusions in Section 6.

2. Related Work

Multicast (one to many) and broadcast (one to all) refer

to the traffic pattern in which the same message is sent from

one source node to a set of destination nodes. A growing

number of parallel applications show the necessity to pro-

vide multicast services. The main problem of multicast is to

determine which path should be used to deliver a message

from one source node to multiple destination nodes. This

path selection process is called multicast routing.

There are several multicast routing schemes. Multiple

unicast is the simplest one. In multiple unicast, routers do

not need to add any extra component and just treat multicast

traffic as unicast traffic. Tree-based multicast routing [13]

is to deliver the message along a common path as far as

possible, then replicate the message and forward the copy

on a different channel bound for a unique set of destination

nodes. The path followed by each copy will further branch

in the same manner until the message reaches every desti-

nation node.



Multicast communication has been studied in distributed

systems [7], local-area networks [1] and multicomputer net-

works [12]. However, supporting multicast in NOCs has

different requirements, because current NOCs have power

and area constraints with high performance requirement.

Most recent work on multicast routing in NOCs is Virtual

Circuit Tree Multicasting [11] and bLBDR [17]. The work

in [11] proposes an efficient multicast and broadcast mech-

anism. However, the main disadvantages of VCTM are

threefold. First, VCTM needs extra storage to maintain the

tree information for multicast, which needs more chip area.

Second, before sending multicast packets, VCTM needs to

send a setup packet to build a tree, introducing multicas-

ting latency. Third, even with the same set of nodes, if

the multicast source node changes, VCTM should build an-

other tree. This makes VCTM not scalable to large net-

works. bLBDR [17] enables the concept of virtualization at

the NOC level and isolates the traffic into different domains.

However, multicasting in bLBDR is based on broadcasting

in a small domain. The problem of this scheme is that it

is hard to provide multicasting if the destination nodes are

spread in different parts of the network, because it is hard to

define a domain to include all the destination nodes.

3. Multicast Router Design

Our Recursive Partitioning Multicast is built on the state-

of-the-art wormhole-switched router. In this section, we

briefly present a general router architecture and propose our

RPM router architecture.

3.1. General Router Architecture

Figure 2 shows a virtual channel (VC) router architec-

ture used in NOCs [6]. The main building blocks are input

buffer, route computation logic, VC allocator, switch allo-

cator, and crossbar. To achieve high performance, the router

processes packets with four pipeline stages, which are rout-

ing computation (RC), VC allocation (VA), switch alloca-

tion (SA), and switch traversal (ST). First, the RC stage di-

rects a packet to a proper output port of the router by looking

up a destination address. Next, the VA stage allocates one

available VC of the downstream router determined by RC.

The SA stage arbitrates input and output ports of the cross-

bar, and then successfully granted flits traverse the crossbar

in the ST stage. Due to the stringent area budget of a chip,

routers use flit level buffering for wormhole-switching as

opposed to packet level buffering. Additionally, buffer is

managed with credit-based flow control, where downstream

routers provide back-pressure to upstream routers to prevent

buffer overflow.

Because the router latency affects the packet delivery

latency significantly, recent router designs use techniques

such as lookahead routing and speculative switch alloca-

Route

Computation

VC

Allocator
Switch

Allocator

VC 1

VC 2

VC n

Input buffers

VC 1

VC 2

VC n

Input buffers

VC 1

VC 2

VC n

Input buffers

VC 1

VC 2

VC n

Input buffers

Input 0

Input 4

Output 0

Output 4

.

.

.

.

.

.

Crossbar switch

Figure 2. Baseline Router Architecture

tion [16], to reduce the number of pipeline stages. Looka-

head routing removes the RC stage from the pipeline by

making a routing decision one hop ahead of the current

router. Speculative switch allocation enables the VA stage

to be performed with the SA stage simultaneously. A sep-

arate switch allocator finds available input and output ports

of the crossbar after the normal switch allocator reserves

them. In this work, our basic wormhole router supports both

techniques, hence having only two stages.

3.2. RPM Router Architecture

In multicast traffic, a packet that has multiple destina-

tions needs to be replicated to several copies in intermedi-

ate routers. To support a multicast function, routers need

a replication component with modification of existing VC

and switch allocators used in unicast routers.

In wormhole switching, a router sends out a flit to the

next router before receiving the rest of the flits in the same

packet. To avoid the storage overhead for replica manage-

ment, replications take place at the ST stage, and the basic

unit is a flit rather than a packet. When the switch alloca-

tion for one flit at the head of selected VC succeeds, the flit

is replicated and sent out to the downstream router. In this

way, current router does not need to hold replicated flits.

Actually, the replication component in our multicast worm-

hole router is only a control logic, thus, it will not consume

much area.

3.2.1. Replication Scheme

Replication schemes are instrumental to improve the perfor-

mance of multicast router. Two replication schemes are pro-

posed in literature: synchronous and asynchronous replica-

tion [4]. Synchronous replication requires multicast packets

to proceed in a lock-step. At a fork, a flit in those packets

can proceed only when all of its target output ports are avail-



able. Any branch replica which is blocked can block other

branch replicas of the same multicast packet. In terms of

this nature, synchronous replication is susceptible to dead-

lock. In other words, if two multicast packets holding an

output port request output ports reserved by each other, nei-

ther of them can advance. They will block each other for-

ever. Thus, synchronous replication needs additional feed-

back architecture [4] to confirm that flits are processed in

a lock-step. However, in asynchronous replication, branch

replicas will not block each other, since each of them pro-

ceeds independently.

Asynchronous replication is preferred for a practical im-

plementation due to the following reasons. First, it does not

need additional feedback architecture. Second, each replica

is independent of others which reduces individual packet la-

tency. Third, there is no potential deadlock inside the router.

For the above reasons, we select asynchronous replication

scheme in this paper.

3.2.2. Virtual Channel and Switch Allocator Design

The basic function of VC and switch allocator is to do arbi-

tration among different requesters, which request the same

resource, and map those requests to free resources.

In VC allocation, the unit of operation is a packet. We

need to maintain the status of each VC to keep track of how

far the packet has proceeded in a router. Right after the tail

flit is sent to the SA stage, the VC status information is to

be flushed and this VC is available for other packets. Unlike

unicast, maintaining the status information for a multicast

packet is more complicated. One multicast packet needs to

reserve multiple output ports. Some ports may be free while

others may not. As we are using asynchronous scheme, if

one replica gets a free VC from its selected output port, that

replica can go to the SA stage while the failed replicas to-

ward other branches keep requesting in the following cycles

until they pass that stage. Finally, the router will flush the

VC status when the last replica’s tail flit departs the input

buffer.

For switch allocation, we choose two-stage arbiter. The

first stage is doing arbitration among different VCs which

belong to the same physical input port. This stage is the

same as unicast router. The second stage is doing arbitration

among different winning VCs from the first stage which go

for the same output port. Differences exist between a uni-

cast router and a multicast router. In unicast, one input VC

has only one candidate output port, so its request goes for

only one second-stage arbiter. However in multicast, two

or more output ports can be requested by the same winning

VC, and its requests should go to several different second-

stage arbiter. Even more, some requests may succeed and

some may fail. In this scenario, we continuously follow the

asynchronous scheme. The successful request can make a

flit copy and transmit it to the downstream router. The failed

ones are waiting for the next arbitration chance.

In our router design, we use the round-robin arbiter in

both VC and switch allocation. We do not assign any pri-

ority between multicast packets and unicast packets. We

believe that if we use more intelligent priority arbitration

in this part, the performance of the whole network can be

improved further. This work is left for the future.

3.2.3. Destination List Management

The header of a packet carries the addresses of its destina-

tion nodes. Several approaches have been made to find out

an efficient way to put multiple destination addresses into

the header such as all-destination encoding, bit string en-

coding, and multiple-region broadcast encoding [3]. The

all-destination scheme puts each destination node identifier

into the header. This approach is good when the number

of destinations is small but it introduces a significant over-

head when the number becomes large. Bit string encoding

uses a bit-vector where each bit represents one destination

node. This scheme performs well when the number of des-

tinations is large. In the multiple-region broadcast encoding

scheme, the header carries ranges of destination addresses:

the beginning and ending addresses of regions. The mes-

sage is, then, sent to all addresses in those ranges. The main

disadvantage of this scheme is that it is expensive to decode

addresses. Further efforts have been made to minimize the

header length and the header processing time.

Bit string encoding is used in our work. Figure 3 de-

picts an example of a multicast and its corresponding packet

header. The packet header contains a bit string which is of

length of the number of nodes in the network. A bit in this

string corresponds to a node and setting a bit means that the

node is one of the destinations. Since the destination infor-

mation is carried in the packet header, there is no need to

maintain tables in the intermediate routers for routing com-

putation, thus we can save chip area and time to setup those

tables. As the network size grows, the number of bits in-

creases only linearly.

Using the bit string encoding, the intermediate router has

to generate output bit string (s) to avoid redundant replica-

tion. When a packet reaches a destination, the bit corre-

sponding to that destination node must be reset. Otherwise,

the next router which receives this packet will send it back

to the previous one. At a fork, the destination list must be

exclusively divided into subsets such that packets forwarded

to different directions should not meet at the same node in

the future. This destination list management is done when

packets are replicated at the ST stage. Detailed discussion

with examples can be found in the following section.



Figure 3. Packet Header Example

4. Recursive Partitioning Multicast (RPM)

In this section, we propose the RPM routing algorithm,

achieving deadlock freedom as well as bandwidth effi-

ciency.

4.1. RPM Routing

Our RPM routing algorithm is built on the multicast

router hardware explained in Section 3. Unlike VCTM,

RPM do not maintain any lookup table for multicast in each

router. RPM directly sends out multicast packets without

sending a unicast+setup packet to each destination first. In

other words, RPM does not need to build a tree structure in

each intermediate router before sending the real multicast

data packet. However, in each multicast packet header, we

need one field to indicate the destination nodes’ positions.

In RPM, the routing decision is made based on the cur-

rent network partitioning. A source node divides the whole

network into at most eight parts according to its position.

Then destination nodes in a multicast packet belong to one

of these parts. In general case, if the source node is in the

center of the network, all the eight parts have at least one

node. However, if the source node is located in the corner

of the network, some parts may be empty. Taking a (4×4)

mesh network as an example, partitioning is defined as Fig-

ure 4. Since the source node, which is in the center of the

network, always has at least one node in each part, we nor-

mally choose the center node as our multicast source node

in the following discussion.

Normally, at the RC stage, the input of routing computa-

tion component is a destination list from the packet header,

and the output is an output port identifier. However, when

the packet is a multicast packet, the output port identifier

may not be unique. One packet can go for different out-

put ports simultaneously. Some destination nodes can be

reached through more than one directions. For example, one

destination node is in the northeast direction of the source

node. Then north and east directions are two routing deci-

012

3

4 5 6

7

7

5 6

Three Parts (5, 6, 7)

7

1

0

Three Parts (0, 1, 7)

3

54

Three Parts (3, 4, 5)

1

3

2

Three Parts (1, 2, 3)

Source node

Eight Parts

N

S

EW

Figure 4. Network Partitioning Based on
Source Node Positions

sion candidates for that node. Only one direction we can

choose for that destination node, since we want to achieve

bandwidth efficiency in our multicast routing. The key point

is how we can minimize packet replication times, in other

words, maximizing the reusability of each replica. To avoid

redundant replication, we define replication priority rules

for each direction.

Basic priority rules (Figure 5(a))

• North direction has a higher priority than East to reach

destination nodes in Part 0 (Northeast Part).

• West direction has a higher priority than North to reach

destination nodes in Part 2 (Northwest Part).

• South direction has a higher priority than West to reach

destination nodes in Part 4 (Southwest Part).

• East direction has a higher priority than South to reach

destination nodes in Part 6 (Southeast Part).

However, only with the above basic rules, in some cases,

we still cannot maximize the reusability of some replicas.

To make the replication point selection more bandwidth-

efficient, besides the above basic rules, we propose addi-

tional rules.

Optimized priority rules

• If there are destination nodes in both Part 0 (Northeast

Part) and 2 (Northwest Part), North direction replica-

tion will be used for both of them. The same rule is

applied to South direction, as in Figure 5(b).

• Part 1 and 2 have destination nodes, but Part 3 does

not have any. In this case North direction replication,

not West, will be used for destination nodes in Part

2. The same rule is applied to South direction, as in

Figures 5(c) and (d).



012

3

4 5 6

7

N

E

S
W

012

3

4 5 6

7

012

3

4 5 6

7

012

3

4 6

7

5

(a) (b)

(c) (d)

Source Destination

Figure 5. Basic Routing Priority

Besides the above replication priority for each direction,

when replicated packets are sent out at the ST stage, current

router will modify the original packet header, deleting use-

less destinations from the old destination list. After this the

packet replica for each direction only has a subset of desti-

nation nodes in its packet header, which facilitates that this

replica only sent to the subset destination nodes. We can

build the original destination list from all the subset desti-

nation lists, and there are no redundant nodes in each subset

list. The pseudo-code for the operation of the routing com-

putation is in Table 1 and its hardware implementation is

shown in Figure 6. The RPM logic consists of two steps. At

the first step, the partitioning logic finds out which parts the

packet has to be sent to. It takes the destination information

(bit-encoded destinations) from the header as input and pro-

duces the output (Part 0, Part 1, ... , and Part 7) according

to the current location. The second step is the core of the

routing logic. With the help of the intermediate result from

the partitioning logic, the decision on output ports (N, E, S,

or W) is made in this step.

To make it more clear, we use the example in Figure 7 to

walk through the process of sending a multicast packet to all

destinations. When the network interface in Node 9 initiates

one multicast packet, the routing computation component

decodes the destination list in the packet header (current

destination nodes are 0, 2, 3, 13, and 15). At step 1, accord-

ing to Node 9’s position, the destination nodes are in four

parts (0, 2, 5, and 6). Based on the routing priority rules,

Node 9 only needs to make one copy of the packet, and

sends original packet to North and the new copy to South.

In North direction, the destination list only contains Nodes

0, 2, and 3. In South direction, the destination list only has

partitioning 

logic

Part 0

N

E

S

W

a0

a1

a2

an-1

.

.

.

a0 ~ an-1: node address

Part 0 ~ Part 7: partitionPart 1

Part 2

Part 3

Part 4

Part 5

Part 6

Part 7

bit-encoded

destinations

Figure 6. Hardware Implementation of Rout-
ing Logic

if IN(dest,7) OR (IN(dest,6) AND !IN(dest,5) AND !IN(dest,4)

then ADD(EAST)

if IN(dest,1) OR (IN(dest,0) AND (!IN(dest,7) OR !IN(dest,4)

AND IN(dest,6))) OR (IN(dest,0) AND IN(dest, 2))

then ADD(NORTH)

if IN(dest,3) OR (IN(dest,2) AND !IN(dest,1) AND !IN(dest,0))

then ADD(WEST)

if IN(dest,5) OR (IN(dest,4) AND (!IN(dest,3) OR !IN(dest,0)

AND IN(dest,4))) OR (IN(dest,4) AND IN(dest,6))

then Add(SOUTH)

IN(dest, n): at least one destination node is in part n.

ADD(direction): add direction as candidate.

Table 1. Pseudo-Code for Routing Computa-
tion

Nodes 13 and 15.

At step 2, one replica arrives at Node 5. Now the new

partitioning is based on Node 5’s position. Node 5 can only

see three destination nodes (0, 2, and 3) and they are in

Part 0 and 2. Node 5 does not need to do any replication

and just forward the same packet to Node 1 in its North

direction. Another replica arrives at Node 13. Unlike Node

5, Node 13 should make a copy. One goes to an ejection

port since Node 13 itself is a destination node and the other

is forwarded to Node 14 with only Node 15 in its destination

list.

At step 3, Node 1 finds that Node 0 lies in Part 3 and that

Nodes 2 and 3 lie in Part 7. So Node 1 makes one new copy.

The original packet goes to West direction and the new copy

goes to East. This recursive partitioning continues at step 4

and 5. Finally, all the destination nodes receive the packet.



0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Step 1 Step 2 Step 3

Current node

Destination node

Ejection node

s
0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Step 5Step 4

Figure 7. Multicast Packet Traveling Example

4.2. Deadlock Avoidance

Deadlock freedom is an important feature for every rout-

ing algorithm. The routing algorithm explained so far is

likely to produce deadlock since no turn restriction is de-

fined. Without any turn restriction, flows in the same net-

work may cause a cyclic dependency, which freezes move-

ment of all packets in a cycle. To guarantee deadlock free-

dom, a turn restriction must be given. Packets in different

paths do not generate any cycle in the network.

Most of deadlock avoidance techniques are designed to

remove cyclic dependency as in [5]. Virtual network (VN)

is introduced to make writing a deadlock-free algorithm

easy by separating a physical network into multiple virtual

networks; each of those networks does not produce cycles

by itself. It has been extensively explored in previous in-

terconnection research in [2]. Taking a 2D mesh topol-

ogy as an example, two VNs (VN0 and VN1) lie in the

same physical network and are used as a pair. VN0 does

not allow packets to turn from a current location to North

whereas VN1 does not allow packets to turn to South. Us-

ing deadlock-free VNs makes no cycle in a network either

clockwise or counterclockwise since some turns to form a

cycle are prohibited.

Once the whole network is divided into two VNs, pack-

ets also must be distinguished by which VN they should

follow. One bit in the packet header is used to indicate VN

identifier as shown in Figure 3. A source router where the

multicast is initiated defines this bit at the RC stage. If des-

tinations lie in the upside of the source router, the packet

goes through VN0, whereas if destinations are in the down-

side, the packet takes VN1. Note that if destinations lie in

both sides, the source node makes two copies, one for up

and the other for down. Intermediate routers never change

the VN bit and only forward the packet to the same VN in

which the packet has traveled.

5. Experimental Evaluation

We evaluated RPM with different synthetic multicast

workloads, comparing it with VCTM. We also examined

RPM’s sensitivity to a variety of network parameters.

5.1. Methodology

We use a cycle-accurate network simulator that mod-

els all router pipeline delays and wire latencies. We use

Orion [19] to estimate dynamic and static power consump-

tion for buffer, crossbar, arbiter, and link with 50% switch-

ing activity and 1V supply voltage in 65nm technology. We

assume a clock frequency of 4GHz for the router and link.

For a (8×8) mesh network, the area of one tile is 2mm x

2mm, resulting in a chip size as 256mm
2. We model a

link as 128 parallel wires, which takes advantage of abun-

dant metal resources provided by future multi-layer inter-

connect. We consider network sizes of 36, 64, 100, and

256 terminals. We use 2-stage router and synthetic work-

loads for performance evaluation. On top of Uniform Ran-

dom (UR), Bit Complement (BC) and Transpose (TP) uni-

cast packets, our synthetic workloads have multicast pack-

ets. For multicast packets, the destination numbers and po-

sitions are uniformly distributed, while unicast packet’s des-

tination positions are determined by three patterns (UR, BC,

and TP). We also control the percentage of multicast pack-

ets in whole packets. Table 2 summarizes the simulated

configurations, along with the variations used in the sensi-

tivity study.



Characteristic Baseline Variations

Topology 8×8 Mesh 6×6 Mesh, 10×10 Mesh, 16×16 Mesh

Routing RPM and VCTM –

Virtual Channels/Port 4 –

Virtual Channel Depth 4 –

Packet Length(flits) 4 –

Unicast Traffic Pattern Uniform Random Bit Complement, Transpose

Multicast Packet Portion 10% 5%, 20%, 40%, 80%

Multicast Destination Number 0-16 (uniformly distributed) 0-(4, 8, 32) (uniformly distributed)

Simulation Warmup Cycles 10,000 –

Total Simulation Cycles 20,000 –

Table 2. Network Configuration and Variations

5.2. Performance

Figure 8 summarizes the simulation results of an (8×8)

network with the three synthetic traffic patterns. Mul uni-

cast means sending multicast packet as multiple unicast

packet, one by one. VCTM (80%) means 80% of entries in

the virtual circuit table can be reused by different multicast

packets. RPM has the lowest average packet latency, 50%

of that of VCTM at low loads and almost 25% at high loads.

When we look at the network saturation points, RPM satu-

rates at higher loads, 20% higher than VCTM, which means

RPM can provide high throughput.

The results are consistent with our expectations. The

performance improvement comes from two main reasons:

First, since a multicast packet in RPM carries a destina-

tion list in the packet header, we do not need setup packets

to each destination node to construct a tree. This reduces

the actual number of injected packets in the network and

also gets rid of the setup delay. Second, the routing paths

generated by RPM do not strictly follow a dimension or-

der. According to our description in Section 4, RPM selects

the routing path based on global distribution of destination

nodes. This feature can provide more diverse paths than

VCTM, which means links in the whole network can be

fairly used with less contention.

Also we observe that when the rate of virtual circuit ta-

ble reusability decreases (more than 30% degradation), the

performance of VCTM decreases much. This indicates the

performance of VCTM is sensitive to the reusability of vir-

tual circuit table. To keep high reusability in a large net-

work, VCTM needs a big table which consumes larg chip

area.

5.3. Power

Figure 9 shows the power consumption of the two

schemes. We assume 80% entries of virtual circuit table

reusable for VCTM. Although we ignore the power con-

sumption of the virtual circuit table for VCTM, we ob-

serve that RPM is more power efficient than VCTM. Before

network is saturated, for example load 0.1, RPM saves al-

most 60% power consumption compared with VCTM. Be-

cause we use the same network configurations in RPM and

VCTM, the static power consumption is the same but dy-

namic power consumption is different. Figure 10 summa-

rizes the dynamic power consumption of each component

in a router. Crossbar power and link power are dominant.

Because RPM uses less crossbar and link resources than

VCTM, it saves 25% crossbar and link power. The same

conclusion can be drawn from Figure 11, which shows the

average link utilization of RPM and VCTM. RPM saves al-

most 33% of link utilization compared with VCTM (80%).

0

5

10

15

20
R

P
M

V
C

T
M

R
P

M

V
C

T
M

R
P

M

V
C

T
M

R
P

M

V
C

T
M

R
P

M

V
C

T
M

R
P

M
V

C
T

M

R
P

M
V

C
T

M

R
P

M

V
C

T
M

R
P

M

V
C

T
M

R
P

M

V
C

T
M

R
P

M

V
C

T
M

R
P

M
V

C
T

M

R
P

M
V

C
T

M

R
P

M

V
C

T
M

R
P

M

V
C

T
M

R
P

M

V
C

T
M

R
P

M

V
C

T
M

R
P

M
V

C
T

M

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Injection Rate(flits/cycle/core)

T
o

ta
l 
P

o
w

e
r(

W
)

Dynamic Power Static Power

a

Figure 9. Power Consumption (Dynamic and

Static) in an (8×8) Mesh Network. (10% mul-
ticast traffic, average 8 destinations)

0

2

4

6

8

10

12

R
P

M
V

C
T

M
R

P
M

V
C

T
M

R
P

M
V

C
T

M
R

P
M

V
C

T
M

R
P

M
V

C
T

M
R

P
M

V
C

T
M

R
P

M
V

C
T

M
R

P
M

V
C

T
M

R
P

M
V

C
T

M
R

P
M

V
C

T
M

R
P

M
V

C
T

M
R

P
M

V
C

T
M

R
P

M
V

C
T

M
R

P
M

V
C

T
M

R
P

M
V

C
T

M
R

P
M

V
C

T
M

R
P

M
V

C
T

M
R

P
M

V
C

T
M

0.010.020.030.040.050.060.070.080.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Injection Rate(flits/cycle/core)

D
y
n

a
m

ic
 P

o
w

e
r(

W
)

Buffer VC Arbiter SW Arbiter Xbar Link

Figure 10. Dynamic Power Consumption in
an (8×8) Mesh Network. (10% multicast traf-
fic, average 8 destinations)



0

20

40

60

80

100

120

0.01 0.03 0.05 0.07 0.09 0.15

Injection rate(flits/cycle/core)

L
a
te
n
c
y
(c
y
c
le
)

RPM Mul unicast VCTM(20%)

VCTM(40%) VCTM(80%)

0

20

40

60

80

100

120

0.01 0.03 0.05 0.07 0.09 0.15

Injection rate(flits/cycle/core)

L
a
te
n
c
y
(c
y
c
le
)

RPM Mul unicast VCTM (20%)

VCTM (40%) VCTM (80%)

0
20

40
60

80
100

120

0.01 0.03 0.05 0.07 0.09 0.15

Injection rate(flits/cycle/core)

L
a
te
n
c
y
(c
y
c
le
)

RPM Mul unicast VCTM (20%)

VCTM (40%) VCTM (80%)

(a) Uniform Random (b) Bit Complement (c) Transpose

Figure 8. Packet Latency with Three Synthetic Traffic Patterns in an (8×8) Mesh Network. (10%

multicast traffic, average 8 destinations)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

.

0

1

0

.

0

2

0

.

0

3

0

.

0

4

0

.

0

5

0

.

0

6

0

.

0

7

0

.

0

8

0

.

0

9

0

.

1

0

.

1

5

0

.

2

0

.

2

5

0

.

3

0

.

3

5

0

.

4

0

.

4

5

0

.

5

Injection Rate(flits/cycle/core)

L
i
n
k
 
U
t
i
l
i
z
a
t
i
o
n
(
o
p
/
c
y
c
l
e
)

RPM VCTM(20%) VCTM(40%) VCTM(80%)

Figure 11. Link Utilization in an (8×8) Mesh
Network. (10% multicast traffic, average 8
destinations)

5.4. Scalability

Previous work [11] shows that different applications

have different portions of multicast traffic, such as 5% with

directory protocol, 5.5% with token coherence and more

than 10% with operand network. Figure 12 summarizes the

performance’s change with the increasing portion of mul-

ticast traffic. When the multicast portion is beyond 20%,

VCTM’s performance decreases very sharply. However,

from 5% to 40% portion, RPM’s performance stays almost

stable with small degradation. We also observe that when

the portion of multicast traffic is less than 10%, VCTM

shows better performance than RPM. That is because when

the number of multicast packets is small, VCTM does not

need to rebuild many trees and the tree setup overhead is

marginal. Furthermore, as RPM uses two VNs to avoid

deadlock, buffer resource (the number of VCs) is half of

that in VCTM. On the contrary, we observe that when the

portion of multicast traffic is above 10%, the performance

of RPM is better than VCTM. Because tree setup overhead

becomes dominant, the disadvantage of VCTM appears ob-

viously.

Figure 13 shows the performance of RPM and VCTM

0

50

100

5% 10% 20% 40% 80%

Portion of multicast traffic
L
a
te
n
c
y
(c
y
c
le
s
)

RPM VCTM

Figure 12. Scalability to Multicast Portion in

an (8×8) Mesh Network. (average 8 destina-
tions)

with different network sizes. The same trend is ob-

served. As network size becomes bigger, the performance

of VCTM degrades much worse than RPM. Building more

trees for VCTM results in more setup packets. RPM gets

rid of maintaining different tree structure in the router. We

observe that from (6×6) mesh to (16×16) mesh, the per-

formance of RPM is more stable than VCTM. The average

packet latency of RPM is almost 50% of VCTM.

0

50

100

6×6 8×8 10×10 16×16

Network size

L
a
te
n
c
y
(c
y
c
le
s
)

RPM VCTM

a

Figure 13. Scalability to Network Size. (10%
multicast traffic, average 8 destinations)

Another simulation is done based on multicast destina-

tion numbers. The trend is similar to previous work. From



the above scalability study, we can see that VCTM shows

good performance in low multicast traffic portion, small

network size, and number of destinations. However, when

these three metrics become bigger, the tree maintenance

overhead becomes dominant. Compared with VCTM, our

RPM scheme is more scalable.

0

50

100

4 8 16 32

Max. number of destinations

L
a
te
n
c
y
(c
y
c
le
s
)

RPM VCTM

Figure 14. Scalability to Number of Destina-
tions in an (8×8) Mesh Network. (10% multi-

cast traffic)

6. Conclusions

The prevalent use of NOCs in current multi-core sys-

tems indicates that it is important for NOCs to support mul-

ticast traffic. The key problem in supporting multicast is

when and where to replicate multicast packets. In this pa-

per, we propose Recursive Partitioning Multicast (RPM),

which intelligently selects proper replication points for mul-

ticast packets based on the global distribution of destination

nodes. We explore the details of the multicast wormhole

router architecture, especially the virtual channel arbiter and

switch arbiter designs. We study the scalability of different

multicast schemes, based on three characteristics of mul-

ticast traffic workload. Detailed simulation results show

that compared with previous multicast schemes, RPM saves

25% of crossbar and link power and 33% of link utilization

with, and improves 50% of latency.

Due to the current simulation environment, we evaluate

different multicast schemes only using synthetic traffic pat-

terns. We plan to integrate our design into a full-system

simulator to evaluate the performance of the overall sys-

tem.

References

[1] J. Chang and N. F. Maxemchuk. Reliable broadcast pro-

tocols. ACM Transactions on Computer Systems (TOCS),

2(3):251–273, 1984.

[2] M. Chaudhuri and M. Heinrich. Exploring Virtual Net-

work Selection Algorithms in DSM Cache Coherence Pro-

tocols. IEEE Trans. on Parallel and Distributed Systems,

15(8):699–712, 2004.

[3] C. Chiang and L. Ni. Multi-address encoding for multicast.

In Proceedings of the Workshop on Parallel Comp. Routing

and Communication, 1994.
[4] C. M. Chiang and L. M. Ni. Deadlock free Multi-Head

Wormhole Routing. In Proceedings of The First High per-

formance Computing-Asia, 1995.
[5] W. J. Dally and C. L. Seitz. Deadlock-Free Message Routing

in Multiprocessor Interconnection Networks. IEEE Trans.

Computers, 36(5), 1987.
[6] W. J. Dally and B. Towles. Principles and Practices of In-

terconnection Networks. Morgan Kaufmann, 2003.
[7] H. Garcia-Molina and A. M. Spauster. Message ordering in

a multicast environment. In Proceedings of the 9th Interna-

tional Conference on Distributed Computing System, pages

354–361, 1989.
[8] P. Gratz, K. Sankaralingam, H. Hanson, P. Shivakumar,

R. G. McDonald, S. W. Keckler, and D. Burger. Implemen-

tation and Evaluation of a Dynamically Routed Processor

Operand Network. In Proceedings of NOCS, pages 7–17,

2007.
[9] R. Ho, K. Mai, and M. Horowitz. The Future of Wires. In

Proceedings of the IEEE, pages 490–504, 2001.
[10] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar.

A 5-GHz Mesh Interconnect for a Teraflops Processor. IEEE

Micro, 27(5):51–61, 2007.
[11] N. E. Jerger, L.-S. Peh, and M. H. Lipasti. Virtual Circuit

Tree Multicasting: A Case for On-chip Hardware Multicast

Support. In Proceedings of ISCA, 2007.
[12] X. Lin and L. M. Ni. Multicast communication in multi-

computer networks. IEEE Transactions on Parallel and Dis-

tributed Systems, 4:1105–1117, 1993.
[13] M. P. Malumbres, J. Duato, and J. Torrellas. An efficient im-

plementation of tree-based multicast routing for distributed

shared-memory multiprocessors. In Proceedings of IPDPS,

1996.
[14] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Coher-

ence: Decoupling Performance and Correctness. In ISCA,

pages 182–193, 2003.
[15] J. D. Owens, W. J. Dally, R. Ho, D. N. Jayasimha, S. W.

Keckler, and L.-S. Peh. Research Challenges for On-

Chip Interconnection Networks. IEEE Micro, 27(5):96–108,

2007.
[16] L.-S. Peh and W. J. Dally. A Delay Model and Specula-

tive Architecture for Pipelined Routers. In Proceedings of

HPCA, pages 255–266, 2001.
[17] S. Rodrigo, J. Flich, J. Duato, and M. Hummel. Efficient

Unicast and Multicast Support for CMPs. In Proceedings of

MICRO-41, 2008.
[18] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal.

Scalar Operand Networks: On-Chip Interconnect for ILP in

Partitioned Architecture. In Proceedings of HPCA, pages

341–353, 2003.
[19] H. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: a Power-

Performance Simulator for Interconnection Networks. In

Proceedings of MICRO, pages 294–305, 2002.
[20] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,

C. Ramey, M. Mattina, C.-C. Miao, J. F. B. III, and A. Agar-

wal. On-Chip Interconnection Architecture of the Tile Pro-

cessor. IEEE Micro, 27(5):15–31, 2007.


