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A Generalized Processor Sharing Approach
to Flow Control in Integrated Services

Networks: The Multiple Node Case
Abhay K. Parekh, Membet-, IEEE, and Robert G. Gal lager, Fellow, lEEE

Abstract—Worst-case bounds on delay and backlog are derived
for leaky bucket constrained sessions in arbitrary topology net-
works of Generalized Processor Sharing (GPS) [10] servers. The
inherent flexibility of the service discipline is exploited to analyze
broad classes of networks. When only a subset of the sessions
are leaky bucket constrained, we give succinct per-session bounds
that are independent of the behavior of the other sessions and also
of the network topology. However, these bounds are only shown
to hold for each session that is guaranteed a backlog clearing rate
that exceeds the token arrival rate of its leaky bucket.

A much broader class of networks, called Consistent Relative
Session Treatment (CRST) networks is analyzed for the case in
which all of the sessions are leaky bucket constrained. First, an
algorithm is presented that characterizes the internal traffic in
terms of average rate and burstiness, and it is shown that all
CRST networks are stable. Next, a method is presented that yields
bounds on session delay and backlog given this internal traffic
characterization. The hnks of a route are treated collectively,
yielding tighter bounds than those that result from adding the
worst-case delays (backlogs) at each of the links in the route.
The bounds on delay and backlog for each session are efficiently
computed from a universal service curve, and it is shown that
these bounds are achieved by “staggered” greedy regimes when
an independent sessions relaxation holds. Propagation delay is also
incorporated into the model.

Finally, the analysis of arbitrary topology GPS networks is
related to Packet GPS networks (PGPS). Tbe PGPS scheme was
first proposed by Demers, Shenker and Keshav [5] under the
name of Weighted Fair Queueing. For small packet sizes, the
behavior of the two schemes is seen to be virtually identical, and
the effectiveness of PGPS in guaranteeing worst-case session delay
is demonstrated under certain assignments.

1. INTRODUCTlON

T HE problem of providing performance guarantees to the
diverse users of an integrated services network is central

to supporting real-time services such as voice and video. This

problem is especially difficult in the presence of congestion,
when it is important to use the link bandwidth efficiently. In
[ 10] we proposed the combination of leaky bucket admission
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control and a work-conserving packet service discipline at
the nodes of the network, to accommodate the delay and
throughput requirements of a wide range of co-existing ses-
sions. The service discipline is based on Generalized Proees$or
Sharing (GPS) and was first proposed in [5] under the name of
Weighted Fair Queueing (and which is discussed extensively

in [10]). The emphasis in [5] was on treating the users equally;

our focus is on the inherent flexibility of the mechanism, and
on providing good network-wide per-session bounds on worst-
case delay and backlog. In [10] we analyzed single node
systems; here we extend this analysis to arbitrary topology
networks of GPS servers, and relate the GPS results to
networks in which the nodes follow the Packet GPS (PGPS)
service discipline.

A GPS server, m, that serves N sessions on a link is
characterized by IV positive real numbers, d~, 4T, ..., @fi.
These numbers denote the relative amount of service to each
session in the sense that if S~(~, t) is defined as the amount
of session i traffic served by server m during an interval (-r. t],
then

(1)

for any session i that is continuously backlogged in the interval
[-r, f]. A session is backlogged at time t if a positive amount of

that session’s traffic is queued at time t. Tbus (1) is satisfied
with equality for two sessions z and j that are both backlogged

during the interval [r. t].
Note from (1) that whenever session i is backlogged it is

guaranteed a minimum service rate of

(2)

where r m is the rate of the link represented by node m. This

rate is called the session z backlog clearing rare since a session
i backlog of size q is served in at most ~ time units.

We assume a virtual circuit, connecti~n-based packet net-
work, and analyze the performance of leaky bucket constrained
sessions. The session i leaky bucket is characterized by a token
bucket of size o, and a token arrival rate of Pi. The amount
of session i traffic entering the network during any interval
(~, t] is defined to be Ai(~, t); if session i is leaky bucket

constrained, then

(3)
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As in [10], we say that A1 conforms to (ai, p,), or Az x
(oi, pi). For details on how to accommodate peak rate con-

straints as well, see [9]. The constraint (3) is identical to the
one suggested by Cruz [3].

The main question we address in this paper is the following:

Given a network with the values of the server parameters fixed
and a set of leaky bucket constrained sessions, what is the
worst-case session delay and backlog for each of the sessions
in this set?

Our approach is tailored to provide bounds for the GPS
and PGPS service disciplines by exploiting properties derived
in [10]. We develop a methodology that applies to arbitrary
topology networks. For a given session, our bounds consider
the route of a session as whole, which allows for much tighter
bounds than achievable by adding worst-case delays at each
hop of the route. It is important to obtain such bounds for
two reasons. First, the bounds can form the basis of delay
guarantees to real-time traffic, and second, the generality of
the GPS service discipline allows one to examine the behavior
of the network (in the worst case) under a wide range of
strategies for supporting multimedia traffic. These strategies

translate into the assignments of the the GPS servers (the ~i ‘s)
and the parameters of the leaky bucket.

Similar issues have been addressed by the recent and
important work in [4], [7], [1], [12]. The pioneering work
of Cruz in evaluating multihop bounds [4] has been most
useful to us. However, his results do not hold for nonacyclic
network topologies and do not consider the sewice disciplines
of interest, GPS and PGPS. Also, the bounds derived do
not incorporate the inter-hop dependencies involved along a
given session’s route and are computed by adding worst-case

delays at each hop. In [7], [1], [12], bounds are computed for
multihop networks under distributional constraints on the input

traffic. There is much merit to this approach, but most of the
bounds obtained prior to our work have been shown only for
acyclic networks, and further the methodology adopted makes
it difficult to distinguish among the performance of various
service disciplines. Thus for specific service disciplines, the
bounds obtained can be quite weak. The bounds are obtained

by essentially adding the worst-case bounds for each hop
considered in isolation (in [1] Holder’s inequality is used),
an approach which may result in loose bounds when service
disciplines such as GPS and PGPS are employed. Promising
recent work by Yaron and Sidi, [13], has extended the results of
this paper to obtain bounds for the EBB distributional model
of [12].

In Section H we set up our model of the network and
specify notation, Then the notions of network backlog and

delay are discussed and graphically interpreted. Section IV
contains succinct per-session bounds for the leaky bucket
constrained sessions of a network, which are independent of
the topology and of the behavior of other sessions. Next,
we treat the case when all of the sessions are leaky bucket

constrained. An important tool for the analysis, the All-Greedy
bound, is presented in Section VI. In Section VII, an algorithm
is derived that enables a ch~acterization of internal traffic in
terms of burstiness, average and peak rates for a broad class of

server allocations called Consistent Relative Session Treatment

(CRST) assignments, This class of assignments is flexible
enough to accommodate a wide variety of session delay
constraints. In Section VIII, we show that worst-case session
delay and backlog can be bounded from an easily computable

universal service curve. This is accomplished even though
diflerent worst-case regimes may maximize delay and backlog
for a given session. The bounds are shown to be tight under
an independent sessions assumption, when the traffic follows
a staggered greedy regime. Propagation delay is included in
Section IX. In Section X our results are related to the case of
PGPS networks. This extension is important since GPS is not

a realizable service discipline, and its relationship (in terms of
performance) to PGPS in arbitrary topology networks must be

established. Conclusions are in Section XI.

II. THE NETWORK MODEL

The network is modeled as a directed graph in which nodes
represent switches and arcs represent links. A route is a path
in the graph, and the path taken by session i is defined as
P(i). Let P(i, k) be the Itth node in P(i), and Ki be the total
number of nodes in P(i). The rate of the link associated with
server m k denoted by rrn.

The amount of session i traffic that enters the network in
the interval [~, t] is given by Aa(~, t). Let S~k)(r, t), k =
1,. ... Ki, be the amount of session i traffic served by node

P(i, k) in the interval [I-,t]. Thus, S~K’) is the traffic that
leaves the network. We characterize the service function by

‘k) and pi so that“pseudo” leaky bucket parameters Oa

s!k)(T,t)<ay +pi(t – T), vt 27-20,z (4)

i e S(k) N (o~k), pz)...,1
Often, we will analyze what happens at a particular server,

m. In this case the notation described above becomes overly
cumbersome. Define l(m) to be the set of sessions that are
served by server m. For every session z c l(m), let the arrival
function into that node be described by AT - (a~, pa) and
the departure function be described by S,rn * (ml~’”ut, pi ). For

example, at server O in Figure 1: A: = Ao, A! = S:), and

‘1) l%us when k = P(i, j) for a particular session, Z,A~=S3 .

the functions S$~) and S$ are identical.

HI. NETWORK DELAY,BACKLOO AND STABIIJTY

In this section we extend the notions of session z delay and
backlog introduced in [10] to the multiple node case. Given
a set of arrival functions for every session in the network,

define Q~k) (t) to be the session i backlog at node P(i, k) at

time t. Similarly, let Q~ (t) be the session z backlog at node
m E ~(i). Thus, if m = P(i, k), then

Q(k)(t)= Q~(t) = A~(O, t) – S~(O, t).z (5)

Define the total session i backlog at time t to be

Q,(t) = ~ Q;k)(t).
k= I

(6)
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Fig. 1, A four sewer network. ~edemultiplexer works instantaneously.

network. We are interested in computing the maximum delay

over all time, and over all arrival functions that are consistent
with (3) for i = 1.2, . .. . N. Let D: be the maximum delay
for session i. Then

D: = max DC(T).
(A,rnYAN) T20

The backlogs at every node in F’(z) can be determined from
Fig. 2 as shown. Define the maximum backlog for session i,

Q::

Q; = ~A,rnax4N)~~~Qi(~)>.
Note that Ai contains an impulse at time a; As in [10], we

adopt the convention that the arrival functions are continuous
from the left, so that A,(O, a) = o and AZ(O, a+) = 6.

Define the utilization of server m to be

(7)

A network is defined to be stable if D: < cc for all sessions

i. In most of our analysis we will show stability under
the assumption that u“’ < 1 at every server m. Allowing
utilizations of greater than 1 would permit backlogs and delays
to build up unfoundedly, and we have shown elsewhere ([9])
that permitting urn = 1 at each server m can result in problems
as well.

bi
t .@,t) The minimum session z backlog clearing rate along its route

4C----------

*
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./’
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Fig. 2. An example of session i flow when 1(, = 2. The first figure shows
how session i traffic progresses through the nodes of its route. Notice that
the arrival function to node 2 is the session i service function of node 1.
The second figure shows how the backlog and delay can be measured and
illustrates the defirsilions of Section 111.

Thus, Q,(t) is the amount of session i traffic buffered in the
network at time t. By assumption,

Ql(t)=O, Vt~O

for every session i. Also, let Di (t) be the time spent in the
network by a session z bit that arrives at time t. Fig, 2 shows
how to represent the notions of backlog and delay graphically.

We see that D, (T-) is the horizontal distance between

‘k’ )(O t) at the ordinate value ofthe curves Ai(O$ t) and Si

.4i (0. T). Clearly, Di (~ ) depends on the arrival functions
Al,..., AN, where IV is the total number of sessions in the

(8)

When gi > pi we define session i to be locally stable. Note
that if ~~ = p, for all z and m E P(z) then each session z
is locally stable.

Finally, the definitions of system and session busy periods
given in [10] for a single node are extended to the multiple
node case. A network system (session i) busy period is defined

to be a maximal interval B (B,) such that for every T E B
(~ E B,), there is at least one server in the network that is in
a system (session i) busy period at time T.

IV. BOUNDS FOR LOCALLY STABLE SESSIONS

While every route in a data network is acyclic, the union
of several routes may result in cycles being induced in the
network topology. The presence of these cycles can complicate
the analysis of delay considerably, but more importantly, it
can lead to feedback effects that drive the system towards
instability. This phenomenon has been noticed by researchers
from fields as diverse as manufacturing systems [8], commu-
nication systems [4] and VLSI circuit simulation [6]. Consider
the four node example in Fig. 1 (which is identical to Example
2 of Cruz [4]). Suppose the service discipline is FCFS. As an

‘1) depends on theillustration of virtual feedback, notice that So
traffic from sessions 2,31 ~j, K – 1, but the form of this traffic

is not independent of So .

In this section we will show that under the GPS service
discipline these virtual feedback effects are completely absent
for a locally stable session, i, even when the other sessions
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are not leaky bucket constrained. For notational convenience
let P(z) = (1,2, . .. . Kz). The following useful Lemma is
straightforward and stated without proof—to see that it is true,

recall that we are ignoring propagation delays:
Lemma 1: For every interval [~, t] that is contained in a

single session z network busy period:

swJ(T, t)> (t – ~)9i.a

The Lemma leads us to the main result of this section:
Theorem 1: If gi ~ pi for session i:

Yi

Proofi Suppose Q; is achieved at time t,and let T be the
first time before t when there are no session i bhs backlogged

‘K*)(T, t) z Pz(t – T).in the network. Then by Lemma 1, Si
Consequently,

An arriving session z bit will be served after at most Q:
session i bits have been served. Using Lemma 1 again, these
backlogged bits are served at a rate of at least gi. Therefore

❑

Note that the delay bound in Theorem 1 is independent of
the topology of the network and also of Ki, the number of links
in the route taken by the session. Also, it is independent of
the Oj, j # i. The naive bound on delay arrived at by adding

the worst-case delays at each node is D: ~ ~i ~fi=l &,

illustrating the fact that much better bounds result frdm
analyzing the session i route as a whole. Also, given a locally
stable session i, the result of Theorem 1 is valid for any GPS
assignment for the other sessions. In fact, the other sessions
need not be leaky bucket constrained, nor need the system be
stable. An architecture that exploits these features is presented
in [2].

When all of the sessions are leaky bucket constrained and

4T = pi at all ‘n and ~ ~ ~(rn):

V. THE IMPORTANCEOF SESSIONS

THAT ARE NOT LOCALLY STABLE

When all of the sessions are leaky bucket constrained, it is
possible to guarantee finite delay even for the sessions that are
not Ioeally stable. This is because GPS is work conserving and
the token arrival rates are assigned such that ~j=~(m) pj < T-m

at all nodes m. Thus we may allow gi to be less than pi for
sessions that are not delay sensitive, and much greater than

pi for delay sensitive sessions. The merit of this approach has

already been discussed in [10] (recall Fig. 2 of that paper).
Briefly, nonbursty delay sensitive sessions may be given large
values of gi (without significantly impacting the performance

afforded to the other sessions), Thus, the rest of this paper
permits assignments in which some of the sessions may not

be locally stable.
As will be apparent shortly, providing such a general

analysis is not without its complications. These complications
are introduced primarily because of the effects of virtual
feedback on performance that were discussed in Section IV.
However, despite these difficulties, understanding how to
provide good bounds on delay and buffer requirements for

a broad class of GPS assignments is useful in determining the
range of behavior manifested by this highly flexible service
policy. This also yields insight into the range of real-time
performance requirements that can be supported. Finally, an
important benefit of this line of analysis of GPS networks is
that it allows us to relate the results to PGPS networks with
variable packet sizes.

VI. THE ALL-GREEDY BOUND FOR A SINGLE NODE

The presence of sessions that are not locally stable com-
plicates our analysis considerably; yet after performing the

analysis we will see that the computation of per-session delay
and backlog remains intuitive and quite efficient. There are two
steps to providing worst case bounds on delay and backlog.
The first consists of characterizing the internal traffic of the
network so that at each node, m and j E l(m) we have
03Wsuch that AT N (aJrn,pj ). In the second step, the internal
characterization is used to analyze the session i route for delay
and backlog.

Following Cruz [3], we calculate upper bounds on the

minimum value o,~’otit such that S,rn w (o~’out, pi). Central
to our analytical technique is the concept of the all-greedy
bound. These upper bounds will be shown to be quite good
for a wide variety of networks. Consider a particular node
m. Suppose that for every j E ~(rrt), we are given that

AT ~ (or, pj ). In [10] it was shown that the worst-case delay
and backlog for session i (at node m) are each achieved when
all the sessions j G l(m) are simultaneously greedy from time
zero, the beginning of a system busy period. However, if two
sessions j and p are both served by the same node, n, just
before they contend for node m, then it may not be possible

for both of them to be simultaneously greedy, as is required in
the all-greedy regime. Thus, the achievable worst-case delay
and backlog at node m may be less (but never more) than that
calculated under the all-greedy regime.

In the rest of this paper we will make frequent use of the all-
greedy bound, in order to simplify procedures for estimating

D; and Q?. The following notation is useful in thk regard
We are given or, pj for each j E ~(m), such that

xjcI(m) Pj < ‘m. Consider a fictitious system in which
no traffic enters node m before time zero, and all the sessions
at m are greedy starting at time zero. Denote A~ as the
resulting session 2 arrival function for all 2 E

denote $~ as the service function at node m.
[10], that for t > 0, as long as Q~(t) > 0,

1(%). Also

Recall from

the function
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s~((),t) ispiecewise linear and convex-u int. By using the

techniques of [10] we can find the smallest value ii~’”ut such

that S,~’ w (ti~’””t. p,). From the discussion above,

.m.ollt >gy,out,
rJ, (11)

Thus, we may bound the burstiness of S,m by ti~’”ut.

VII. NONACYCLICGPS NETWORKS UNDER

CONSISTENTRELATIVESESSION TREATMENT

In Section IV we introduced the notion of virtual feedback,
which complicates the analysis of nonacyclic networks, and
that can even drive the system into instability. When not all
of the sessions are Ioeally stable, it is important to avoid
assignments of the @i’s for which reasonable delay guarantees
cannot be made. Several examples of the effects of virtual
feedback are given in [9, Section 3.3] that illustrate the

difficulty of dealing with this phenomenon. These examples
suggest that one of the major causes of poor performance
is that a given session is treated poorly relative to a set of
sessions at a particular node, but is treated as well relative
to the same set of sessions at other nodes. In this section
we show tha( for GPS assignments in which each session is
treated “consistently” well relative to the other sessions, the

network is stable (as long as IL*’ < 1 at each node m), and

tight bounds on delay can be derived.
We begin by the following useful definition.

Definition: Session j is said to impede a session i at a
node rr~ if

4Y_<E,
47 P,

Note that for any two sessions, i
a node nl. either session i impedes

and j, that contend for
session j or vice-verse,

unless $# = ~, in which case neither session impedes the
)

other.
A Consiste7ttRelatit] eSessionTr-eatrrzent GPS assign-

ment (CRST) is one for which there exists a strict ordering
of the sessions such that for any two sessions i, j, if session z
is less than session j in the ordering, then session i does not
impede session j at any node of the network.

The class of assignments that are CRST is quite broad. For
example, consider the special case of a CRST system for which

t),= r#’’. v7nP(i). (12)

Thus, whenever sessions i and j contend for service at
a link. they are given the same relative treatment. Such
CRST systems are called Uniform Relative Session Treatment
(URST) systems. Note the following special cases of URST
systems.

● Suppose ~, = p, for every session i. llten from (8)

each session is locally stable. We call this special case
of a URST system, Rate Proportional Processor Sharing
(RPPS). Recall the results of Section 4.

We will show that a CRST system is stable if urn <1 at each

node, and will also provide an algorithm for characterizing the
internal traffic for every session in a CRST system.

The sessions of any network with a CRST assignment can
be partitioned into nonempty classes HI, .. .. lf~, such that the
sessions in Hk are impeded only by those in Hl, 1 < k. If
two sessions i, j, are in the same class their routes are either
edge disjoint or

at every node, m, that is common to the routes of sessions
i and j. Clearly, the sessions in Ifl are not impeded by any
other session.

Lemma 2: If ~j= ~(m) pj < Tm, then for any StXSiOtI

j E Ill:

(13)

for all nodes m E P(j).
Pr-oofi Consider a session j c lfl, and suppose that its

route includes the node m. Since ~j=l(m) pj < rm, there
must exist at least one session i, such that

w
‘i <Zpd(m) %’”m”

By definition, z’cannot impede session j. Therefore

P~I(m)

Now the claim is proven by rearranging the terms. •1
For j E 111,(13) shows that j‘s guaranteed backlog clearing

rate exceeds p] so that

. m,out
Uj = Crj.

Using arguments similar to those in Section IV, we have from
from (11)

Lemma 2 enables us to upper bound the internal traffic of all
the sessions in Ill. The following Lemma will be crucial to
us in continuing the process to the sessions belonging to the
higher indexed classes:

Lemma 3: Suppose sessions i and j contend for a link m,
and that session j does not impede session i. Then the value
of Ui“““”t is independent of the value of Ojm.
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Proofi From [10, Lemma 12]:

‘m’out= Q;.Cri (15)

Also, recall that for a single node, Q; is achieved when all of

the sessions in l(m) are simultaneously greedy from time zero,
the beginning of a session i busy period. Under an all-greedy
regime, the service function, $~ is a continuous piece-wise
linear convex-u function, with break points corresponding to
the times that individual session backlogs clear at node m
(see [10, Fig. 7]). The order in which the individual session
backlogs clear is shown in [10] to correspond to a feasible
ordering.

Consider the all-greedy regime obtained when ~~ = O (the
case a; >0 will follow from this easily), and let the resulting
feasible ordering be denoted by F. Let qi be the (least) time
at which maximum backlog is achieved for session i under
the all greedy regime, and let e: be the time that the session i
backlog is cleared. Notice that e: ~ qi. Similarly, let session
j terminate its busy period at time e;. We now consider two
cases.

Case 1: Session z is less than session j in the feasible
ordering, F: Then

For positive values of crj, session i will remain less than

session j in the resulting feasible ordering, and the value of
e; can only increase. Thus as aj increases from zero, session
j remains in a busy period in the interval [~, qi], and the time

qi remains unchanged, as does the curve S,rn in the interval
[0, e:]. From (15), it follows that the value of o~ does not

influence the value of b~’out.

Case 2: Session i is greater than session j in the feasible
ordering, 3: Then

(the last inequality holds since session j does not impede
session 2). Thus,

(the first equality holds from the definiton of GPS), and

Since Q: ~ ~i, and since Qi (t) strictly increases in the

interval [0, qi] (recall Figure 7 of [10]), it follows that qi ~ e$.
Thus, while session j is greater than session i in F, the break-

point corresponding to session j in the curve $“ appears after
qi. Increasing the value of Oj can only move this break point
further out in time, i.e., the time at which the session j busy
period terminates can only be greater than e; for arbitrary
values of m~rn.Thus, the value of qi remains unchanged with
nonpositive values of Uj. Now by arguments similar to those
applied at the end of Case 1, we conclude that the value of or

does not influence the value of b~’out in this case as well. •l

Lemma 4: Suppose session i is in I(m) for some node m,
and that for every session j 6 l(m) that can impede i, uj~ is

bounded. Then CJ~’OUtmust be bounded as well.

Proofi From Lemma 3 it follows thatalw’out can be

computed by applying the all-greedy bound to the system in
which uk = O for all sessions k E ~(m) that do not impede
i. Since o~ is bounded for all of the other sessions, i.e., for
those sessfons that do impede i, the resulting value of Q; must
be bounded. From (15) the value of b~’”ut is bounded, and
applying (11 ) we are done. ❑

Lemmas 3 and 4 can be used to sequentially characterize
the internal traffic of the sessions in classes Hz, H3, .. . . H~.
The

.

●

.

following procedure specifies the method,

Compute HI,..., 11~.
k=l
while k ~ L, for each session i E Hk

Forp=lto Ki
m = P(i, p)
Compute ~~’out given:

Urn = tiJ~ for all sessions
i at m (computd in earlier steps).

alp as computed earlier.

o~ = O for all sessionsJ
impede 2 at m.

Set o?) = b,~’owt.
k:=k+l.

j that impede

j that do not

Now from (11) we have upper bounds to m? for every session
z and node m E P(i).

This procedure enables us to show (using an inductive
argument on the number of classes) Theorem 2.

Theorem 2: A CRST GPS network is stable if Un < 1 at
each node m.

VIII. COMPUTING DELAY AND BACKLOG FOR STABLE
SYSTEMS WITH KNOWN INTERNAL BURSTINESS

Suppose that we are given a stable GPS system in which
the sessions are leaky bucket constrained as in (3), i.e., for
every session j and node m such that j c I(m), we are given

a value a~rn, such that AT - (o~rn,pj ). AS we discussed in
Section VI, worst case delay (backlog) at a single node of the
network can be upper bounded by applying the techniques of
[10] when the traffic characterization of sessions sharing that
node is known. Under the Additive Method due to [4], we add
the worst case bounds on delay (backlog) for session i at each
of the nodes m E P(i) considered in isolation. While this
approach works for any server discipline for which the single
node can be analyzed, it may yield very loose bounds. For

example, when applied to an RPPS system (defined in Section
VII) we get D; ~ Ki 8, rather than D; < ~. The problem,
of course, is that we are ignoring strong dependencies among

the queues at the nodes in P(i). Thus, in order to improve the
bounds, the session route is treated as a whole. For notational
simplicity we focus on a particular session, i, that follows the
route 1,2, ..., K. Fig. 3 illustrates the system to be analyzed.

We will assume the following.

1) The sessions j ~ l(m) – {z} (for m = 1,2, .. ..K) are
free to send traffic in any manner as long as AT w
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Leaky Buckets Leaky Buckets

Fig. 3. Analyzing the session 1 route as a whole, under the independent ses-
iions relaxation, Session ~ traffic enters [he network so that it is consistent with
(fl,. p, ), and.4j” = S;”-’ for Ill = 2. 3..... [\-.The independem sessions at
node Tn we free to send traffic in any manner as long as.-t~’ - (a;” p, ) for
every session ~ E [(1]1) — {~}.~11 = 1.2.....1<.

(m~’. [j,,). Thus it is appropriate to call the sessions
in 1( ?rl ) – { /}, the independent sessiorrs at node m

(?n = 1.2,..4A-).
2) Session i traffic is constrained to flow along its route so

that

~y = y-l
m= 2,3 . . ...K.I

Assumptions 1 and 2 are collectively known as the indepen-
dent sessions relaxation. This is because while the network

topology may preclude certain arrival functions of A$ that are

consistent with (rr$. p,), these functions are included under
the independent sessions relaxation. On the other hand, every
arrival function allowable in the network, is allowed under the
independent sessions relaxation. Thus, the values of D; and
(j; that hold under the independent sessions relaxation, must
be upper bounds on the true values of these quantities. The
use of all-greedy bounds enables us to compute D: and Q;

e.racrly under the independence relaxation.
In view of our results for the single node case, it would

be satisfying if maximum delay (and backlog) were achieved
when all the sessions of the network are greedy starting at time
zero (the beginning of a system busy period). However, this is
generally not true. It turns out that what is required is that the
sessions at a particular node j become greedy simultaneously,
but only after the sessions at node j – 1 become greedy. We
call this pattern of arrivals a staggered greedy regime. The
instants of time at which the sessions become greedy depend
on the session for which maximum delay and backlog is being

estimated. We will also find that Q: and D; may not both be
achieved for the same staggered greedy regime. This important
point is illustrated in Fig. 4.

The possibility of D: and Q: being achieved under different
staggered greedy regimes is discouraging from a practical
standpoint. especially if computing either one of these quan-
tities involves solving a complicated optimization problem.
It would be much more desirable to have a single function
from which both delay and backlog can be bounded. (In the
single-node case this curve is just S,, see, [ IO, Lemma 10]. )

In Section VIII-A we describe such a function, which
we call the session i universal curve, [i,(t). This curve is

constructed without computing any staggered greedy regimes,
and both l); and Q; can be determined efficiently and
e.wm[ly from it (under the independent sessions relaxation).

t

(a)

t

(b)

Fig, 4. Two staggered greedy regimes whenF’(, ) = { 1.2}. The curve~ ,6!., ~ _ .1 ,88,!
and S; are shown in (a). Note thatu, – r, . and so .$: and ,S2cann(Jl
redetermined independently. Fig. 4(h) \hows two \[aggered greedy regimes.

h the first. the sessions in I(2) – { 1} become greedy at time t, , which yields
a maximum backlog of q: al time r, In the second staggered greed} regime,
the sessions at 1(2 ) – { ? } wait until time ;] to become greedy —thi< resulti
in a maximum delay of J; for session ~ at time zero.

[n addition, the staggered greedy regimes that achieve these
worst-case values can also be efficiently determined from
U, (t). In Section VIII-B we prove that these worst-case

staggered greedy regimes achieve the same bounds on D:

and Q:, as computed from [r,(t).

A. The Session i Uniiersu] Sen’ice Curie

The universal service curve forms the basis for most of the
major results in the rerr,ainder of this paper, It is a easily
constructed by applying the all-greedy bound at each of the
hops of the session i route, and allows for a straightforward
determination of worst-case delay and backlog. The exact
relationship between the session i universal service and the

session i service curve is given by the inequality of Lemma 6.

but intuitively, the value of the universal service curve at time
t, yields a tight bound on the maximum number of session i
bits that can ever traverse the network in the first f time units
of a network session i busy period.

For notational simplicity, we will focus on a session i such
that F’(i) = (1.2. .. .. K). The functions s~, .... S,K can be
computed using the internal traffic characterization of Section
VII by using the independent sessions relaxation. Recall tha[

for each node rr~= 1.2 . .. .. K, ST is continuous, piece-wise
linear and is convex-U in the range [(). t~], where t ~ is the

duration of the ;ession i busy period at m under the all-greedy
regime. Also ST(O) = 0. Thus, it can be specified (in the
range [f). t:,]) by a list of pairs:

(,9y. fly). (.qy. fl;’).. ,(!$:”l. dyr,)).

where s; is the slope of the ,jt)’ line segment, d~’ is its

duration and n1,, is the number of line segments. Here

.9;’ < s; < . . . < .’i;r,,. (17)

and

(18)
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We first describe how to constmct Ui from S:.. ...s!. and

then define the curve analytically. Finally, we establish the
relationship between Ui and the session i departures from the
network S(K)

,~.
Let E} be the collection of all the pairs (s;. d)”) for

m = 1,2, .. ..k—i. e..

The session i universal service curve, Ui is defined as

Ui(t) = min{G~(t), Ai(O, t)},

where the curve G: (for k = 1,2 . . .. . . K) is a continuous curve
constructed from the elements of E! as follows.

1)

2)

3)

Set G!(O) = O, Remaining-in-E = E:; Glist = ~;
U=o; t=o.

Order the elements of E: in increasing order of slope.
Remove from Remaining-in-E art element of smallest
slope: en’”’ = (Sn’wl dnew). Append Glist with e“ew. If
Remaining-in-E is not empty then repeat Step 2).
G? is a piecewise linear convex-U function defined in

the range [0. ~~=1 t:] by the elements of Glist ]. For

t z ~~=1 t: set

Fig. 5 illustrates the construction of Ui for a simple two node
example.

Note the following.

● G; is defined for k = 1,2,..., K, but Ui is defined in
terms of G:.

. For each m, the relative order of the elements from $w
is preserved in Glist.

. We still have to show that for any network, the curve G~

always meets Ai—this is established in Lemma 5.

Describing the construction of G: is useful in understand-
ing its form, but we need an analytical definition of the
curve in order to prove things about it. The following is a
useful, rotationally compact definition for times t in the range

[0, ~L=l t~] shown in (20) below.
To see how (20) corresponds to the algorithm given ear-

lier, expand the recursion in terms of 71, ..., ‘rk, where Tm,
corresponds to the minimizing value for node m. Clearly,
~1 = O, and define ~~+1 = t. Then ~~+1 — ~~ S t: for
each m = 1,2, ... k and

1In the same manner as &’ was specified earlier.

“M “taj
o 0

(a)

U2(T)

“ ~.

i

o B& + t;

(b)

F]g, 5. An example of how U, is constructed for 11 = 2 The two service
curves in (a) show 5; and S?. In (b) the line segments that make up these

curvesare concatenated to makea,piecewise linear convex curve that meets A,

{
G: (t) t<B~

at time B,,, .’IISUS LT, ( t) =
A,(O, t) t> BK.

Note that the line segment

with slope s; is never used in the constmction of LTZ, i.e., ~z < t: + t?.

G:(t) = min min min
rkE[o,t]Tk–lc[o,rk] “““T2e[o,T3]

k
—— O<T,<:y,Tk<t ~ sy(o,Tm+, - Tin). (21)

— — — — *=1

For each m, the quantity r~+l – r~ corresponds to the
total duration of the elements picked for Glist from the list
describing s~. Suppose we are given G1 = sj (O, t), and
wish to compute G:(t) for some t E [0, ~~=1 t:]. Applying

the algorithm to the construction of G:, we determine f, the

duration of the elements picked from the list describing s:.
Then ; corresponds to the minimizing value of T in (20).
Thus, G!(t) is the curve described by Glist. Note that the
minimizing values of T2, ..., Q are functions of t.

In the next Lemma we show that G$(t) must meet Ai (O, t)

at some time before ~~=1 t;:

Lemma 5:

k k

rn=l Wl=l

Proofi LetTI,....Tk+lbe the minimizing values of(21 ).
By definition

B
Tm+l — Tm < tm.

(20)
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for each 7~1 = 1.2 . ... . k. For f = ~~=1 t; we must have

equality in each of these A’ inequalities. Thus,

S:((),T,,, +l– ~lfl ) = $“(0.~:) = A(~.K)
(where the second equality follows from the definition of t:),
and

k k

7n=l ln=l

k k

m = 1 ?11==1

❑

Now observe from (19) that for any t 2 ~~=1 t: we must
have:

G:(t) ~ .ii((). t). (22)

Thus.

u,(t) =
{

G:(t) t < Bh-
.4; ((), t) t > Bh-

(24)

Having defined U,, we now relate it to the session i

departures from the network. First, we establish in Appendix
A, two important results that are crucial to the analysis that
follows. Lemma 6 shows that if the independent sessions at
a node rn are greedy from time zero. then as long as session
i remains busy in an interval [0, ~], the function S,rn will be

identical to s? in this interval. Thus session i does not have
to be greedy, just busy during the interval. Lemma 7 states
that if the independent sessions at a node TJL are quiet during
the interval [0, ~] and then are greedy starting at -r, then this
behavior minimizes ST (~, t), the amount of service received
by session i at node 7n from time T on. The precise statements
are in Appendix A and their proofs of follow almost directly
from our work in [10]. In the next Lemma we establish the
relationship between S;” and G~n:

Lemma 8: Consider a given arrival function, Ai, and a
given time ~ suchthat Q,(~) = O. Then for each m, 1 s
71~~ K, each t > r:

S:’’ (T,t)> 1:/;: n{A(T, V) + G:(1 - 1’”)}. (25)

Proof: See Appendix A. ❑

In the next section we will show that G~’ ( t ) is the amount
of service given to session i under a specific staggered
greedy regime called the (m, t)-staggered greedy regime. Thus
Lemma 8 shows that the service to session i is minimized when
such a staggered greedy regime is delayed by an appropriate
amount, which is the minimizing value of 1’. Equation (25)

facilitates the following bounds on delay and backlog.

Theorem 3: For every session

Q: < I:lji:{.4i(o. T

and

– G:(T)}, (26)

D: ~ ~;y;{l~liu{t : G~(I) = ~,((). ~)} -~}. (27)
—

Proof See Appendix A. ❑

The inequalities (26) and (27) illustmte the importance

of the universal curve. To find the bound on D; compute

the maximum horizontal distance between the curves A,((). t )

and .?l~(t) at the ordinate value of ,4,(0. t). Similarly, Q; is
bounded by the maximum vertical distance between the two
curves. In the next section, we will show that these bounds
are achieved for (K. t )-staggered greedy regimes under the
independent sessions relaxation.

B. The (K. t )-Stag<qered Greedy Regime

In this section we make clear the relationship between

staggered greedy regimes and the session i universal curve
[Ji. As in the previous sections, we will focus on staggered
greedy regimes with respect to a session i and assume that
P(i) = {1.2 . .. .. K}.

Any staggered greedy regime can be chamcterized by a
vector

(T, . .. .. TTI<T2<T<TK.. <TK

such that all the sessions at node 1 are simultaneously greedy
starting at time T1, and the independent sessions at node
j do not send any traffic in the interval [’TI.Tj ), but are
simultaneously greedy starting at time Tj. Observe that the first
staggered greedy regime in Figure 4(b) can be characterized
by (O. tl ) and the second by (O, tl ).

A (K. t) – .stcl,ygered :Jr{:C:(~?Jregime. t S B~, is the

staggered greedy regime characterized by (O. Tz, ... . . TK ) such

that

(28)
k=l

where T1 = O, T~+ 1 = I and Tk+l – ‘II < tf for

k= 1.2. ..,. K. Note that

● Since t < Z3K,Gf(t) = [J,(t).

● For each k = 1.2 . ... . K – 1 the staggered greedy regime
defined by (O. lb. ... . Ii ) describes a (k. Tk.+l )-staggered
greedy regime.

Comparing (28) with (21) it is clear that (l;. TA-) is a
minimizing vector in (2 I ). Thus, the universal service curve
can be used to determine T2. .. . . Th-. This is illustrated in Fig. 6
for the simple case of K = 2. Notice from the figure that in the

in the range [[). ~].
range [0. Tl], S? is comprised of the line segments belonging

to s: that make up the universal curve
Also, notice that in Fig. 6

S:((). T) = (’,(T).

It turns out that this is true in general:
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Fig. 6. Computing a (L. t)-Staggered Greedy Regime whenF’( i ) = {1, 2}.
The top figure shows the curve [“z that was constructed from S! and 5? .In
order to find the (2, r )-staggered greedy regime, add the durations of the line
segments taken from SI that are in C:z(f ), t < ~.llis sum is T2, the time

that the independent sessions at node 2 become greedy. This characterizes the
staggered greedy regime which is shown in the bottom figure.

F(o)txx!c
~“aerver:

Fig. 7. The staggered greedy regimes that maximize backlog and delay under
the independent sessions relaxation. (a) shows the session i universal curve.
Notice that for this curve “backlog” is maximized at time TI and “delay”
is maximized at time T2. (b) shows the two staggered greedy regimes
corresponding to these times. Notice that the backlog at time ~1 in the first
regimeis exactly equal to the “backlog” at time TI in (a), and similarly the

delay at time w in the second regime is exactly equal to the “delay” at that
time in (b),

Theorem 4: For any (K, t)-staggered greedy regime:

SjK)(O, t) = Gf(t).

Proof: See Appendix B. •1
Fig. 7 shows how to construct the staggered greedy regimes

that maximize backlog and delay.
From Theorems 3 and 4 we have the main theorem of this

section.
Theorem 5: Under the independent sessions relaxation, D;

and Q: are each achieved under (K, t)-staggered greedy
regimes.

Now since the values of D; and Q; achieved under the
independent sessions relaxation are upper bounds to the actual
values of these quantities, we have shown how to find upper
bounds on session backlog and delay. Also, since an infinite
capacity link can always simulate a finite capacity link, worst
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under this relax-

ation must upper bound the values of these quantities for finite
capacity links.

IX. PROPAGATION DELAY

It is easy to incorporate deterministic propagation delays
into our network framework. Suppose that every bit transmit-
ted on link (i, ~), incurs a delay of di,j time units. Then each
link acts as a constant delay element, and the characterization
of internal traffic (using the method of Section VII) remains
the same. A natural modification of the independent sessions
relaxation allows us to bound end-to-end delay as well. Con-
sider a session i such that P(i) = 1,2,..., K: Also, let do,l be
the propagation delay on the access link. Then the following.

1) The independent sessions at node m, j E l(m) – {i} (for
7rL = 1.2 , . . . . K) are free to send traffic in any manner
as long as AT * (o~. Pj).

2) Session i traffic is constrained to flow along its route so
that

A~(~,t) =S~-l(~ - dm-l,m. t - dm_l,m)

m = 2,3, . ...K.

In view of the analysis of Section VIII.

D: ~
E dm_l,m + D:’nOprOp.
rn=l

where D; ‘“”prop is the worst-case session i delay computed for
the same characterization of internal traffic when propagation
delays are zero. The number of bits in “flight” on a link
(1. m) is at most

w,nr= vdm.

Thus

X. PGPS NETWORKS

(29)

When packet sizes are so small that the maximum packet
transmission time at any link of the network is negligible, we
may conclude from [10, Theorem 2], that the behavior of GPS
and PGPS are (essentially) identical. Thus in this case, all of
the bounds for GPS networks in Sections VII and VIII can be
expected to apply to PGPS networks as well.

In the more general case in which packet sizes are not
negligible, there are two effects to consider. First, packets must
be served nonpreemptively, i.e., once the server has begun
serving a packet, it must continue to do so until completion.
Second, no packet is eligible for service until its last bit
has arrived, since in most networks with heterogeneous link
speeds, packets are not transmitted until they have completely
arrived. Stated differently, we assume that service is ~

virtual cut-through. Thus, if m —1 and 7n are successive nodes
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I

Fig, 8. A system in which the packet sizes are non-negligible, AT (0, t)
reprewnts the cumulative arrivals seen by server, m. The length of each
impulse of .4~”(O. t ) is bounded by L,, the maximum packet size for session
I. Since L, < m~”, it can be seen from thefigure that.-l~ ~ (oT + L, .p, ).

on a session i’s route, we cannot assume, as we did in Section
VIII, that ST-l = A~. In fact, for P(i) = {1,2 . .. .. Ki}.

s“’-l(T.t)+L, > Ap(T, t) 2 s:-l(T, t)‘!
–L,, m= 2,..., Ki, ~ < t. (30)

where Li < a, is the maximum packet size for each session i.

This effect is illustrated in Fig. 8, Notice that since the GPS

server does not begin serving a packet until its last bit has

arrived, it “sees” the arrivals as a series of impulses, such
that the height of each impulse is at most Li. However, since
we are not assuming any peak rate constraint in the input
characterizations, AT, is consistent with (or + Li, pi).

These important differences notwithstanding, we will still
find the results of the prevous sections to be very useful in
the more general case of non-negligible packet sizes. We first
enforce the nonvirtual cut-through effect, but allow preemptive

service, and then incorporate the effects of nonpreemptive
service.

A. Noncut-Through GPS

To analyze networks of GPS servers with non-negligible
packet sizes we follow the same steps as we did in Sections
VII and VIII—we first characterize the internal traffic in terms
of leaky bucket parameters, and then bound the worst-case
delay and backlog for each session by analyzing its route as
a whole. To incorporate the effects of finite packet lengths we

stipulate that (30) holds.
Consider a GPS network with CRST assignments. The

internal traffic can be characterized using essentially the same
procedure as in Section VII to compute the all-greedy bounds.
To analyze the session i route given internal characterization
of the traffic, we proceed as follows. Define @ to be the
session i output at node 7n under the all-greedy regime. Then

the session i universal service curve is computed as it was in
Section VIII. Note that hmma 6 also holds. However, Lemma
8 and Theorem 3 must be modified in order to incorporate
(30). The proofs of these modified results follow the arguments
made in Appendix A--details are available in of [9, ch. 4]:

In what follows we assume (for notational simplicity) that
F’(i) = {1.’2...,. K}:

Lemma 9: Consider some time -r such that Q, (~) = ().
Then for each m, 1 < m < K, each t > ~:

S~(~,t) + Li z ~~j~,l{Ai(~, V) + G~(O, t – V)} – TTI,L,.

(31)
Theorem 6: For every session i:

Q: < ~>~{~i(O,~) - G$(~)} + KL,. (32)
—

Theorem 7: For every session i, define D: to be the max-
imum session i packet delay. Then

D: < tn>n{min{t : Gi(t) = ~i(O,~) + (K - l) L,} - ~}.
—

(33)
Theorems 6 and 7 allow us to bound D; and Q; in terms

of the universal service curve.

B. Nonpreemptive Service: PGPS

Suppose we are given a network of PGPS servers such that
the assignments of the @i’s meet the CRST requirements of
Section VII. Recall that a CRST assignment ensures a partition
of the sessions into classes 111, H2, ... such that a session in
class c may only be impeded by sessions belonging to classes
indexed lower than c. Consider a session j E H(1) and let
~(~) = {1,2,..., Kj}. We know from [10, Corollary 1] that

Q;(T) - Q;(T) s Lmax (34)

for all ~ where Q~, and Q~ represent the session i backlogs
at node m, under PGPS and GPS, respectively. Thus,

Q:>* ~ Q:’* + L~aX.

Also, from [10, Lemma 12]

Ufut = Q;. (35)

Equations (34) and (35) allow one to characterize the internal
traffic at each node in P(j) using essentially the same proce-
dure as in Section VII. If applying the all-greedy bound to a
node (assuming GPS service) yields a bound of c~”t’m = [k,

then the bound on this quantity under PGPS is just n + Lrna..
The next step is to analyze delay along the session z route.

In [9, ch. 4] we prove the following Theorem that allows us
to relate worst-case session delay in a PGPS network to the
universal service curve, and consequently to GPS networks.
The proof is omitted here because of constraints on space.

Theorem 8: For each session i:

D; ’PGPS
{

< ~>~ min{t : G~(f,) = Al(O. -r)
—

K LmaX
+( K- l)Li} -T}+ ~ ~. (36)

WL=l ‘

where the universal service curve, G: is computed using the
algorithm given in Section X.

Note that the GPS network being considered here has
internal characterization identical to the PGPS nerwork which
will in general have more bursty traffic. It is interesting to
observe that as the link speeds become faster, i.e., as rm ~ X,

D; ’PGPS = D:3~Ps.
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C. Rate Proportional Processor Sharing Networks

In this section we will interpret the results of the previous

section for a special CRST assignment. Under RPPS Networks

d? = pi for every session i and m E P(i). Recall that in
Section IV we analyzed RPPS networks when the packet sizes
are negligible, and derived the bounds (9) and (10) for delay
and backlog respectively. Here the corresponding bounds for
PGPS service are derived.

Applying the fact thatthe slope of G: is never less than pi
for each session i to (36), we have:

* PGPs < rY~+ 2(K – l)La K L~=
Di’ _ +~~. (37)

Pi “=1

The first term on the RHS is likely to dominate in most
instances. In particular, in high speed networks we assume
that T-m ~ co, and we have

D:’PGPS ~
a; + 2(K – l)L1

pi “ (38)

Also, as Lmu ~ O, we get (10). The extra delay of -
in (37) does not diminish with increasing link speed.

This example and (38) strongly indicate that small packet
lengths should be chosen in RPPS networks so that the term
~ is small. For ATM networks, in which the packets are about
400 bits long, this holds for most kinds of applications. Finally
note that for a lmmlly stable session i, with minimum backlog
clearing rate gi we have

even when the other sessions are not leaky bucket constrained.
This fact has been used in designing an architecture based on
POPS servers in [2].

XI. CONCLUSIONSAND EXTENSIONS

Per-session bounds were derived for the leaky bucket con-
strained sessions of arbitrary topology GPS and PGPS net-
works, These bounds are considerably more tight than those
derived by treating each hop independently and adding the
worst-case delays of each hop. The tighmess of the bounds
makes it possible to examine the effect of various strategies
on per session performance by adjusting the assignments of the
GPS servers within a broad range. Thus, our work provides a
framework within which the issue of providing performance

guarantees to a a wide variety of co-existing session types can
be studied. Work along these lines can be found in [2].

An important part of any flow control scheme, and one
that is missing from this paper is call-admission. We have
not treated the important and dual problem of matching given
delay requirements to a set of GPS assignments, which may
be difficult, except in the case of Ioeally stable sessions.

Another area for future research is the incorporation of
traffic types that require real-time performance but that cannot

predict the exact values of their leaky bucket parameters
at session set-up time. Since POPS provides for a natural
isolating mechanism, i.e., the per session backlog clearing rate,

—
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it may be appropriate for the multiplexing of various classes of
traffic, only some of which may be leaky bucket constrained

as in [2]. Recall that bounds given to locally stable sessions
still hold under such an arrangement.

Our analysis deals with a static problem in which the real-
time nature of call-arrival is not taken into account. There may
be many ways in which the algorithms we have given can be
extended to incorporate these effects. Although we have not
focused on the implementation costs of building PGPS servers

or on the computational overhead in computing the bounds,

our work can be extended to investigate these issues in more

depth.
Finally, the worst-case nature of the analysis and the gen-

erality of the leaky bucket arrival constraint may result in
bounds that are overly conservative for actual systems. Thus,
important areas of future work include probabilistic analyses
powerful enough to deal adequately with nonacyclic networks,
and that also have the ability to distinguish properly the effects

of different work-conserving policies on network performance.

APPENDIX A

Lemma 6: Suppose the independent sessions relaxation
holds, and that t is contained in a session i busy period at
node m that begins at time O. Also, suppose that none of the
independent sessions have sent any traffic before time O, and
that each is greedy starting at time zero. Then S,rn is identical

to Sp in the range [O,t].

Lemma 7: Suppose the independent sessions relaxation
holds, and that time t is contained in a session z busy period

at server m that starts at time T < t.Then for all t > -r,
S~ (T, t) is minimized over all arrival functions when for
every independent session p at node m:

1) Ay(o, r) = o.
2) Session p is greedy from time -r.

Proof of Lemma 8: For m = 1, (25) states that

S}(T, t) ~ ~~f:tl{Ai(~,V) + S~(O, t – V)}.

Choosing V to be last time in the interval [~, t] that session z
begins a busy period at node 1:

S}(7, t) ~ Ai(~, V) + &(O, t – V)

~ I~~~rI{Ai(7, V) + S:(O,t– V)}. (40)

Now assume the result for nodes 1,2,..., m – 1. Then, letting
tm be the last time in the interval [T, t] that session i is in a
busy period at node m

sy(T, t) = syl(T, tm) + Sy(tm, t). (41)

By the induction hypothesis:

S,~–l(T, tm) ~ min {Ai(T,V) + G~–l(tm – V)}. (42)
vE[r,tm]

Also, from Lemma 7:

s~(tm, t) > s~(o, t–tm). (43)
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Substituting (42) and (43) into (41)

s~’(~t) 2 ,.~~y/,,l{A,(~~T) +G:’-’(t~ - V)}

+ $“((), t – t,,, ) (44)

~ mill {~i,(~.v’)+~~~-l(t,,, –V)
\’E[T,t,,,]

+ $“(0. t – t,,,)} (45)

2 min {A, (~, V)+ G~(t– V)} (46)
\“6[T,t,,,]

Z ,!$,l{-’~,(~. ~’) + G~(t – V), } (47)

where the inequality in (46) follows from the definition of G~
in (20). ❑

Proof of Theorem .?: We first show (26). For some given set
of arrival functions Al. ,.., A.~,:

Q,(t) = Ai(o. t) – s~(o, t).

From Lemma 8.

~~,(~) ~ .~i(ot) – l~/~Itl{Ai(~, v) + Gf(f – V)} (48)

= .4i(0. t) - A;(O. ~llin) + G~(t – Vmin) (49)

where ~’kil] is the minlmiziw value of l:. Thus,

(ji(t)< A~(t~,,i,~.t)– C~(t – I’~,,i*]) (50)

< Ai(().t– V1nil,)– G~(t – V~in) (51)

s ma;{.i,((),~) – G~(~)}, (52)
—

and (26) follows. Next we show (27). For a given set of arrival
functions, AI. .. . . A,v and t ~ (), we have from Lemma 6:

S~((),t) ~ ~!~~~~tl{~ii(o, V) + G~(t – V)}.

Thus, for all j ~ O:

D,(i) = HliIl{t : s~(o, t) = .4t(o, i)} - i (53)

{ }
s I~liu f : \)&;::tl{A@ V) + Gy(t – V)} = Ai(O, ~) – ~

(54)
—— min {t : A,(O, l’~in) + G~(t - Vnlin) = Az(O,~)} - ~

(55)

– min {1 : G’fi(t – J“l,]i,,) = Ai(l’’’min 0} – ~. (56)

< nli~l {/ : G~(/) = .41(l~11i11,~)} + Lj,,,,, – ~ (57)

< IIliIl {/ : (;~(t) = .J, ((). i – V~,i*,)} + Ij,,i,, – i (58)

{ }(< IIlin ~ : G~(~) = .Li,((). i – T(,,ll,) – f – V~i~,) (59)

s l;~~{lllil){~ : G:(t) = Ai(O, ~)} - ~}. (60)

In (56) we choose the smallest minimizing value of V. Then
1“,,,,,, s f, since G~(t - l~llill) z O. •1

APPENDIX B

The following Lemma establishes that for a (K. t)-staggered

greedy regime, backlogs are not built up at node m prior to
time 7’,,,.

Lemma 10: Suppose we are given a (K. t)-staggered
greedy regime characterized by (O. Tz. ,... T~ ), t < B~,
and a node k E {1,2, . ... K}. For each j = 1.2 . . ...k – 1,

and ~ c [T,. T3+1]:

J–1

A$(O, ~) = (~ S;’(O. T~+l –T’~))+S/(O, ~–Tj). (61)
m=l

and for T > Tk:

k–1

Sf((),T) = min{A,(().~), ~ $n(o. Tm+l – T“, )
rrl= 1

+.!$$(0. 7 – Tk)}.(62)

Proofi We proceed by induction on k: For k = 1 only
(63) applies. Since S! = S/ the basis step is shown. Now as-
sume the result for nodes 1. 2..,,, k – 1. Observe by definition
that (0. T2. .. . . T~+ ~) is a (k, Tk+~ )-staggered greedy regime.
We begin by showing that Q$(~) = O for all T < Tk, i.e. that

S:((). T) = S:-l((), T), for all T < Tk.. (63)

The equation (62) follows directly from (64) Suppose (64)

k fake. Then ~~f(T) > 0 fOr some 7 ~ T~. Since the
independent sessions at k are quiet during the interval [0. Tk]

it follows that there is at least one interval before Tk during

which S(k– 1) has slope greater than r~ (where rk is the ratei
of k). Since the slope of S,! (0. t ) is never greater than Tk

for t E [0, t:]. and Z’l. T2. ,.., Tk are derived from the the
minimization of (21), it follows that Tk+l – Tk = t:. We
have shown in [ 10] that no node k busy period can be longer
than t: time units, so it follows that Q~(Tk+l ) = (). Thus

@(o,Tk+l) = ~l((),Tk+~) = G~(Tk+~) – Q~(Tk),

where the first equality is from the induction hypothesis and
the second equality follows directly from the definition of G:.
Then G~(TA.+l) ~ AZ((). Tk+l ), and

~k+l = Bk.

Now,let [u, a + A], such that A > () and (L + A < Tk, be

‘k- 1) has largest slope, and suchan interval during which Si
that this slope belong to a sin le node, j < k. As we have

falready argued, the slope of S,’- 1) during this interval must
be greater than rk, since Q:(~) >0 for some ~ < Tk.. Then
the staggered greedy regime characterized by

f = (0. T2. .. . .. T] –A. T,fl –A . .. ..Tk – A)

is a (k. Tk+ 1 – A )-staggered greedy regime. For example,

$ S;’(O.~,.+l - ~,,,)= G;(I - A). (64)
,rt=l

where. fk+~ = ‘Tk+l — A. Now SltlCf3 Tk+~ – fk = t:, it

follows from similar reasoning as above that under 7, session
i is not backlogged at k at time ‘tk+ 1, and that therefore

fk+, = B~,
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Thus

+k+~= Tk+l – A = Bk.

But this implies that A = O, which is a contradiction and so
(64) holds.

We are now left to show (63). SinceQ$ (Tk) = O, it is

sufficient to establish that $ – 1(Tk, ~) S S$ (O, 7 – Z’~) for all
T C [Tk, Tk+ 1]. It is straightforward to argue that this must be

true from the minimization of (21). Cl
To show Theorem 4, pick T = t > TK in Lemma 10. Then

(63) applies, and since t S BK the result follows.
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