Fairness in Routing and Load Balancing

Jon Kleinberg Yuval Rabani Eva Tardo$

Abstract directed graph. Special cases of our model include several
fundamental load balancing problems, endowing them with
We consider the issue of network routing subject to ex- a natural fairness criterion to which our approach can be
plicit fairnessconditions. The optimization of fairness cri- applied. Our results form an interesting counterpart to ear-
teria interacts in a complex fashion with the optimization of lier work of Megiddo, who considered max-min fairness for
network utilization and throughput; in this work, we under- single-source fractional flow. The optimization problems in
take an investigation of this relationship through the frame- our setting become NP-complete, and require the develop-
work of approximation algorithms. ment of new techniques for relating fractional relaxations of
In a range of settings including both high-speed net- routing to the equilibrium constraints imposed by the fair-
works and Internet applicationgnax-min fairnesshas ness criterion.
emerged as a widely accepted formulation of the notion of
fairness. Informally, we say that an allocation of bandwidth
is max-min fairif there is no way to give more bandwidth 1 Introduction
to any connection without decreasing the allocation to a
connection of lesser or equal bandwidth. Given a collec- Faimess in routing. A basic problem in network opti-
tion of transmission routes, this criterion imposes a cer- mization is the efficient routing of traffic between pairs of
tain equilibrium condition on the bandwidth allocation, and terminal nodeshat wish to communicate. One of the funda-
some simple flow control mechanisms converge quickly tomental notions that arises in such a setting is thégiofiess
this equilibrium state. Indeed, the vast majority of previ- we want to allocate bandwidth to the connections in a way
ous work on max-min fairness has focused on this issue othat does not unnecessarily “starve” any of them. Although
associating rates with connections that are specified by aitis an intuitively natural concept, finding a concrete defini-
fixed set of paths. Very little work has been devoted to un- tion of fairness that captures the goals of efficient routing is
derstanding the relationship between the way in which one a subtle issue — we wish to prevent starvation of individual
selects paths for routing, and the amount of throughput one connections in a way that allows all connections the oppor-
obtains from the resulting max-min fair allocation on these tunity to receive as large a bandwidth allocation as possible.
paths. An elegant framework that has gained wide acceptance
In this work we consider the problem of selecting paths in the networking community is the notion mfax-min fair-
for routing so as to provide a bandwidth allocationthatis as nesg2, 5] — it forms the basis for bandwidth allocation in
fair as possible (in the max-min sense). We obtain the firstboth high-speed networks and a range of Internet applica-
approximation algorithms for this basic optimization prob- tions. It is defined via a type of equilibrium: An allocation
lem, for single-source unsplittable routings in an arbitrary of bandwidths, orates to a set of connections is said to
P o S Comell Universitv. Ithaca Ny be max-min fairif it is not possible to increase the allot-
1 485;paé;1“;|r:‘ kf;inb‘;?ggs‘iorrf:[‘:&_ orne é‘&":gi'rté q tinaggrt ted rate of any connection while decreasing only the rates
by an Alfred P. Sloan Research Fellowship, an ONR Young Investigator of connections which have larger rates. In other words, no
Award, NSF Faculty Early Career Development Award CZFR1399, and connection can increase its bandwidth at the expense of con-
BSTchc:;m ig;osoggg-ce Denariment Technion — 1. Haifa 32000, leta! nections which are better off than it is. This turns out to be
Email: ra%ini@cs.techniog.ac.il ‘ C. \ﬁork at the e'llleihnion éusp?e- equ'Yalent to another natural deflnlthn .Of falrnless N the}t
ported by BSF grant number 96-00402, by Ministry of Science contract the list of allotted rates, when sorted in increasing order, is
number 9480198, and by the Fund for the Promotion of Research at thelexicographically as great as possible. This lexicographic
Technion. definition allows one to directly compare different band-

fDepartment of Computer Science, Cornell University, Ithaca NY : : : :
14853. Email:eva@cs.cornell.edu . Research partially supported width allocations, and speak of thairestallocation.

by NSF grant CCR3700163, ONR grantN00014-98-1-058, and BSF grant 1 N€ vast majority of work on max-min fairness has fo-
96-00402. cused on the setting in which connections are specified by a

fixedset of paths, and one wants to associate rates withthese One can derive max-min fairness from the following in-
paths. It is easy to show that the max-min fair allocation for tuitive approach to finding the “fairest” allocation: One
a fixed set of paths is unique, and a number of simple, ef-should first make sure that the minimum bandwidth given
ficient algorithms have been developed to compute this al-to any connection is as large as possible; then, ignoring
location (e.g. [1, 2, 5]). A wide range of network routing this “minimum” connection, one should make sure that the
protocols employ such algorithms to enforce max-min fair- minimum bandwidth given to any of the connections that
ness (or a close approximation) on the paths used for routingcan still get additional bandwidth is as large as possible;
connections. Note that all of this takes place, howesker and so on. More formally, given twé-tuples of num-
the paths themselves have been chosen; very little work hadersz = (z1,...,z;) andz’ = (z{,..., %), each innon-
been devoted to understanding the relationship between the@ecreasing order, we say thdexicographically dominates
way in which one selects paths for routing, and the amount 2’ if z = 2/, or there is some indekfor which z; > 2 and

of throughput one obtains from the resulting fair allocation z; = z; for all i < j. Given two allocation vectorsandr’,

on these paths. Suppose we want to select paths for routwe say that is as fair asr’ (writtenr’ < r) if the sorted or-

ing so as to provide a bandwidth allocation that is as fair as der of the coordinates of lexicographically dominates the
possible (in the max-min sense); how should we go aboutsorted order of the coordinatessih We will say thatr and
doing this? Megiddo [12] addressed this problem in the set-r’ areequivalentif both ' < r andr =< r’. This relation
ting of single-source fractional flown which flow must be defines a total order on the equivalence classes of alloca-
sent fractionally to a collection of terminals from a common tion vectors; the vectors in the unigue maximal equivalence
source, and provided an elegant polynomial-time algorithm. class under are thus théairestallocations.

In this work, we consider the setting in whigkach One can also use the following equivalent definition of a
connection must be routed on a single path — i.e. we routing with allocation vector being “fairest” in the max-
seek anunsplittable flow The single-source case here minsense: There is no way to increase any entryithout
presents qualitatively new issues from those encountered irdecreasing some other entrysuch that-; < r;.

Megiddo’s setting, for we can show that the fundamental As we discussed above, max-min fairness in the net-
analogue of his problem is now NP-complete. A number working community has been applied primarily to the set-
of basic load balancing problems arise naturally as specialting in which one is given not only a set of connections
cases of this single-source unsplittable flow model. We ob-in a network, but also the patH¥;} that they are to use.
tain the first approximation algorithms for the problem of Thus the only issue is to determine the allocation vector,
optimizing over path selection to provide the fairest possi- which is unique in this case; and this can be accomplished
ble routing. The issues that arise in this framework turn out by a variety of efficient algorithms (see e.g. [1, 2, 5]). Net-
to involve a number of interesting and very basic trade-offs work protocols that employ max-min fairness thus enforce

between the throughput and the typeesfuilibrium con- the followingmax-min equilibriuntondition:
straints imposed by max-min fairness. _ . _

We now provide a concrete formulation of these opti- () For any routing with path§F; } and allocation
mization problems, and then summarize our results in more ~ Vectorr, r must be a fairest allocation given the
detalil. pathsP;.

The crucial issue raised in the discussion above is then
Formulating the problem: Max-min fairness and ap- the following. We wish to choose paths for routing a set
proximation guarantees. We seek routings from a com- of connections, with the bandwidth allocation vector then
mon sourcenode to a collection of terminals in a network. uniquely determined by the equilibrium conditiof).(The
A routing, in the present framework, consists of two com- amount of bandwidth utilization in a fairest allocation de-
ponents — the choice of paths that the traffic will use, and pends heavily on the set of patk®;} that one chooses;
the allocation of available bandwidth on these paths to thesome choices of paths allow for much greater fair utiliza-
different connections. Thus, I&& = (V, E) be a directed tion of the network than others. The fundamental question
graph with a capacity. > 0 on each edge. We designate a we seek to address is that of determining the fairest-
sources € V and a set oferminalsty, ..., ¢, € V. A rout- ing, optimizing over all possible choices of paths, with the
ing of the terminals consists of a set of pa{f3, ..., Py} allocation vector determined by)(For example, does the
— with P; a path froms to ¢; — and anallocation vector fairest routing achieve the maximum possible throughput of
r = (ry,re,...,7%). We view thes-t; connection as being anyrouting? This was the precise problem considered by
assigned patl;, with bandwidth allocation, or rate;. We Megiddo [12] in the context of the single-soutftactional
say that this routing igeasibleif, for all edgese, the total flow problem, in which all connections share a common
bandwidth allocated for paths usiags at mostc,; that is, endpoint, but one can divide the flow for a single connec-
the sum ofr; over all P; containinge is at most,. tion fractionally over many paths. In addition to providing

a polynomial-time algorithm for computing a fairest rout-
ing, he showed that the fairest flow is a maximum flow —
with fractional flow, one does not sacrifice throughput by
imposing fairness.

In this work, we focus on the analogous problem, com-
puting a fairest routing, in the setting of single-source un-
splittable flow [3, 8, 9]. Once we move to unsplittable flow,
the basic problem becomes NP-complete, even inttie
capacitycase with alk, equal tol. More precisely, we can
prove that the following decision problem is NP-complete
in the unit-capacity case: giv&R, s, the terminalg¢;}, and
a vectorr*, is there a routing of the terminals for which the
allocation vector- satisfies-* < r? (Additionally, we can
show that the fairest flow need not be a maximum unsplit-
table flow.)

In view of this NP-completeness result, we focus on ob-

single-source unsplittable flow algorithms [8, 9] exhibit the
same problem.

Summary of results: Routing. For the single-source un-
splittable flow problem on an arbitrary directed graph with
unit capacities, we indicated above that finding a fairest al-
location vector is NP-complete. We develop a general ap-
proximation algorithm for this problem by relaxing both the
optimality and the equilibrium requirements. First, what do
we mean by relaxing the equilibrium requirements? For a
constant, we say that an allocation vectpis in a state of
c-approximate equilibriunif it is not possible to raise the
value of an entry-; without decreasing some other entty
such that-; < cr;. Thus,1-approximate equilibriumindeed
corresponds to max-min equilibrium; we believe that ap-
proximate relaxations of these natural equilibrium notions

gorithms for polynomial-time special cases. The optimiza-

tion problems here are over the ordering on allocation vec-

We give an algorithm that produces a routing whose allo-
cation is in2-approximate equilibrium, and is a coordinate-

tors defined by faimess — hence, since there is no single Nuyise 2_approximation to the allocation of the fairest frac-
merical measure, we must be careful in how we define OUltional routing.

notion of approximation to the optimum. We propose the
following two natural definitions of approximation. First,
we say that is acoordinate-wise=-approximation to-* if

for eachj, the j* smallest entry in- is at leastl /c times
the value of thej" smallest entry in*. As a weaker no-
tion, we say that is a prefix-sume-approximation ta-* if

for eachj, the sum of thg smallest entries im is at least
1/c times the sum of thg smallest entries im*. In other

We develop the algorithm by computing a fairest flow
for the following “discretized” version of the fairest rout-
ing problem. Suppose we only consider routings whose al-
location vectors have entries that are all inverse powers of
two; we will call such routings and allocation vectdys
nary. Then we can restrict our fairness orderiggto bi-
nary allocation vectors, and seek a fairest allocation of this
type. We show how to find a fairest binary routing in poly-

words, a prefix-sum approximation ensures that the subsets, ;i) time, for the single-source unsplittable flow problem

of terminals with the smallest allocations receive sufficient
bandwidth.

When we move to approximate solutions, it is very im-
portant that we can keep in mind that the equilibrium con-
dition (f), or a relaxed version off], serves as an addi-
tional feasibilityrequirement on the solutions we can pro-
duce: in effect, we are able to choose only the paths
for then the network useg)(to enforce the unique equilib-
rium allocation vector. (Of course, in the fairest routing,
the allocationr will necessarily be in equilibrium.) This
requirement rules out, for example, the following simple

on an arbitrary unit-capacity directed graphlt is not dif-
ficult to show that the fairest binary routing we obtain is
both a coordinate-wisg-approximation to the unrestricted
fractional optimum, and in a state 2fapproximate equilib-
rium.

We find the existence of a polynomial-time algorithm for
fairest binary routings somewhat surprising, given that the
same problem for unrestricted routings is NP-complete. As
a basic building block in the algorithm, we first establish the
special case that if all terminals can be routed with at most
two paths on any edge, then the fairest unrestricted routing

approach based on the Dinitz-Garg-Goemans unsplittableyyhich will be binary) can be computed in polynomial time.
flow approximation algorithm [3]: compute the fairest frac- \ye then apply this result over increasingly large cuts in the

tional flow using Megiddo’s algorithm, scale all resulting
allocations down by a factor @ and route them as unsplit-

graphG to piece together an optimal binary flow.
A natural problem is to provide a good approximation to

table demands. The problem is that these scaled demandg,e tajrest unsplittable routing in an arbitrary directed graph

are generally very far from equilibrium for the paths used.
For example, if the fairest fractional flow has allocations
of widely varying magnitude, it is easy to find examples
in which the Dinitz-Garg-Goemans algorithm produces a
routing where flow paths with both small and large alloca-

withoutrelaxing the equilibrium conditiori); we leave this
as an open question.

Summary of results: Load Balancing. The setting of

tion share edges, and the allocation vector is arbitrarily far single-source unsplittable flow contains a rangmafi bal-

from satisfying the equilibrium conditiorf). All previous

ancingproblems. We begin by providing algorithms for two

of the most natural of thesgithoutrelaxing the equilibrium single-source fair unsplittable flow problem on an arbitrary
condition). unit capacity directed graph. We develop a general approxi-
mation algorithm for this problem by relaxing both the opti-
* First, the single-source unsplittable flow problem on mgajity and the equilibrium requirements. Finally, Section 4
a two-level unit-capacity graph is equivalent to the ghows that the single-source unsplittable fair flow problem

following load balancing problem: we have a set js NP-complete on unit capacity directed graphs.
of jobs J = {J1,...,Jx}, and a set of machines

M = {M,...,M,}, for each jobJ;, there is a set

S; C M on which J; can be run. Each machine
has the same “processing power.” We wish to assign
each job to a machine, and our faitocation vector

r = (ry,...,r) specifies the fraction of processing
power each johJ; receives on its assigned machine.
We will call this theuniform load balancingroblem.

2 Fair Load Balancing Algorithms

The fair load balancing problenis concerned with as-
signing jobs to machines. Assume that we have a set
of jobs J = {1,...,k}, and a set of machined/ =
{M,...,M,}, and for each joly, there is a seb; C M
on which jobj can be run. Amassignments a function
e More generally, each jod; can have ampper bound ~ F : J — M so that# assigns each jop to a machine in

u; on the amount of processing power it wants. In this S;. First we consider the special case of the uniform load

setting, we will only consider allocation vectorsfor balancing problem, and show that an optimum fair solution

which r; < w; for eachi. We will call this thenon- can be found in this case. Then we consider extensions to
uniform load balancingroblem:; this problem too can Problems where the jobs have different needs.

be encoded in the single-source unsplittable flow prob- i

lem, with the upper bounds appearing as capacities. Uniform Load Balancing

We first show that a fairest allocation vector for the uni- The uniform fair load balancing problem can be restated

form load balancing problem can be computed in polyno- as follows. We want to assign jobs to machines, and choose

mial time. This can be viewed as a natural analogue of aload/; for each jobyj so that the following two conditions

Megiddo’s result to a setting with unsplittable assignments; hold. First, if A(i¢) denotes the set of jobs assigned to ma-

the tractability of the problem comes essentially from its chine;, we must have that_,. ,,, ¢; < 1. Second, the

connection with bipartite matching, althoughitis important set of allocated loads sorted from smaller to larger should

to note that the allocations in the optimal fractional and in- be lexicographically maximal.

teger flows are not the same. If we are givenan assignment of jobs to machines the
Finding a fairest allocation for the non-uniform load bal- corresponding fair loads are very easy to compute:

ancing problem is NP-complete; indeed, even determining

whether every job can e_lchieve Its upper boupds an NP- fairest allocation load is to assign loa} = di to job j,
complete proble.m considered py L.enstra, Shmoys, and Tar—Where jobj has been assigned to a machihé with d; =

dos [10]. We give a polynomial-time algorithm that pro- 1A@).

duces a prefix-suri-approximation to the fairest alloca-

tion. The approximate allocation we produce is (following This lemma simply represents the constraintimposed by the
our discussion above) in max-min equilibrium. We begin equilibrium condition f). Our goal is now to optimize over
from a fairestfractional allocation of jobs to machines — all assignments of jobs to machines. Based on Lemma 2.1,
here the allocation of one jolf; can be spread over sev- our primary objective is to minimizé,,., = max; |A(i)],

eral machines in its sef; — computed via Megiddo’s al- the maximum number of jobs that go on the same machine.
gorithm. We then build on the fractional rounding algo- Our secondary objective function is to have as few jobs as
rithm in [10] to obtain the approximation. Our prefix-sum possible assigned to such highly loaded machines, and so
approximation in fact shows a type of integrality gap in this on. We obtain the following equivalent formulation of the
multi-coordinate setting; it is a prefix-su2rapproximation ~ load balancing problem. In an assignméntet d; denote

to the optimal fractional allocation. We will describe simple the number of jobs assigned to machig; corresponding

Lemma 2.1 Given an assignment of jobs to machines, the

examples in which there cannot be a coordinate-@ige- to the standard view of assignment problems in terms of
approximation to this fractional optimum. bipartite graphs, we will also refer @, as thedegreeof

Organization. The remaining three sections of the paper Lemma 2.2 The uniform fair load balancing problem is
can be read independently. Section 2 develops the algo-equivalent to finding an assignmeftso that the sequence
rithms for the load balancing problem without relaxing the of degreesd; for i = 1,...,m when sorted from large to
equilibrium condition f). In Section 3 we consider the smallis lexicographically as small as possible.

We will use 7 more generally to denote a possibly par- have that
tial assignment of jobs to machines; we wrjtg| to de-
note the number of jobs assigned By We say thatF is Ta < fapr +2faq0 +3fqus + o,
a (partial)assignment of maximum degréef the maxi-
mum number of jobs assigned to a maching,iand F is ra = farr +2fare + 3 ars £
amaximum assignmewnf degree at mosi if the number Proof. To see the first statement, we can delete edges out of
of unassigned jobs is the least possible among all assign++’ to create a matching of maximum degreeWVe need to
ments of degree at mogt Given any assignmetft of jobs deletei edges from each machine with degree i, so the
to machines of degree at mastwe can use augmenting right hand side is the number of unassigned jobs at the end
paths to find a maximum assignmefit of degree at most of this process. This is at least by the definition ofr,.

d. We will refer to this process asUSMENT(F,d). Our To see the second statement we use the lemma above.
load balancing algorithm starts withy = @, and defines Deletingi edges from each machine of degrée- i, we
Fia=AUGMENT(F,-1,d) iteratively ford = 1,2,... until recreate the degree sequenceff hence the number of

all jobs get assigned. The assignment at termination is therjobs unmatched at the end of this process is exagtly=
returned; we denote this assignmegrit k—|Fy. m

The assignment found hf’=AUGMENT(F, d) has the _ . o .
following properties. First, all jobs assigned.fare also ~ The lemma immediately implies that the assignmehis
assigned inF’. Second, ifd; and d; denotes the degree Optimum.

H H H ! /
of machinel; in assignments” and 7 thend; < d;. Theorem 2.5 The algorithm above finds the optimum as-
Both of these properties follow from the augmenting path signment of jobs to machines for the load balancing prob-
algorithm: augmenting paths never use the backwards edgefz

: . : em.
leaving the sink or entering the source.
These two properties imply that the final assignnmght Non-Uniform Load Balancing
in a sense contains an optimum assignment for all degrees
d. Let d; be the number of jobs assigned to machidgby

the final assignmen*. Then we have the following. Next we consider a more general version of the fair load

balancing problem on machines. We will still assume that
machines are uniform, in that the maximum possible load
of each machine is the same. However, jobs will onder
be uniform.

Assume that we have arpper boundu; for the amount
of processing power a jopcan use. Now an assignment of
Proof. The first statement will follow from the monotonic- jobs to machines, and loads for each jobj, must satisfy
ity of the degrees during the augmentations. Consider asthe following.
signmentF,;. The augmentations done after this assignment (i) ¢; < u;.
will not decrease the degrees due to the monotonicity prop- (i) If A(i) denotes the set of jobs assigned to macthine
erty. HencelF,| < 3, min(d;, d). The right hand sideis ~Wwe musthave that®, ;) ¢; < 1.
the size of the assignment of maximum degdegbtained (iiif) The allocation of loads to jobs satisfies the max-min
by deleting edges fronF* entering nodes of degree more €quilibrium condition {): we cannot increase the load of
thand. The matchingF, is a maximum such matching, so One jobj with ¢; < u; withoutdecreasing the load of some

Lemma2.3 For all integers d we have that|F,;| =
>, min(d;, d). Further, if the degree of a machiriés less
thand in assignmentFy, then the degree will not change
throughout the rest of the algorithm.

we also have the opposite inequali| > ", min(d;, d). other jobj” that has/; < (;.
The second statement follows immediately from the first ~ We can think of this assignment problem as a flow prob-
one and the monotonicity of the degreas. lem in the following three-layer graph. We have a source

connected to nodes representemch of the machined/;

The essence of why this algorithmis optimal is contained With an edge of capacity. There is an edge of infinite ca-
in the following lemma. Letry = k — |F,| denote the pacity from machine nodeto job nodej if A; belongs
number of unassigned jobs in the maximum assignment ofto S;. Finally there is an edge from each jobdej to a
degreed. corresponding terminal; with capacityu;.

A fairest fractional flow [12] in this network corresponds
Lemma 2.4 Let F* be the assignment found the algorithm, to a fairest fractional assignment of job loads to machines.
andF’ some other assignment. For any degidet f; and Let f denote this fairest fractional assignment, and jete-
f7; denote the number of machines of degtee 7* and 7’ note the load of joly in f. We say that a job is integrally
respectively; let; denote the minimum possible number of assignedo machinel/; is the entire allocation of jopis to
unassigned jobs in an assignment of maximum degjréée machinei; otherwise, we say that it jsartially assignedo

those machines on which it receives a strictly positive allo- spreading the load of job across all machines. However,
cation. An assignmenf of jobs to machines imtegral if in any integer assignment, the fair load for that assignment
all jobs are integrally assigned I#y. At various points, we will have ¢; = 1/n; i.e., there is no way to approximate
will use the notatiom (:) to refer to the set of jobs assigned the optimal fractional fair load of job 1 in an integer assign-
to a machine\/;. ment.

For an integral assignment of jobs to machines, the We use Megiddo’s algorithm [12] to obtain a fairest
fairest allocation of loads can be computed on each ma-fractional flow f. We then use the rounding algorithm of
chine independently, and it has a very simple form that fol- Lenstra, Shmoys and Tardos [10] to create an integral as-
lows from the definition of max-min equilibrium. For areal signmentZ* from f. Let A(4) be the set of jobs assigned
numberz € [0,1], let B(z) be the allocation of loads to to machinel/; by F*, and let* denote the fair load of this
jobs in a setA () defined by allocatingnin(u;, z) to each assignment.
job j € A(i); thetotal load allocated byB(x) is the sum

ZjEA(“ min(u;, z). Then we have Theorem 2.8 ([10]) Assumef is a fractional assignment

of jobs to machines assigning lodg to job node;j. The

Lemma 2.6 The fairest allocation of load td () is B(z*), a.pproximation algorithm of [10] CONStTUCtS an integrgl as-
wherez* is the maximun € [0, 1] for which the totalload ~ signmentF* so that for each maching/;, A(i) consists
of B(xz)is< 1. of all the jobs that were integrally assigned id; by f,

) N plus at most one additional job that was partially assigned
The parameter* can thus be viewed asaitical load to M;. Sincef did not assign more tham unit of load

that caps the allocation to jobs whose upper bounds to any machine, we consequently havg_ ,,, 4; < 1+
too large. We can formulate this notion in a way that also max;e Az -

extends to fractional assignments of jobs to machines, as
follows. First we analyze the fair loads of the set of jobg) for

a single machind/;. Let j; denote the job with maximum
Lemma 2.7 In a (possibly fractional) assignment of jobs to load?; in A(i),

machines, the fairest allocation of loads to the 4¢t) has
the following property. The machinel; has an associated ~Lemma 2.9 The fair load of all jobs; € A(i) with the
critical loadm;; and the load of any jobj € A(i) is ¢; = possible exception of jop havel; < 2¢7.

min(m;, u;). For each machine, either the machine is fully
loaded, orm; = max(u;) over all j € A(3). Further, if
some jobj € A(i) does not achieve its upper boung,
then

Proof. We say that)M; is saturatedby f if some jobj
that was integrally assigned id; by f has a load; < u;.
Let m; denote the critical load (in the sense of Lemma 2.7)
) of machinel; in the fairest fractional assignmelfit We

NG b definem/, to bem; if M; is saturated byf; otherwise, we
definem) to be the maximum o ; over all jobs;j that were
integrally assigned td/; by f.

In the analysis, we consider the allocatiBm; /2) and

In our algorithm, we will construct an integral assign- Show that it has total loag 1. It then follows that any job
ment of jobs to machines, and then use the fairest allocatiorthat was integrally assigned fof; has integral fair load at
of load given by Lemma 2.6. Notice that finding the fairest Worst a factor of two smaller than its allocation in the frac-
assignment is NP-hard, as deciding if there is an assign-tional solution. Moreover, if’ € A(i) is the unique job that
ment in which all jobs can be assigned their maximum load Was partially assigned to/; by f, and its load decreases by
¢; = u; is a standard NP-hard scheduling problem [10]. ~ More than a factor of two, then we must hatye > m;,

Our goal will be to make the resulting loads closely ap- Whence;j’ is the job of maximum load, and constitutes the
proximate the load sequence of the fractional assignmentexceptional job in the statement of the lemma.
Instead of a coordinate-wise approximation of loads, we ~ Thus it remains only to prove tha#(m;/2) has total
will give a prefix-sum 2-approximation. We observe that it l0ad at mosti. To see this, we consider two cases, depend-
might not be possible to approximate the vector of fairest ing on whether or nof/; is saturated by. If M; is satu-
fractional loadsty, -, . .. with a fair integer assignment. rated, then some job that was integrally assigned/tas
Consider, for example, a problem in which we havena- ~ given loadm; by f; in B(m;/2) this job’s load decreases
chinesM, ..., M,. Assume that the first job can be as- DY m;/2 and creates enough room for one extra job with
signed to any machine, and has = 1. In addition to load at mostn; /2. If M; is not saturated, them; = w; for
this job, for each machina/;, there aren — 1 jobs with ~ Some integrally assigned jgbagain, in3(m; /2) this job’s
u; = 1/n that can only be assigned fd;. Now fraction- load decreases by /2, creating room for an extra job with
ally, we can assign each job its maximum Idgad= u; by ~ load at mosin;/2.m

That is,m; is the minimum load among jobs ad; that are
not able to achieve their upper bounds.

Theorem 2.10 Let éj‘ denote the load of joh in the as-
signment created by our algorithm. For eaktthe sum of
theh smallest loads oél‘j.‘ is at least a half of the sum of the
smallesth loads in the fairest fractional assignmefit

Proof. Sort the jobs by increasing order of their Io@ﬂ.
On each machiné/; the jobj; has the maximum fractional
load. This job will have maximum fair loat* among those
assigned tal/; by F*, and hence we can assume thais
the last among all jobs id (7). Assume for this proof that
the jobs are indexed in this order, ifg. < 5 <--- < (4.
Consider the prefix suny' = >°._, ¢4 for eachh. We

will show that these values 2-approximate the correspond-

ing optimum values. In particular we will show that for each
hwe have) ., {; < 2t;1. This implies the theorem: The
valuet;!, the sum of the smalleétloads in the algorithm’s
assignment, needs to be compared to the smdilgatues
in loads¢;, whereas here we compare it to a sehoflues
that may not be the smallest.

Consider the subset of the jolhshat are assigned to ma-
chineM;. We now show that

>

J<hJEA)

;<2

> o

J<hJEA()

To see this consider two cases. Ligtbe the index of the
job in A(z) with maximum load/;,. If j; > h then the in-
equality is true term by term due to Lemma 2.9,If< h
then our assumption that is ordered last ir(z) implies
that all jobs inA(%) participate in the sum. Now the state-

Fair Routings of Congestion Two

As a basic building block in the algorithm, we first estab-
lish the special case that if all terminals can be routed with
at most two paths on any edge, then the fairest unrestricted
allocation (which will be binary) can be computed in poly-
nomial time. We will say that a set of paths l@sgestion
twoif at most two paths use any edge.

The assumption that all terminals can be routed with
paths of congestion two implies that there is an unsplittable
flow sending .5 froms to each of the terminals.

Lemma 3.1 If .5 units of flow can be routed to all terminals
then the fairest unsplittable flow is a flow that routes either
.5 or 1 to each terminal, sending 1 to as many terminals as
possible.

Our goal in this special case can be rephrased as follows.
We wish to create paths from the source to each of the ter-
minals so that the following conditions hold.

(i) The set of paths has congestion two.

(ii) The number of paths that are involved in shared edges
is as small as possible.

Given such a routing we can send a flow of value 1 on
the paths that do not go through shared edges, and a flow of
value .5 on all other paths. The main theorem of this sub-
section gives a way to find such paths in polynomial time,
and also shows that there is such a routing in which the cor-
responding unsplittable flow is a maximum flow franto
the terminals.

ment follows from Lemma 2.8 as the sum of the loads in the Theorem 3.2 Assume there are paths frogrto the termi-

fractional assignment is bounded by

>

J<h,jEA(E)

¢; <14 max ¢; <2.
JEA(D)

Summing over all machine&/; we get the desired bound.
[

3 Single-Source Fair Routing in Graphs

In this section we give a 2-approximation to the fairest
unsplittable routing for the single-source fair flow problem
in arbitrary unit-capacity directed graphs. The problem is
specified by a directed graggh = (V, E), a sources € V,
and terminalsy, to, ..., ¢ € V (all edge capacities are 1).
We first show that théairest binary unsplittable floni.e.,
the most fair unsplittable flow whose allocation vector con-
sists only of inverse powers of 2, can be found in polyno-
mial time. Then we show that this binary fair flow is in

2-approximate equilibrium, and is also a coordinate-wise 2-

approximation to the fairest fractional flow.

nals with congestion two. Then there is a set of paths to the
terminals with congestion at most two, where the number of
paths that do not share edges with other paths is maximum
subject to this condition, and the corresponding flow is a
maximum flow from to the terminals. This set of paths can
be found in polynomial time.

Proof. Let m denote the maximum number of disjoint paths
from s to the terminals. Lelf denote a maximum integer
flow that sends at most 1 unit of flow to any terminal. For
notational simplicity assume that the flow is sent to termi-
nalst,...,ty, and letPy, ..., P, denote the paths used
by this flow, so that?; is a path froms to ¢;.

Let /' be the flow that corresponds to the paths to the
terminals with congestion two. The flojfif sends .5 units of
flow to each terminal. We plan to combine the flofisand
f to obtain the desired paths. Consider the fjgw f in the
residual graph of7 with respect tgf. A path decomposition
of this flow contains half-integral flow patt§$,, 11, . . ., Qx
where forj = m +1,...,k, Q; ends at terminat;, and
starts at one of the first terminals (a different one for each
path; notice that by our assumptions,> k/2).

The pathd, ..., P, andQ@ 11, - - ., Q satisfy the fol- creases the number of distinct meetings between a path in
lowing. {P1,..., Py} and a path i{Qm+1,...,Qx}: before the

(i) The pathsP; are disjoint. re-routing, patht); met some other path;; before meeting

(if) The pathsQ; do not use edges of the; paths for- P;, and this meeting is now eliminateds

wards, but may use them backwards. . . _ _
(iii) The paths@; have congestion at most two. For the next subsection we will need a version of this

Any set of path€),,,,1, . . ., Q5 that satisfies the lasttwo theorem that routes flows in smaller units. For some integer

properties can be used to augment flow alongRhpaths. ~ > 0letwv, denote the maximu'm value of afI(_)Wthat sends
By sending .5 units of flow along each path we geta at most1/v flow to each terminal. By consudermg each
maximum flow (of valuen) that sends at least .5 units of €dge as a set of parallel edges we get the following.
flow to each terminal. However, this is not an ulitsable
flow as the augmentation might cause one unit of flow from
stot;, for somei < m, use two paths.

If there is a sef5 of 2m — k of the paths?; with the prop-
erty that the); don’t use backward edges from aRy € S,
and don't start at the terminal associated with @y S,
then we can use each of ttyg paths to augment the floyv
by .5 without affecting the one unit of flow sent along those
P; that belong toS. This means that we get the desired
maximum unsplittable flowf”’, and a path decomposition
of this flow gives the paths claimed by the theorem.

Our goal is thus to modify the patt@; for j = m +
1,...,k so as to satisfy the assumption above:

Corollary 3.3 Assume there is a flow that routég(2+)
units of flow froms to each of the terminals, then there is an
unsplittable flow that route$/(2v) or 1/~ units of flow to
each terminal and has valus,.

Constructing a Binary Allocation

In this subsection we show how to construct the fairest
binary flow in polynomial time, using the algorithm of
Corollary 3.3. Let2~¢ be the maximum power of two such
that there is a flow of valug—¢ from s to all of the terminals
t;. The lexicographic definition of the fairest binary flow
implies that we must send at le&st¢ units of flow to each

o If a path Q] uses one of the edges in the pam’s terminal. We use the Corollary 3.3 W|t‘h: 2(:_.1 to f|nd
backwards (i.e., uses the residual edge), then the corflow paths from the source to each of the terminals. $.et

responding terminal; is an endpoint of a (possibly —denote thes-side of a minimum cut of value,. If there are
different) pathQ;. many such min-cuts, lef. be the inclusion-wise minimal.

(We will frequently identify cuts with theig-sides, hence

Once we have such paths we can use the argument above t@ferring toS, as a cut.) From the paths obtained above we
obtain the theorem. keep only the parts after leaving the dit, and will recur-

We will modify the paths using a process that is similar sively find beginning parts that match up with these paths.
to the Gale-Shapley stable marriage algorithm [4]. (Indeed, There are two facts that we need about the inclusion-wise
we can carry out the remainder of the proof through a re- minimal min-cutS.. First, any maximum flow saturates the
duction to the stable marriage problem; however, we feel it edges leavings.. Second, no terminal thaeceived only
is simpler here to provide a direct argument.) We say that 2~¢ flow in the routing above is contained #. This latter
pathsP; and@Q; meetif (); has the terminal; as an end- statement follows as the minimum c8i consists of nodes
point, or if a contiguous segment 6f; consists of back- reachable in the residual graph framand if a terminal
ward edges fromP;. Note that there may be many such with only 2~ ¢ flow were reachable, then its flow could be
meetings, in this sense, between the same pair of gaths increased.
and@);. Suppose a path; meets a patld);, butt; is notan The first observation allows us to define the following
endpoint of any patky, . If there are many paths that meet smaller problem that we solve recursively. Let the graph
P;, then letQ); be the path that meet3 at an edge closest G’ be obtained frontz by considering the subgraph ¢h
to its terminalt;. We change); so that it begins from this and adding to this graph all the edges leaufhig We keep
terminalt;, and continues along the backward edge®of all terminals inS,, and replace the terminals outside%f
until the meeting poing; it then continues as before. This by 2°~! new terminals at the end of each of the edges en-
re-routing of a patld); leads to an alternate set of paths that tering S.. The second property of. implies that in the
also satisfies the above properties, and hence can also beew problem there is a flow that ser@fs“*! units of flow
used for augmentation. from s to each of the terminals i@’. Each edge leaving.

We repeat this process until there are no pairs of pathshas2°~! new terminals, and so if each of these terminals
P; andQ; that satisfy the condition above. We now want receive2~*! flow then the cutS. has to be saturated.
to argue that this process terminates; for when it does, we Recursively we obtain a fairest binary flo¥on the sub-
have the set of augmenting paths needed to find the flowproblem onG’. We obtain the solution to the original prob-
f”. To show termination, note that each re-routing de- lem by taking the flow paths of the floW to the terminals

in S.. The flow paths to the new terminals at the end of
the edges leaving,. are combined with the segments of

of flow. If for each terminak; that receives somé; > «
flow we delete fromf’ d; — « units of flow froms to ¢;,

the paths obtained in the first iteration to obtain the desiredthen we obtain a flovf/, of valuev,.

paths and flow.
It is not hard to show by induction onthat the flow
created this way is the fairest binary flow.

Theorem 3.4 The algorithm given above constructs a
fairest binary flow.

A simple corollary of the construction is the following.

Corollary 3.5 There are nested cuts. forc = 1,2,..,,
such thatS. C S.., for all values ofc, S. = V for a suf-
ficiently large value ot, and the following property holds.
In a fairest binary flow, all terminals i%; receive 1 unit of
flow, and all terminals inS.;1 — S, receive eitheR=< or
2—<+1 units of flow.

The Overall Approximation Guarantee

Now consider the problem of finding an approximate fair
flow. Our algorithm finds the fairest binary flow. We claim
here that this flow satisfies our approximation guarantee.

Theorem 3.6 The fairest binary flow is in 2-approximate
equilibrium.

Proof. We use Corollary 3.5 for the proof. Suppose a termi-
nalt; receive2~¢ units of flow. We need to prove that we
cannot increase the flow tpwithout decreasing the flow to
some other terminal; that receives at mogt <! units of
flow. Consider the cuf. in the Corollary. The terminal is

on the sink side of... The cutS. is saturated, so we cannot
increase the flow te; without decreasing some other flow
across the cuf,.. However, all terminals on the sink side of
S, receive at mos2—<*! units of flow. m

Itis easy to see that the fairest binary flow is a prefix-sum
2-approximation of the fractional fair flow. This fact fol-

lows essentially as the fairest binary flow saturates the cutspyof.

S, of Corollary 3.5. We need to use more about Megiddo’s
optimal fractional flow algorithm to see that the binary flow
is in fact a coordinate-wise 2-approximation of the fairest
fractional flow.

Theorem 3.7 The fairest binary flow is a coordinate-wise
2-approximation to the fairest fractional flow.

Proof. Consider the fairest fractional floy/. For any value

a let T,, denote the set of terminals that receive at least
flow. Megiddo proved the fairest fractional flow is a max-
imum flow from s to each of the set%,, simultaneously.
This implies the following analogue of Lemma 2.3. For a
valueq let v, denote the maximum value of a flow fronto
the terminals, where each terminal receives at mastits

Let {S.} denote the cuts of Corollary 3.5. We get the
claimed coordinate-wise 2-approximation if we show that
the fairest fractional flowf’ must send at mogt°*! units
of flow to every terminal outside of.. We prove this by
contradiction. Let be such that some termingloutside of
S, received somd; > 27 ¢! units of flow in f’. Leta =
2-¢*1 and consider the flow’,. By our assumptiory”,
does not saturate the cif. The fairest binary flow shows
that the maximum flow value, is equal to the capacity
of the cutS. plus « times the number of terminals ifi..
However, f/, does not saturate the ci§t, and hence has
smaller value than,. This contradiction proves that
must have sent at mo®t °*! units of flow to each terminal
outside ofS.. ®

4 The NP-Completeness of Fairest Allocation

We formulate here a decision problem associated with
computing a fairest routing, and show that it is NP-
complete. The reduction is somewhat complicated for the
following reason: We are dealing with a single-source flow
problem with unit capacities, and to obtain an NP-complete
problem here, one typically needs to introduce terminals
with different (unsplittable) demand values. Lacking a no-
tion of demand in our problem, we must simulate such de-
mands using the constraints imposed by the equlibrium con-
dition (t).

Theorem 4.1 The following problem is NP-complete:
given a single-source routing problem with a unit-capacity
directed graphG, sources, terminals{¢;}, and an allo-
cation vectorr*, is there a routing of the terminals whose
equilibrium allocationvectorr satisfies* < r? (l.e.r is

at least as fair as*.)

The problem is in NP since we can exhibit the
paths in such a routing, and in polynomial time compute its
equilibrium allocation vector in order to compare itta

To show NP-hardness, we reduce from a special case
of the non-uniform load balancing problem considered by
Lenstra, Shmoys, and Tardos [10]. We have a set of
jobs J {J1,...,Jk}, and a set of machinesd/
{My,...,M,}, for each jobJ;, there is a sef; C M on
which J; can be run. Each joBs; has arequirement-; with
the property that each is equal to eithet or 1; we wish to
assign each job; to a machine irb; so that the sum of the
requirements assigned to each machine is at mastore-
over, our instance has the property that r; = n — that
is, the total of the requirement values is equal to the number
of machines. So the feasibility condition indeed requires

source s

jobiofreql uj

O jobjofreq1/2

Um

machinem € S term.t7

k terminalswy, . . ., wy four terminalst;, ..., ¢;4

..

subgraph/i;

Figure 1. The NP-completeness reduction

that each machine receives either a single job of require-edgesv,,, w) for eachk.

ment1 or two jobs of requirement. Let J’ C J denote

the jobs of requirement, and letJ” C J denote the jobs This defines the “core” of the construction, through
of requirement}; we writek’ = |J’| andk” = |J”|, and which we encode the condition that jol can only be as-
observe that our conditioh, r; = n can be expressed as signed to a machine if;. Moreover, if we view this por-

K +E'/2=n. tion of the graph in isolation, we can observe the following:
Since there are only edges entering, andk terminals at

w, we know that the fairest allocation for these terminals
would havek’ entries equal td andk” entries equal td,

as we want. However, we have not yet controlled which
“job nodes” get the valué, and which getl. This is what
we accomplish in the remainder of the construction.

We construct the following single-source fair routing
problem to encode this decision problem. We refer the
reader to Figure 1 for the overall layout of the construc-
tion. For simplicity of presentation, we will describe cer-
tain nodes asontainingseveral terminals; if we wish each
terminal to be identified with a distinct node, we can attach

each of them via a new degree-amade. For each jobJ; with a requirement ofi, we at-

For each job/;, we create nodes; andw, with edges tach a subgrapht/; containing a total of six terminals
(s,u;) and (u;,u’;). For each machiné/,,, we create a t},t/,¢;1...,t;4 as shown in Figure 1. We do not create
nodev,,,, and edgesu’;, vy,,) for each pair(j,m) such that anything additional for the jobs with requirement Thus
machine)M,,, belongs to the sef;. We also create a sin- the complete set of terminals is the $et; }, together with

gle nodew that will hold k£ terminalswy, . . ., ws, and add the six terminals from each of thaetsgraphs;.

The subgrapl; is designed to achieve the following
effect. The four terminals at will each get an allocation
of 1/4; if one path bound fot; passes througeach ofq’
andg;, then each of’; andt/ will get an allocation of3 /4.
Finally, two paths bound fot; can pass through the edge
(uj,uf), leaving room for a path bound for a terminal at
w to receive an allocation df/2. Thus, overall, the fairest
allocation will allow a single path t@ to get a value of /2.
Note that for edgeéu;, u;) with no subgraphf/; attached,
on the other hand, we can have a single path toith an
allocation ofl.

We now make this precise. Defimé to be a vector con-
sisting of4k” entries equal ta /4, k" entries equal td /2,
2k’ entries equal t8/4, andk’ entries equal td. If there

is a feasible allocation of jobs to machines in the original

e There arek” mixed edges of the forrtu;, u’); these
are associated with indicgsfor which J; has requirement
1/2, and on each one, there is a single patlund forw
with a flow of 1/2.

e There arék — k" = &’ pure edges of the forru;, u);
these are associated with indige®r which J; has require-
ment1, and on each one, there is a single gathind forw
with a flow of 1.

Hence for each edge:}, v,,) that carries positive flow,
we can assign jold; to machinel,,, ; this will be a feasible
assignment of jobs to machines in the original load balanc-
ing problemm

References

load balancing problem, then itis easy to constructarouting[1] Y. Afek, Y. Mansour, Z. Ostfeld, “Convergence com-

whose equilibrium allocation satisfies* < r. We have a

path(s, u;, u};, vm,w) for each jobJ; assigned to machine

M,,, with an amount of flow equal to the requirement of

job J;. We have two pathss, u;, u’, g;, t;), carrying flow
1/4 each, for each jold; with requirement /2; these serve
to saturate the edge;, u’;). The other two terminals oty
will have paths through; andq’/ respectively, carrying/4
units of flow; and the terminalg; andt/ can then receive
3/4 units of flow each on their unique paths fram

plexity of optimistic rate based flow control algorithms,”
Proc. 28th ACM STOC1996.

[2] D. Bertsekas, R. GallageBata Networks Prentice-
Hall, 1987.

[3] V. Dinitz, N. Garg, M. Goemans, “On the single-source
unsplittable flow problem,”Proc. 39th IEEE FOCS
1998.

Conversely, suppose there is a routing whose equilibrium[4] D- Gale, L. Shapley, “College Admissions and the Sta-

allocationr satisfies* < r. The vector- can only contain

bility of Marriage,” Amer. Math. Monthl$9(1962).

at mosti” entries equal td/4, so these must be associated [5] j. Jaffe, “Bottleneck flow control JEEE Trans. Com-

with all the terminals of the forni; ;. Also, r can only
contain at mosk” entries equal td /2, so these must be
associated with paths that pass throdgli2 of the edges
intow. All the remaining terminals must get a flow value of
at least3/4 — this therefore consists of of terminals of the
formt’,¢7, as well ag’ of the terminals atv.

Each terminal of the fornt, ¢’ must get at least a flow of
3/4, so at most one path bound fgrcan pass througéach

of ¢ andq}. Hence at least two of these paths must pass

through the edgeu;, u’;). We claim thatin fact exactly two
of these paths pass throughch such edgéu;, v;) (and
hence exactly one passes throwgith ofg; andg;). For
suppose that at least three passed thrqughu}). Then
no terminal bound forw could use(u;, u’;), and so some
edge(uy, uy) would carry two paths bound fas, each with
a flow of 1/2; therefore, it would follow that no terminal
fromt, could make use of the edge,, v}), and this would
force more than one path bound fgrto pass through one
of ¢, or ¢/, a contradiction.

Thus, %’ of the terminals atv get a flow value equal to
1, so we observe that at leaist of the edges of the form
(uj,u}) must carry a single path only. We will call these
pureedges, and the other edges of the fg¢up, u;) mixed

We have therefore established the following two proper-

ties of our routing with allocation at least as fairrds

munication 29(1981), p.p 954-962.

[6] R.M. Karp, “On the computational complexity of com-
binatorial problems,Networks5(1975), pp. 45-68.

[7] F. Kelly, “Charging and rate control for elastic traffic,”
European Trans. Telecommunicatid{8997).

[8] J. Kleinberg, “Single-source unsplittable flow,”
Proc. 37th IEEE FOCS1996.

[9] S. Kolliopoulos, C. Stein, “Improved approximation
algorithms for unsplittable flow problemsProc. 38th
IEEE FOCS 1997.

[10] J.K. Lenstra, D. Shmoy£. Tardos, “Approximation
algorithms for scheduling unrelated parallel machines,”
Proc. 28th IEEE FOCS1987.

[11] A. Mayer, Y. Ofek, M. Yung, “Approximating max-
min fair rates via distributed local scheduling with partial
information,”Proc. IEEE INFOCOM 1996.

[12] N. Megiddo, “Optimal flows in networks with sources
and sinks,Math Programming’(1974).

[13] S. Plotkin, “Competitive Routing in ATM networks,”
IEEE J. Selected Areas in Communicatioh895.

