
Fairness in Routing and Load Balancing

Jon Kleinberg∗ Yuval Rabani† Éva Tardos‡

Abstract

We consider the issue of network routing subject to ex-
plicit fairnessconditions. The optimization of fairness cri-
teria interacts in a complex fashion with the optimization of
network utilization and throughput; in this work, we under-
take an investigation of this relationship through the frame-
work of approximation algorithms.

In a range of settings including both high-speed net-
works and Internet applications,max-min fairnesshas
emerged as a widely accepted formulation of the notion of
fairness. Informally, we say that an allocation of bandwidth
is max-min fair if there is no way to give more bandwidth
to any connection without decreasing the allocation to a
connection of lesser or equal bandwidth. Given a collec-
tion of transmission routes, this criterion imposes a cer-
tain equilibrium condition on the bandwidth allocation, and
some simple flow control mechanisms converge quickly to
this equilibrium state. Indeed, the vast majority of previ-
ous work on max-min fairness has focused on this issue of
associating rates with connections that are specified by a
fixed set of paths. Very little work has been devoted to un-
derstanding the relationship between the way in which one
selects paths for routing, and the amount of throughput one
obtains from the resulting max-min fair allocation on these
paths.

In this work we consider the problem of selecting paths
for routing so as to provide a bandwidth allocation that is as
fair as possible (in the max-min sense). We obtain the first
approximation algorithms for this basic optimization prob-
lem, for single-source unsplittable routings in an arbitrary

∗Department of Computer Science, Cornell University, Ithaca NY
14853. Email: kleinber@cs.cornell.edu. Supported in part
by an Alfred P. Sloan Research Fellowship, an ONR Young Investigator
Award, NSF Faculty Early Career Development Award CCR-9701399, and
BSF grant 96-00402.

†Computer Science Department, Technion — IIT, Haifa 32000, Israel.
Email: rabani@cs.technion.ac.il . Work at the Technion sup-
ported by BSF grant number 96-00402, by Ministry of Science contract
number 9480198, and by the Fund for the Promotion of Research at the
Technion.

‡Department of Computer Science, Cornell University, Ithaca NY
14853. Email:eva@cs.cornell.edu . Research partially supported
by NSF grant CCR-9700163, ONR grant N00014-98-1-058,and BSF grant
96-00402.

directed graph. Special cases of our model include several
fundamental load balancing problems, endowing them with
a natural fairness criterion to which our approach can be
applied. Our results form an interesting counterpart to ear-
lier work of Megiddo, who considered max-min fairness for
single-source fractional flow. The optimization problems in
our setting become NP-complete, and require the develop-
ment of new techniques for relating fractional relaxations of
routing to the equilibrium constraints imposed by the fair-
ness criterion.

1 Introduction

Fairness in routing. A basic problem in network opti-
mization is the efficient routing of traffic between pairs of
terminal nodesthat wish to communicate. One of the funda-
mental notions that arises in such a setting is that offairness;
we want to allocate bandwidth to the connections in a way
that does not unnecessarily “starve” any of them. Although
it is an intuitively natural concept, finding a concrete defini-
tion of fairness that captures the goals of efficient routing is
a subtle issue — we wish to prevent starvation of individual
connections in a way that allows all connections the oppor-
tunity to receive as large a bandwidth allocation as possible.

An elegant framework that has gained wide acceptance
in the networking community is the notion ofmax-min fair-
ness[2, 5] — it forms the basis for bandwidth allocation in
both high-speed networks and a range of Internet applica-
tions. It is defined via a type of equilibrium: An allocation
of bandwidths, orrates, to a set of connections is said to
be max-min fairif it is not possible to increase the allot-
ted rate of any connection while decreasing only the rates
of connections which have larger rates. In other words, no
connection can increase its bandwidth at the expense of con-
nections which are better off than it is. This turns out to be
equivalent to another natural definition of fairness — that
the list of allotted rates, when sorted in increasing order, is
lexicographically as great as possible. This lexicographic
definition allows one to directly compare different band-
width allocations, and speak of thefairestallocation.

The vast majority of work on max-min fairness has fo-
cused on the setting in which connections are specified by a

fixedset of paths, and one wants to associate rates with these
paths. It is easy to show that the max-min fair allocation for
a fixed set of paths is unique, and a number of simple, ef-
ficient algorithms have been developed to compute this al-
location (e.g. [1, 2, 5]). A wide range of network routing
protocols employ such algorithms to enforce max-min fair-
ness (or a close approximation) on the paths used for routing
connections. Note that all of this takes place, however,after
the paths themselves have been chosen; very little work has
been devoted to understanding the relationship between the
way in which one selects paths for routing, and the amount
of throughput one obtains from the resulting fair allocation
on these paths. Suppose we want to select paths for rout-
ing so as to provide a bandwidth allocation that is as fair as
possible (in the max-min sense); how should we go about
doing this? Megiddo [12] addressed this problem in the set-
ting of single-source fractional flow, in which flow must be
sent fractionally to a collection of terminals from a common
source, and provided an elegant polynomial-timealgorithm.

In this work, we consider the setting in whicheach
connection must be routed on a single path — i.e. we
seek anunsplittable flow. The single-source case here
presents qualitatively new issues from those encountered in
Megiddo’s setting, for we can show that the fundamental
analogue of his problem is now NP-complete. A number
of basic load balancing problems arise naturally as special
cases of this single-source unsplittable flow model. We ob-
tain the first approximation algorithms for the problem of
optimizing over path selection to provide the fairest possi-
ble routing. The issues that arise in this framework turn out
to involve a number of interesting and very basic trade-offs
between the throughput and the type ofequilibrium con-
straints imposed by max-min fairness.

We now provide a concrete formulation of these opti-
mization problems, and then summarize our results in more
detail.

Formulating the problem: Max-min fairness and ap-
proximation guarantees. We seek routings from a com-
monsourcenode to a collection of terminals in a network.
A routing, in the present framework, consists of two com-
ponents — the choice of paths that the traffic will use, and
the allocation of available bandwidth on these paths to the
different connections. Thus, letG = (V, E) be a directed
graph with a capacityce ≥ 0 on each edge. We designate a
sources ∈ V and a set ofterminalst1, . . . , tk ∈ V . A rout-
ing of the terminals consists of a set of paths{P1, . . . , Pk}
— with Pi a path froms to ti — and anallocation vector
r = (r1, r2, . . . , rk). We view thes-ti connection as being
assigned pathPi, with bandwidth allocation, or rate,ri. We
say that this routing isfeasibleif, for all edgese, the total
bandwidth allocated for paths usinge is at mostce; that is,
the sum ofri over allPi containinge is at mostce.

One can derive max-min fairness from the following in-
tuitive approach to finding the “fairest” allocation: One
should first make sure that the minimum bandwidth given
to any connection is as large as possible; then, ignoring
this “minimum” connection, one should make sure that the
minimum bandwidth given to any of the connections that
can still get additional bandwidth is as large as possible;
and so on. More formally, given twok-tuples of num-
bersz = (z1, . . . , zk) andz′ = (z′1, . . . , z′k), each innon-
decreasing order, we say thatz lexicographically dominates
z′ if z = z′, or there is some indexj for whichzj > z′j and
zi = z′i for all i < j. Given two allocation vectorsr andr′,
we say thatr is as fair asr′ (writtenr′ � r) if the sorted or-
der of the coordinates ofr lexicographically dominates the
sorted order of the coordinates inr′. We will say thatr and
r′ areequivalentif both r′ � r andr � r′. This relation
defines a total order on the equivalence classes of alloca-
tion vectors; the vectors in the unique maximal equivalence
class under� are thus thefairestallocations.

One can also use the following equivalent definition of a
routing with allocation vectorr being “fairest” in the max-
min sense: There is no way to increase any entryri without
decreasing some other entryrj such thatrj ≤ ri.

As we discussed above, max-min fairness in the net-
working community has been applied primarily to the set-
ting in which one is given not only a set of connections
in a network, but also the paths{Pi} that they are to use.
Thus the only issue is to determine the allocation vector,
which is unique in this case; and this can be accomplished
by a variety of efficient algorithms (see e.g. [1, 2, 5]). Net-
work protocols that employ max-min fairness thus enforce
the followingmax-min equilibriumcondition:

(†) For any routing with paths{Pi} and allocation
vectorr, r must be a fairest allocation given the
pathsPi.

The crucial issue raised in the discussion above is then
the following. We wish to choose paths for routing a set
of connections, with the bandwidth allocation vector then
uniquely determined by the equilibrium condition (†). The
amount of bandwidth utilization in a fairest allocation de-
pends heavily on the set of paths{Pi} that one chooses;
some choices of paths allow for much greater fair utiliza-
tion of the network than others. The fundamental question
we seek to address is that of determining the fairestrout-
ing, optimizing over all possible choices of paths, with the
allocation vector determined by (†). For example, does the
fairest routing achieve the maximum possible throughput of
any routing? This was the precise problem considered by
Megiddo [12] in the context of the single-sourcefractional
flow problem, in which all connections share a common
endpoint, but one can divide the flow for a single connec-
tion fractionally over many paths. In addition to providing

a polynomial-time algorithm for computing a fairest rout-
ing, he showed that the fairest flow is a maximum flow —
with fractional flow, one does not sacrifice throughput by
imposing fairness.

In this work, we focus on the analogous problem, com-
puting a fairest routing, in the setting of single-source un-
splittable flow [3, 8, 9]. Once we move to unsplittable flow,
the basic problem becomes NP-complete, even in theunit-
capacitycase with allce equal to1. More precisely, we can
prove that the following decision problem is NP-complete
in the unit-capacity case: givenG, s, the terminals{ti}, and
a vectorr∗, is there a routing of the terminals for which the
allocation vectorr satisfiesr∗ � r? (Additionally, we can
show that the fairest flow need not be a maximum unsplit-
table flow.)

In view of this NP-completeness result, we focus on ob-
taining both general approximation algorithms and exact al-
gorithms for polynomial-time special cases. The optimiza-
tion problems here are over the ordering on allocation vec-
tors defined by fairness — hence, since there is no single nu-
merical measure, we must be careful in how we define our
notion of approximation to the optimum. We propose the
following two natural definitions of approximation. First,
we say thatr is acoordinate-wisec-approximation tor∗ if
for eachj, thejth smallest entry inr is at least1/c times
the value of thejth smallest entry inr∗. As a weaker no-
tion, we say thatr is aprefix-sumc-approximation tor∗ if
for eachj, the sum of thej smallest entries inr is at least
1/c times the sum of thej smallest entries inr∗. In other
words, a prefix-sum approximation ensures that the subsets
of terminals with the smallest allocations receive sufficient
bandwidth.

When we move to approximate solutions, it is very im-
portant that we can keep in mind that the equilibrium con-
dition (†), or a relaxed version of (†), serves as an addi-
tional feasibilityrequirement on the solutions we can pro-
duce: in effect, we are able to choose only the pathsPi,
for then the network uses (†) to enforce the unique equilib-
rium allocation vectorr. (Of course, in the fairest routing,
the allocationr will necessarily be in equilibrium.) This
requirement rules out, for example, the following simple
approach based on the Dinitz-Garg-Goemans unsplittable
flow approximation algorithm [3]: compute the fairest frac-
tional flow using Megiddo’s algorithm, scale all resulting
allocations down by a factor of2, and route them as unsplit-
table demands. The problem is that these scaled demands
are generally very far from equilibrium for the paths used.
For example, if the fairest fractional flow has allocations
of widely varying magnitude, it is easy to find examples
in which the Dinitz-Garg-Goemans algorithm produces a
routing where flow paths with both small and large alloca-
tion share edges, and the allocation vector is arbitrarily far
from satisfying the equilibrium condition (†). All previous

single-source unsplittable flow algorithms [8, 9] exhibit the
same problem.

Summary of results: Routing. For the single-source un-
splittable flow problem on an arbitrary directed graph with
unit capacities, we indicated above that finding a fairest al-
location vector is NP-complete. We develop a general ap-
proximation algorithm for this problem by relaxing both the
optimality and the equilibrium requirements. First, what do
we mean by relaxing the equilibrium requirements? For a
constantc, we say that an allocation vectorr is in a state of
c-approximate equilibriumif it is not possible to raise the
value of an entryri without decreasing some other entryrj

such thatrj ≤ cri. Thus,1-approximate equilibrium indeed
corresponds to max-min equilibrium; we believe that ap-
proximate relaxations of these natural equilibrium notions
raise a number of interesting issues in their own right.

We give an algorithm that produces a routing whose allo-
cation is in2-approximate equilibrium, and is a coordinate-
wise 2-approximation to the allocation of the fairest frac-
tional routing.

We develop the algorithm by computing a fairest flow
for the following “discretized” version of the fairest rout-
ing problem. Suppose we only consider routings whose al-
location vectors have entries that are all inverse powers of
two; we will call such routings and allocation vectorsbi-
nary. Then we can restrict our fairness ordering� to bi-
nary allocation vectors, and seek a fairest allocation of this
type. We show how to find a fairest binary routing in poly-
nomial time, for the single-source unsplittableflow problem
on an arbitrary unit-capacity directed graphG. It is not dif-
ficult to show that the fairest binary routing we obtain is
both a coordinate-wise2-approximation to the unrestricted
fractional optimum, and in a state of2-approximate equilib-
rium.

We find the existence of a polynomial-time algorithm for
fairest binary routings somewhat surprising, given that the
same problem for unrestricted routings is NP-complete. As
a basic building block in the algorithm, we first establish the
special case that if all terminals can be routed with at most
two paths on any edge, then the fairest unrestricted routing
(which will be binary) can be computed in polynomial time.
We then apply this result over increasingly large cuts in the
graphG to piece together an optimal binary flow.

A natural problem is to provide a good approximation to
the fairest unsplittable routing in an arbitrary directed graph
without relaxing the equilibriumcondition (†); we leave this
as an open question.

Summary of results: Load Balancing. The setting of
single-source unsplittable flow contains a range ofload bal-
ancingproblems. We begin by providing algorithms for two

of the most natural of thesewithoutrelaxing the equilibrium
condition (†).
• First, the single-source unsplittable flow problem on

a two-level unit-capacity graph is equivalent to the
following load balancing problem: we have a set
of jobs J = {J1, . . . , Jk}, and a set of machines
M = {M1, . . . , Mn}; for each jobJi, there is a set
Si ⊂ M on which Ji can be run. Each machine
has the same “processing power.” We wish to assign
each job to a machine, and our fairallocation vector
r = (r1, . . . , rk) specifies the fraction of processing
power each jobJi receives on its assigned machine.
We will call this theuniform load balancingproblem.

• More generally, each jobJi can have anupper bound
ui on the amount of processing power it wants. In this
setting, we will only consider allocation vectorsr for
which ri ≤ ui for eachi. We will call this thenon-
uniform load balancingproblem; this problem too can
be encoded in the single-source unsplittableflow prob-
lem, with the upper boundsui appearing as capacities.

We first show that a fairest allocation vector for the uni-
form load balancing problem can be computed in polyno-
mial time. This can be viewed as a natural analogue of
Megiddo’s result to a setting with unsplittable assignments;
the tractability of the problem comes essentially from its
connection with bipartite matching, although it is important
to note that the allocations in the optimal fractional and in-
teger flows are not the same.

Finding a fairest allocation for the non-uniform load bal-
ancing problem is NP-complete; indeed, even determining
whether every job can achieve its upper boundui is an NP-
complete problem considered by Lenstra, Shmoys, and Tar-
dos [10]. We give a polynomial-time algorithm that pro-
duces a prefix-sum2-approximation to the fairest alloca-
tion. The approximate allocation we produce is (following
our discussion above) in max-min equilibrium. We begin
from a fairestfractional allocation of jobs to machines —
here the allocation of one jobJi can be spread over sev-
eral machines in its setSi — computed via Megiddo’s al-
gorithm. We then build on the fractional rounding algo-
rithm in [10] to obtain the approximation. Our prefix-sum
approximation in fact shows a type of integrality gap in this
multi-coordinate setting; it is a prefix-sum2-approximation
to the optimal fractional allocation. We will describe simple
examples in which there cannot be a coordinate-wiseO(1)-
approximation to this fractional optimum.

Organization. The remaining three sections of the paper
can be read independently. Section 2 develops the algo-
rithms for the load balancing problem without relaxing the
equilibrium condition (†). In Section 3 we consider the

single-source fair unsplittable flow problem on an arbitrary
unit capacity directed graph. We develop a general approxi-
mation algorithm for this problem by relaxing both the opti-
mality and the equilibrium requirements. Finally, Section 4
shows that the single-source unsplittable fair flow problem
is NP-complete on unit capacity directed graphs.

2 Fair Load Balancing Algorithms

The fair load balancing problemis concerned with as-
signing jobs to machines. Assume that we have a set
of jobs J = {1, . . . , k}, and a set of machinesM =
{M1, . . . , Mn}; and for each jobj, there is a setSj ⊂ M
on which jobj can be run. Anassignmentis a function
F : J → M so thatF assigns each jobj to a machine in
Sj . First we consider the special case of the uniform load
balancing problem, and show that an optimum fair solution
can be found in this case. Then we consider extensions to
problems where the jobs have different needs.

Uniform Load Balancing

The uniform fair load balancing problem can be restated
as follows. We want to assign jobs to machines, and choose
a load`j for each jobj so that the following two conditions
hold. First, ifA(i) denotes the set of jobs assigned to ma-
chineMi, we must have that

∑
j∈A(i) `j ≤ 1. Second, the

set of allocated loads sorted from smaller to larger should
be lexicographically maximal.

If we are given an assignment of jobs to machines the
corresponding fair loads are very easy to compute:

Lemma 2.1 Given an assignment of jobs to machines, the
fairest allocation load is to assign load̀j = 1

di
to job j,

where jobj has been assigned to a machineMi with di =
|A(i)|.
This lemma simply represents the constraint imposed by the
equilibrium condition (†). Our goal is now to optimize over
all assignments of jobs to machines. Based on Lemma 2.1,
our primary objective is to minimizedmax = maxi |A(i)|,
the maximum number of jobs that go on the same machine.
Our secondary objective function is to have as few jobs as
possible assigned to such highly loaded machines, and so
on. We obtain the following equivalent formulation of the
load balancing problem. In an assignmentF let di denote
the number of jobs assigned to machineMi; corresponding
to the standard view of assignment problems in terms of
bipartite graphs, we will also refer todi as thedegreeof
Mi.

Lemma 2.2 The uniform fair load balancing problem is
equivalent to finding an assignmentF so that the sequence
of degreesdi for i = 1, . . . , m when sorted from large to
small is lexicographically as small as possible.

We will useF more generally to denote a possibly par-
tial assignment of jobs to machines; we write|F| to de-
note the number of jobs assigned byF . We say thatF is
a (partial)assignment of maximum degreed if the maxi-
mum number of jobs assigned to a machine isd, andF is
a maximum assignmentof degree at mostd if the number
of unassigned jobs is the least possible among all assign-
ments of degree at mostd. Given any assignmentF of jobs
to machines of degree at mostd, we can use augmenting
paths to find a maximum assignmentF ′ of degree at most
d. We will refer to this process as AUGMENT(F , d). Our
load balancing algorithm starts withF0 = ∅, and defines
Fd=AUGMENT(Fd−1, d) iteratively for d = 1, 2, . . . until
all jobs get assigned. The assignment at termination is then
returned; we denote this assignmentF∗.

The assignment found byF ′=AUGMENT(F , d) has the
following properties. First, all jobs assigned inF are also
assigned inF ′. Second, ifdi and d′i denotes the degree
of machineMi in assignmentsF andF ′ then di ≤ d′i.
Both of these properties follow from the augmenting path
algorithm: augmenting paths never use the backwards edges
leaving the sink or entering the source.

These two properties imply that the final assignmentF∗

in a sense contains an optimum assignment for all degrees
d. Let di be the number of jobs assigned to machineMi by
the final assignmentF∗. Then we have the following.

Lemma 2.3 For all integers d we have that|Fd| =∑
i min(di, d). Further, if the degree of a machinei is less

thand in assignmentFd, then the degree will not change
throughout the rest of the algorithm.

Proof. The first statement will follow from the monotonic-
ity of the degrees during the augmentations. Consider as-
signmentFd. The augmentations done after this assignment
will not decrease the degrees due to the monotonicity prop-
erty. Hence|Fd| ≤

∑
i min(di, d). The right hand side is

the size of the assignment of maximum degreed obtained
by deleting edges fromF∗ entering nodes of degree more
thand. The matchingFd is a maximum such matching, so
we also have the opposite inequality|Fd| ≥

∑
i min(di, d).

The second statement follows immediately from the first
one and the monotonicity of the degrees.

The essence of why this algorithm is optimal is contained
in the following lemma. Letrd = k − |Fd| denote the
number of unassigned jobs in the maximum assignment of
degreed.

Lemma 2.4 LetF∗ be the assignment found the algorithm,
andF ′ some other assignment. For any degreed let fd and
f ′d denote the number of machines of degreed in F∗ andF ′

respectively; letrd denote the minimum possible number of
unassigned jobs in an assignment of maximum degreed. We

have that

rd ≤ f ′d+1 + 2f ′d+2 + 3f ′d+3 + . . . ,

rd = fd+1 + 2fd+2 + 3fd+3 +

Proof. To see the first statement, we can delete edges out of
F ′ to create a matching of maximum degreed. We need to
deletei edges from each machine with degreed + i, so the
right hand side is the number of unassigned jobs at the end
of this process. This is at leastrd by the definition ofrd.

To see the second statement we use the lemma above.
Deleting i edges from each machine of degreed + i, we
recreate the degree sequence ofFd, hence the number of
jobs unmatched at the end of this process is exactlyrd =
k − |Fd|.
The lemma immediately implies that the assignmentM is
optimum.

Theorem 2.5 The algorithm above finds the optimum as-
signment of jobs to machines for the load balancing prob-
lem.

Non-Uniform Load Balancing

Next we consider a more general version of the fair load
balancing problem on machines. We will still assume that
machines are uniform, in that the maximum possible load
of each machine is the same. However, jobs will no longer
be uniform.

Assume that we have anupper bounduj for the amount
of processing power a jobj can use. Now an assignment of
jobs to machines, and loads`j for each jobj, must satisfy
the following.

(i) `j ≤ uj .
(ii) If A(i) denotes the set of jobs assigned to machinei,

we must have that
∑

j∈A(i) `j ≤ 1.
(iii) The allocation of loads to jobs satisfies the max-min

equilibrium condition (†): we cannot increase the load of
one jobj with `j < uj without decreasing the load of some
other jobj′ that has̀ j′ ≤ `j .

We can think of this assignment problem as a flow prob-
lem in the following three-layer graph. We have a sources
connected to nodes representingeach of the machinesMi

with an edge of capacity1. There is an edge of infinite ca-
pacity from machine nodei to job nodej if Mi belongs
to Sj . Finally there is an edge from each jobnodej to a
corresponding terminaltj with capacityuj .

A fairest fractional flow [12] in this network corresponds
to a fairest fractional assignment of job loads to machines.
Let f denote this fairest fractional assignment, and let`j de-
note the load of jobj in f . We say that a jobj is integrally
assignedto machineMi is the entire allocation of jobj is to
machinei; otherwise, we say that it ispartially assignedto

those machines on which it receives a strictly positive allo-
cation. An assignmentF of jobs to machines isintegral if
all jobs are integrally assigned byF . At various points, we
will use the notationA(i) to refer to the set of jobs assigned
to a machineMi.

For an integral assignment of jobs to machines, the
fairest allocation of loads can be computed on each ma-
chine independently, and it has a very simple form that fol-
lows from the definition of max-min equilibrium. For a real
numberx ∈ [0, 1], let B(x) be the allocation of loads to
jobs in a setA(i) defined by allocatingmin(uj , x) to each
job j ∈ A(i); the total loadallocated byB(x) is the sum∑

j∈A(i) min(uj , x). Then we have

Lemma 2.6 The fairest allocationof load toA(i) isB(x∗),
wherex∗ is the maximumx ∈ [0, 1] for which the total load
of B(x) is≤ 1.

The parameterx∗ can thus be viewed as acritical load
that caps the allocation to jobs whose upper bounduj is
too large. We can formulate this notion in a way that also
extends to fractional assignments of jobs to machines, as
follows.

Lemma 2.7 In a (possibly fractional) assignment of jobs to
machines, the fairest allocation of loads to the setA(i) has
the following property. The machineMi has an associated
critical loadmi; and the load of any jobj ∈ A(i) is `j =
min(mi, uj). For each machine, either the machine is fully
loaded, ormi = max(uj) over all j ∈ A(i). Further, if
some jobj ∈ A(i) does not achieve its upper bounduj,
then

mi = min
j∈A(i):`j<uj

`j .

That is,mi is the minimum load among jobs onMi that are
not able to achieve their upper bounds.

In our algorithm, we will construct an integral assign-
ment of jobs to machines, and then use the fairest allocation
of load given by Lemma 2.6. Notice that finding the fairest
assignment is NP-hard, as deciding if there is an assign-
ment in which all jobs can be assigned their maximum load
`j = uj is a standard NP-hard scheduling problem [10].

Our goal will be to make the resulting loads closely ap-
proximate the load sequence of the fractional assignment.
Instead of a coordinate-wise approximation of loads, we
will give a prefix-sum 2-approximation. We observe that it
might not be possible to approximate the vector of fairest
fractional loads̀ 1, `2, . . . with a fair integer assignment.
Consider, for example, a problem in which we haven ma-
chinesM1, . . . , Mn. Assume that the first job can be as-
signed to any machine, and hasu1 = 1. In addition to
this job, for each machineMi, there aren − 1 jobs with
uj = 1/n that can only be assigned toMi. Now fraction-
ally, we can assign each job its maximum load`j = uj by

spreading the load of job1 across all machines. However,
in any integer assignment, the fair load for that assignment
will have `1 = 1/n; i.e., there is no way to approximate
the optimal fractional fair load of job 1 in an integer assign-
ment.

We use Megiddo’s algorithm [12] to obtain a fairest
fractional flowf . We then use the rounding algorithm of
Lenstra, Shmoys and Tardos [10] to create an integral as-
signmentF∗ from f . Let A(i) be the set of jobs assigned
to machineMi byF∗, and let̀ A

j denote the fair load of this
assignment.

Theorem 2.8 ([10]) Assumef is a fractional assignment
of jobs to machines assigning load`j to job nodej. The
approximation algorithm of [10] constructs an integral as-
signmentF∗ so that for each machineMi, A(i) consists
of all the jobs that were integrally assigned toMi by f ,
plus at most one additional job that was partially assigned
to Mi. Sincef did not assign more than1 unit of load
to any machine, we consequently have

∑
j∈A(i) `j ≤ 1 +

maxj∈A(i) `j.

First we analyze the fair loads of the set of jobsA(i) for
a single machineMi. Let ji denote the job with maximum
load`j in A(i),

Lemma 2.9 The fair load of all jobsj ∈ A(i) with the
possible exception of jobji have`j ≤ 2`A

j .

Proof. We say thatMi is saturatedby f if some jobj
that was integrally assigned toMi by f has a load̀j < uj.
Let mi denote the critical load (in the sense of Lemma 2.7)
of machineMi in the fairest fractional assignmentf . We
definem′

i to bemi if Mi is saturated byf ; otherwise, we
definem′

i to be the maximum ofuj over all jobsj that were
integrally assigned toMi by f .

In the analysis, we consider the allocationB(m′
i/2) and

show that it has total load≤ 1. It then follows that any job
that was integrally assigned toMi has integral fair load at
worst a factor of two smaller than its allocation in the frac-
tional solution. Moreover, ifj′ ∈ A(i) is the unique job that
was partially assigned toMi by f , and its load decreases by
more than a factor of two, then we must have`j′ > m′

i,
whencej′ is the job of maximum load, and constitutes the
exceptional job in the statement of the lemma.

Thus it remains only to prove thatB(m′
i/2) has total

load at most1. To see this, we consider two cases, depend-
ing on whether or notMi is saturated byf . If Mi is satu-
rated, then some job that was integrally assigned toMi is
given loadmi by f ; in B(m′

i/2) this job’s load decreases
by m′

i/2 and creates enough room for one extra job with
load at mostm′

i/2. If Mi is not saturated, thenm′
i = uj for

some integrally assigned jobj; again, inB(m′
i/2) this job’s

load decreases bym′
i/2, creating room for an extra job with

load at mostm′
i/2.

Theorem 2.10 Let `A
j denote the load of jobj in the as-

signment created by our algorithm. For eachh the sum of
theh smallest loads of̀Aj is at least a half of the sum of the
smallesth loads in the fairest fractional assignmentf .

Proof. Sort the jobs by increasing order of their load`A
j .

On each machineMi the jobji has the maximum fractional
load. This job will have maximum fair load̀A among those
assigned toMi by F∗, and hence we can assume thatji is
the last among all jobs inA(i). Assume for this proof that
the jobs are indexed in this order, i.e.`A

1 ≤ `A
2 ≤ · · · ≤ `A

ji
.

Consider the prefix sumtAh =
∑

j≤h `A
j for eachh. We

will show that these values 2-approximate the correspond-
ing optimum values. In particular we will show that for each
h we have

∑
j≤h `j ≤ 2tAh . This implies the theorem: The

valuetAh , the sum of the smallesth loads in the algorithm’s
assignment, needs to be compared to the smallesth values
in loads`j , whereas here we compare it to a set ofh values
that may not be the smallest.

Consider the subset of the jobsj that are assigned to ma-
chineMi. We now show that

∑

j≤h,j∈A(i)

`j ≤ 2
∑

j≤h,j∈A(i)

`A
j .

To see this consider two cases. Letji be the index of the
job in A(i) with maximum load̀ ji . If ji > h then the in-
equality is true term by term due to Lemma 2.9. Ifji ≤ h
then our assumption thatji is ordered last inA(i) implies
that all jobs inA(i) participate in the sum. Now the state-
ment follows from Lemma 2.8 as the sum of the loads in the
fractional assignment is bounded by

∑

j≤h,j∈A(i)

`j ≤ 1 + max
j∈A(i)

`j ≤ 2.

Summing over all machinesMi we get the desired bound.

3 Single-Source Fair Routing in Graphs

In this section we give a 2-approximation to the fairest
unsplittable routing for the single-source fair flow problem
in arbitrary unit-capacity directed graphs. The problem is
specified by a directed graphG = (V, E), a sources ∈ V ,
and terminalst1, t2, . . . , tk ∈ V (all edge capacities are 1).
We first show that thefairest binary unsplittable flow, i.e.,
the most fair unsplittable flow whose allocation vector con-
sists only of inverse powers of 2, can be found in polyno-
mial time. Then we show that this binary fair flow is in
2-approximate equilibrium, and is also a coordinate-wise 2-
approximation to the fairest fractional flow.

Fair Routings of Congestion Two

As a basic building block in the algorithm, we first estab-
lish the special case that if all terminals can be routed with
at most two paths on any edge, then the fairest unrestricted
allocation (which will be binary) can be computed in poly-
nomial time. We will say that a set of paths hascongestion
two if at most two paths use any edge.

The assumption that all terminals can be routed with
paths of congestion two implies that there is an unsplittable
flow sending .5 froms to each of the terminals.

Lemma 3.1 If .5 units of flow can be routed to all terminals
then the fairest unsplittable flow is a flow that routes either
.5 or 1 to each terminal, sending 1 to as many terminals as
possible.

Our goal in this special case can be rephrased as follows.
We wish to create paths from the source to each of the ter-
minals so that the following conditions hold.

(i) The set of paths has congestion two.
(ii) The number of paths that are involved in shared edges

is as small as possible.
Given such a routing we can send a flow of value 1 on

the paths that do not go through shared edges, and a flow of
value .5 on all other paths. The main theorem of this sub-
section gives a way to find such paths in polynomial time,
and also shows that there is such a routing in which the cor-
responding unsplittable flow is a maximum flow froms to
the terminals.

Theorem 3.2 Assume there are paths froms to the termi-
nals with congestion two. Then there is a set of paths to the
terminals with congestion at most two, where the number of
paths that do not share edges with other paths is maximum
subject to this condition, and the corresponding flow is a
maximum flow froms to the terminals. This set of paths can
be found in polynomial time.

Proof. Let m denote the maximum number of disjoint paths
from s to the terminals. Letf denote a maximum integer
flow that sends at most 1 unit of flow to any terminal. For
notational simplicity assume that the flow is sent to termi-
nals t1, . . . , tm, and letP1, . . . , Pm denote the paths used
by this flow, so thatPi is a path froms to ti.

Let f ′ be the flow that corresponds to the paths to the
terminals with congestion two. The flowf ′ sends .5 units of
flow to each terminal. We plan to combine the flowsf ′ and
f to obtain the desired paths. Consider the flowf ′−f in the
residual graph ofG with respect tof . A path decomposition
of this flow contains half-integral flow pathsQm+1 , . . . , Qk

where forj = m + 1, . . . , k, Qj ends at terminaltj, and
starts at one of the firstm terminals (a different one for each
path; notice that by our assumptions,m ≥ k/2).

The pathsP1, . . . , Pm andQm+1 , . . . , Qk satisfy the fol-
lowing.

(i) The pathsPi are disjoint.
(ii) The pathsQj do not use edges of thePi paths for-

wards, but may use them backwards.
(iii) The pathsQj have congestion at most two.
Any set of pathsQm+1 , . . . , Qk that satisfies the last two

properties can be used to augment flow along thePi paths.
By sending .5 units of flow along each pathQi we get a
maximum flow (of valuem) that sends at least .5 units of
flow to each terminal. However, this is not an unsplittable
flow as the augmentation might cause one unit of flow from
s to ti, for somei ≤ m, use two paths.

If there is a setS of 2m−k of the pathsPi with the prop-
erty that theQj don’t use backward edges from anyPi ∈ S,
and don’t start at the terminal associated with anyPi ∈ S,
then we can use each of theQj paths to augment the flowf
by .5 without affecting the one unit of flow sent along those
Pi that belong toS. This means that we get the desired
maximum unsplittable flowf ′′, and a path decomposition
of this flow gives the paths claimed by the theorem.

Our goal is thus to modify the pathsQj for j = m +
1, . . . , k so as to satisfy the assumption above:

• If a path Qj uses one of the edges in the pathsPi

backwards (i.e., uses the residual edge), then the cor-
responding terminalti is an endpoint of a (possibly
different) pathQj′.

Once we have such paths we can use the argument above to
obtain the theorem.

We will modify the paths using a process that is similar
to the Gale-Shapley stable marriage algorithm [4]. (Indeed,
we can carry out the remainder of the proof through a re-
duction to the stable marriage problem; however, we feel it
is simpler here to provide a direct argument.) We say that
pathsPi andQj meetif Qj has the terminalti as an end-
point, or if a contiguous segment ofQj consists of back-
ward edges fromPi. Note that there may be many such
meetings, in this sense, between the same pair of pathsPi

andQj. Suppose a pathPi meets a pathQj, butti is not an
endpoint of any pathQj′ . If there are many paths that meet
Pi, then letQj be the path that meetsPi at an edgee closest
to its terminalti. We changeQj so that it begins from this
terminalti, and continues along the backward edges ofPi

until the meeting pointe; it then continues as before. This
re-routing of a pathQj leads to an alternate set of paths that
also satisfies the above properties, and hence can also be
used for augmentation.

We repeat this process until there are no pairs of paths
Pi andQj that satisfy the condition above. We now want
to argue that this process terminates; for when it does, we
have the set of augmenting paths needed to find the flow
f ′′. To show termination, note that each re-routing de-

creases the number of distinct meetings between a path in
{P1, . . . , Pm} and a path in{Qm+1, . . . , Qk}: before the
re-routing, pathQj met some other pathPi′ before meeting
Pi, and this meeting is now eliminated.

For the next subsection we will need a version of this
theorem that routes flows in smaller units. For some integer
γ > 0 let vγ denote the maximum value of a flow that sends
at most1/γ flow to each terminal. By considering each
edge as a set ofγ parallel edges we get the following.

Corollary 3.3 Assume there is a flow that routes1/(2γ)
units of flow froms to each of the terminals, then there is an
unsplittable flow that routes1/(2γ) or 1/γ units of flow to
each terminal and has valuevγ .

Constructing a Binary Allocation

In this subsection we show how to construct the fairest
binary flow in polynomial time, using the algorithm of
Corollary 3.3. Let2−c be the maximum power of two such
that there is a flow of value2−c from s to all of the terminals
ti. The lexicographic definition of the fairest binary flow
implies that we must send at least2−c units of flow to each
terminal. We use the Corollary 3.3 withγ = 2c−1 to find
flow paths from the source to each of the terminals. LetSc

denote thes-side of a minimum cut of valuevγ . If there are
many such min-cuts, letSc be the inclusion-wise minimal.
(We will frequently identify cuts with theirs-sides, hence
referring toSc as a cut.) From the paths obtained above we
keep only the parts after leaving the cutSc, and will recur-
sively find beginning parts that match up with these paths.

There are two facts that we need about the inclusion-wise
minimal min-cutSc. First, any maximum flow saturates the
edges leavingSc. Second, no terminal that received only
2−c flow in the routing above is contained inSc. This latter
statement follows as the minimum cutSc consists of nodes
reachable in the residual graph froms, and if a terminal
with only 2−c flow were reachable, then its flow could be
increased.

The first observation allows us to define the following
smaller problem that we solve recursively. Let the graph
G′ be obtained fromG by considering the subgraph onSc

and adding to this graph all the edges leavingSc. We keep
all terminals inSc, and replace the terminals outside ofSc

by 2c−1 new terminals at the end of each of the edges en-
tering Sc. The second property ofSc implies that in the
new problem there is a flow that sends2−c+1 units of flow
from s to each of the terminals inG′. Each edge leavingSc

has2c−1 new terminals, and so if each of these terminals
receive2−c+1 flow then the cutSc has to be saturated.

Recursively we obtain a fairest binary flowf ′ on the sub-
problem onG′. We obtain the solution to the original prob-
lem by taking the flow paths of the flowf ′ to the terminals

in Sc. The flow paths to the new terminals at the end of
the edges leavingSc are combined with the segments of
the paths obtained in the first iteration to obtain the desired
paths and flow.

It is not hard to show by induction onc that the flow
created this way is the fairest binary flow.

Theorem 3.4 The algorithm given above constructs a
fairest binary flow.

A simple corollary of the construction is the following.

Corollary 3.5 There are nested cutsSc for c = 1, 2, . . .,
such thatSc ⊆ Sc+1 for all values ofc, Sc = V for a suf-
ficiently large value ofc, and the following property holds.
In a fairest binary flow, all terminals inS1 receive 1 unit of
flow, and all terminals inSc+1 − Sc receive either2−c or
2−c+1 units of flow.

The Overall Approximation Guarantee

Now consider the problem of finding an approximate fair
flow. Our algorithm finds the fairest binary flow. We claim
here that this flow satisfies our approximation guarantee.

Theorem 3.6 The fairest binary flow is in 2-approximate
equilibrium.

Proof. We use Corollary 3.5 for the proof. Suppose a termi-
nal ti receives2−c units of flow. We need to prove that we
cannot increase the flow toti without decreasing the flow to
some other terminaltj that receives at most2−c+1 units of
flow. Consider the cutSc in the Corollary. The terminalti is
on the sink side ofSc. The cutSc is saturated, so we cannot
increase the flow toti without decreasing some other flow
across the cutSc. However, all terminals on the sink side of
Sc receive at most2−c+1 units of flow.

It is easy to see that the fairest binary flow is a prefix-sum
2-approximation of the fractional fair flow. This fact fol-
lows essentially as the fairest binary flow saturates the cuts
Sc of Corollary 3.5. We need to use more about Megiddo’s
optimal fractional flow algorithm to see that the binary flow
is in fact a coordinate-wise 2-approximation of the fairest
fractional flow.

Theorem 3.7 The fairest binary flow is a coordinate-wise
2-approximation to the fairest fractional flow.

Proof. Consider the fairest fractional flowf ′. For any value
α let Tα denote the set of terminals that receive at leastα
flow. Megiddo proved the fairest fractional flow is a max-
imum flow from s to each of the setsTα simultaneously.
This implies the following analogue of Lemma 2.3. For a
valueα let vα denote the maximum value of a flow froms to
the terminals, where each terminal receives at mostα units

of flow. If for each terminalti that receives somedi > α
flow we delete fromf ′ di − α units of flow froms to ti,
then we obtain a flowf ′α of valuevα.

Let {Sc} denote the cuts of Corollary 3.5. We get the
claimed coordinate-wise 2-approximation if we show that
the fairest fractional flowf ′ must send at most2−c+1 units
of flow to every terminal outside ofSc. We prove this by
contradiction. Letc be such that some terminalti outside of
Sc received somedi > 2−c+1 units of flow inf ′. Let α =
2−c+1, and consider the flowf ′α. By our assumptionf ′α
does not saturate the cutSc. The fairest binary flow shows
that the maximum flow valuevα is equal to the capacity
of the cutSc plus α times the number of terminals inSc.
However,f ′α does not saturate the cutSc, and hence has
smaller value thanvα. This contradiction proves thatf ′

must have sent at most2−c+1 units of flow to each terminal
outside ofSc.

4 The NP-Completeness of Fairest Allocation

We formulate here a decision problem associated with
computing a fairest routing, and show that it is NP-
complete. The reduction is somewhat complicated for the
following reason: We are dealing with a single-source flow
problem with unit capacities, and to obtain an NP-complete
problem here, one typically needs to introduce terminals
with different (unsplittable) demand values. Lacking a no-
tion of demand in our problem, we must simulate such de-
mands using the constraints imposed by the equlibrium con-
dition (†).

Theorem 4.1 The following problem is NP-complete:
given a single-source routing problem with a unit-capacity
directed graphG, sources, terminals{ti}, and an allo-
cation vectorr∗, is there a routing of the terminals whose
equilibrium allocationvectorr satisfiesr∗ � r? (I.e. r is
at least as fair asr∗.)

Proof. The problem is in NP since we can exhibit the
paths in such a routing, and in polynomial time compute its
equilibrium allocation vector in order to compare it tor∗.

To show NP-hardness, we reduce from a special case
of the non-uniform load balancing problem considered by
Lenstra, Shmoys, and Tardos [10]. We have a set of
jobs J = {J1, . . . , Jk}, and a set of machinesM =
{M1, . . . , Mn}; for each jobJi, there is a setSi ⊂ M on
whichJi can be run. Each jobJi has arequirementri with
the property that eachri is equal to either1

2
or 1; we wish to

assign each jobJi to a machine inSi so that the sum of the
requirements assigned to each machine is at most1. More-
over, our instance has the property that

∑
i ri = n — that

is, the total of the requirement values is equal to the number
of machines. So the feasibility condition indeed requires

source s

job j of req 1/2
job i of req 1 uj

u′j

four terminalstj,1, . . . , tj,4

term.t′j term.t′′jmachinem ∈ Sj

vm

subgraphHj

k terminalsw1, . . . , wk

qj

q′j q′′j

tj

Figure 1. The NP-completeness reduction

that each machine receives either a single job of require-
ment1 or two jobs of requirement12 . Let J ′ ⊆ J denote
the jobs of requirement1, and letJ ′′ ⊆ J denote the jobs
of requirement12 ; we writek′ = |J ′| andk′′ = |J ′′|, and
observe that our condition

∑
i ri = n can be expressed as

k′ + k′′/2 = n.

We construct the following single-source fair routing
problem to encode this decision problem. We refer the
reader to Figure 1 for the overall layout of the construc-
tion. For simplicity of presentation, we will describe cer-
tain nodes ascontainingseveral terminals; if we wish each
terminal to be identified with a distinct node, we can attach
each of them via a new degree-onenode.

For each jobJj, we create nodesuj andu′j, with edges
(s, uj) and (uj , u

′
j). For each machineMm, we create a

nodevm, and edges(u′j, vm) for each pair(j, m) such that
machineMm belongs to the setSj. We also create a sin-
gle nodew that will hold k terminalsw1, . . . , wk, and add

edges(vm, w) for eachk.

This defines the “core” of the construction, through
which we encode the condition that jobJj can only be as-
signed to a machine inSj . Moreover, if we view this por-
tion of the graph in isolation, we can observe the following:
Since there are onlyn edges enteringw, andk terminals at
w, we know that the fairest allocation for these terminals
would havek′ entries equal to1 andk′′ entries equal to12 ,
as we want. However, we have not yet controlled which
“job nodes” get the value12 , and which get1. This is what
we accomplish in the remainder of the construction.

For each jobJj with a requirement of1
2
, we at-

tach a subgraphHj containing a total of six terminals
t′j, t

′′
j , tj,1 . . . , tj,4 as shown in Figure 1. We do not create

anything additional for the jobs with requirement1. Thus
the complete set of terminals is the set{wi}, together with
the six terminals from each of the subgraphsHj.

The subgraphHj is designed to achieve the following
effect. The four terminals attj will each get an allocation
of 1/4; if one path bound fortj passes througheach ofq′j
andq′′j , then each oft′j andt′′j will get an allocation of3/4.
Finally, two paths bound fortj can pass through the edge
(uj, u

′
j), leaving room for a path bound for a terminal at

w to receive an allocation of1/2. Thus, overall, the fairest
allocation will allow a single path tow to get a value of1/2.
Note that for edges(uj, u

′
j) with no subgraphHj attached,

on the other hand, we can have a single path tow with an
allocation of1.

We now make this precise. Definer∗ to be a vector con-
sisting of4k′′ entries equal to1/4, k′′ entries equal to1/2,
2k′′ entries equal to3/4, andk′ entries equal to1. If there
is a feasible allocation of jobs to machines in the original
load balancing problem, then it is easy to construct a routing
whose equilibrium allocationr satisfiesr∗ � r. We have a
path〈s, uj , u

′
j, vm, w〉 for each jobJj assigned to machine

Mm, with an amount of flow equal to the requirement of
job Jj. We have two paths〈s, uj, u

′
j, qj, tj〉, carrying flow

1/4 each, for each jobJj with requirement1/2; these serve
to saturate the edge(uj, u

′
j). The other two terminals ontj

will have paths throughq′j andq′′j respectively, carrying1/4
units of flow; and the terminalst′j andt′′j can then receive
3/4 units of flow each on their unique paths froms.

Conversely, suppose there is a routing whose equilibrium
allocationr satisfiesr∗ � r. The vectorr can only contain
at most4k′′ entries equal to1/4, so these must be associated
with all the terminals of the formtj,i. Also, r can only
contain at mostk′′ entries equal to1/2, so these must be
associated with paths that pass throughk′′/2 of the edges
intow. All the remaining terminals must get a flow value of
at least3/4 — this therefore consists of of terminals of the
form t′j, t′′j , as well ask′ of the terminals atw.

Each terminal of the formt′j , t′′j must get at least a flow of
3/4, so at most one path bound fortj can pass througheach
of q′j andq′′j . Hence at least two of these paths must pass
through the edge(uj, u

′
j). We claim that in fact exactly two

of these paths pass througheach such edge(uj, u
′
j) (and

hence exactly one passes througheach ofq′j andq′′j). For
suppose that at least three passed through(uj, u

′
j). Then

no terminal bound forw could use(uj, u
′
j), and so some

edge(u`, u
′
`) would carry two paths bound forw, each with

a flow of 1/2; therefore, it would follow that no terminal
from t` could make use of the edge(u`, u

′
`), and this would

force more than one path bound fort` to pass through one
of q′` or q′′` , a contradiction.

Thus,k′ of the terminals atw get a flow value equal to
1, so we observe that at leastk′ of the edges of the form
(uj, u

′
j) must carry a single path only. We will call these

pureedges, and the other edges of the form(uj , u
′
j) mixed.

We have therefore established the following two proper-
ties of our routing with allocation at least as fair asr∗:

• There arek′′ mixed edges of the form(uj , u
′
j); these

are associated with indicesj for which Jj has requirement
1/2, and on each one, there is a single pathbound forw
with a flow of1/2.

• There arek−k′′ = k′ pure edges of the form(uj, u
′
j);

these are associated with indicesj for whichJj has require-
ment1, and on each one, there is a single pathbound forw
with a flow of1.

Hence for each edge(u′j, vm) that carries positive flow,
we can assign jobJj to machineMm; this will be a feasible
assignment of jobs to machines in the original load balanc-
ing problem.

References

[1] Y. Afek, Y. Mansour, Z. Ostfeld, “Convergence com-
plexity of optimistic rate based flow control algorithms,”
Proc. 28th ACM STOC, 1996.

[2] D. Bertsekas, R. Gallager,Data Networks, Prentice-
Hall, 1987.

[3] Y. Dinitz, N. Garg, M. Goemans, “On the single-source
unsplittable flow problem,”Proc. 39th IEEE FOCS,
1998.

[4] D. Gale, L. Shapley, “College Admissions and the Sta-
bility of Marriage,” Amer. Math. Monthly69(1962).

[5] J. Jaffe, “Bottleneck flow control,”IEEE Trans. Com-
munication, 29(1981), p.p 954–962.

[6] R.M. Karp, “On the computational complexity of com-
binatorial problems,”Networks5(1975), pp. 45–68.

[7] F. Kelly, “Charging and rate control for elastic traffic,”
European Trans. Telecommunications8(1997).

[8] J. Kleinberg, “Single-source unsplittable flow,”
Proc. 37th IEEE FOCS, 1996.

[9] S. Kolliopoulos, C. Stein, “Improved approximation
algorithms for unsplittable flow problems,”Proc. 38th
IEEE FOCS, 1997.

[10] J.K. Lenstra, D. Shmoys,́E. Tardos, “Approximation
algorithms for scheduling unrelated parallel machines,”
Proc. 28th IEEE FOCS, 1987.

[11] A. Mayer, Y. Ofek, M. Yung, “Approximating max-
min fair rates via distributed local scheduling with partial
information,”Proc. IEEE INFOCOM, 1996.

[12] N. Megiddo, “Optimal flows in networks with sources
and sinks,”Math Programming7(1974).

[13] S. Plotkin, “Competitive Routing in ATM networks,”
IEEE J. Selected Areas in Communications, 1995.

