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ABSTRACT. In this paper we identify techniques that have been
employed in the design of sorting and selection algorithms for
various interconnection networks. We consider both randomized
and deterministic techniques. Interconnection Networks of in-
terest include the mesh, the mesh with fixed and reconfigurable
buses, the hypercube family, and the star graph. For the sake of
comparisons, we also list PRAM algorithms.

1 Introduction

The problem of sorting a given sequence of n keys is to rearrange this se-
quence in nondecreasing order. Given a sequence X of n keys, and an integer
i (1 ≤ i ≤ n), the problem of selection is to find the ith smallest key in the
sequence. Such a key will be denoted as select(i,X).
These two important comparison problems have been studied extensively

by computer scientists. Both sorting and selection have asymptotically op-
timal sequential algorithms. There are several sorting algorithms that run
in time O(n log n) in the worst case (see e.g., [1]). The problem of selection
has an elegant linear time sequential algorithm [8].
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Optimal algorithms for these two problems also exist for certain parallel
models like the EREW PRAM, the comparison tree model, etc. This paper
deals with the solution of sorting and selection on interconnection networks.
We show how the idea of sampling (both randomized and deterministic) has
been repeatedly used to obtain optimal or near optimal algorithms for these
problems.

1.1 Models Definition

The Mesh. A mesh connected computer (referred to as the Mesh from
hereon) is a

√
p × √

p square grid where there is a processor at each grid
point. Each processor is connected to its four or less neighbors through
bidirectional links. It is assumed that in one unit of time a processor can
perform a local computation and/or communicate with all its neighbors.

A Mesh with Buses. Two variants of the Mesh have attracted the atten-
tion of many a researcher lately: 1) the mesh connected computer with fixed
buses (denoted as Mf ), and 2) the Mesh with reconfigurable buses (denoted
as Mr).
In Mf we assume that each row and each column has been augmented

with a broadcast bus. Only one message can be broadcast along any bus at
any time, and this message can be read by all the processors connected to
this bus in the same time unit.
In the model Mr, processors are connected to a reconfigurable broad-

cast bus. At any given time, the broadcast bus can be partitioned (i.e.,
reconfigured) dynamically into subbuses with the help of locally controllable
switches. Each processor has 4 I/O ports. There are many variations of
Mr found in the literature. In PARBUS model, any combination of 4 port
connections is permitted for each processor [22]. Each subbus connects a
collection of successive processors. One of the processors in this collection
can choose to broadcast a message which is assumed to be readable in one
unit of time by all the other processors in this collection.
For instance, in a

√
p × √

p mesh, the different columns (or different
rows) can form subbuses. Even within a column (or row) there could be
many subbuses, and so on. It is up to the algorithm designer to decide
what configuration of the bus should be used at each time unit. The model
assumed in this paper is essentially the same as PARBUS.
Both Mr and Mf are becoming popular models of computing because

of the absence of diameter consideration and because of the commercial
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implementations [5, 40, 62, 35]. Even as theoretical models, both Mr and
Mf are very interesting. For instance, n keys can be sorted in O(1) time on
an n×n mesh Mr, whereas we know that Ω( log n

log log n) time is needed even on
the CRCW PRAM given only a polynomial number of processors.

The Hypercube. A hypercube of dimension � consists of p = 2� nodes
(or vertices) and �2�−1 edges. Thus each node in the hypercube can be
named with an �-bit binary number. If x is any node in V , then there is a
bidirectional link from x to a node y if and only if x and y (considered as
binary numbers) differ in exactly one bit position (i.e., the hamming distance
between x and y is 1.) Therefore, there are exactly � edges going out of (and
coming into) any vertex.
If a hypercube processor can handle only one edge at any time step, this

version of the hypercube will be called the sequential model. Handling (or
processing) an edge here means either sending or receiving a key along that
edge. A hypercube model where each processor can process all its incoming
and outgoing edges in a unit step is called the parallel model.

Star Graphs Let s1s2 . . . sn be a permutation of n symbols, e.g., 1 . . . n.
For 1 < j ≤ n, we define SWAPj(s1s2 . . . sn) = sjs2 . . . sj−1s1sj+1 . . . sn.

An n-star graph is a graph Sn = (V,E) with | V |= n! nodes, where V =
{s1s2 . . . sn | s1s2 . . . sn is a permutation of n different symbols}, and E =
{(u, v) | u, v ∈ V and v = SWAPj(u) for some j, 1 < j ≤ n}.

A Notation. Throughout this paper we let n denote the input size and p

denote the number of processors available.

2 Randomized and Deterministic Sampling

Sampling has served as an effective tool in the design of sorting and selection
algorithms over a variety of models of computing. The use of sampling in
comparison problems is at least as old as that of Frazer and McKellar’s paper
[16]. The following strategy has been proposed for sequential sorting in [16]:
1) Randomly sample o(n) keys from the input and sort them using any
nonoptimal algorithm; 2) Partition the input into independent subsequences
using the sample keys as splitter elements; and 3) Sort each subsequence
separately. Clearly, this approach can be thought of as a generalization of
Hoare’s quicksort algorithm [20] where a single key is employed to partition
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the input. This elegant approach of Frazer and McKellar has been adapted
to design sorting algorithms on various interconnection networks as will be
shown in this paper.
Random sampling has also played an important role in the development

of efficient algorithms for selection. For example, Floyd and Rivest [15] have
introduced the following scheme for sequential selection: 1) Sample o(n) keys
from the input and pick two elements from the sample (call them �1 and �2)
such that the element to be selected has a value in the range [�1, �2] and
the number of input keys in the range [�1, �2] is ‘small’; 2) Eliminate all the
input keys that fall outside the range [�1, �2]; and 3) Perform an appropriate
selection from out of the remaining keys (the remaining keys can even be
sorted to perform this selection). The sequential run time of this algorithm
can be shown to be n+min{i, n− i}+o(n) with high probability, if we want
to select the ith smallest key.
Recently various selection and sorting algorithms (both deterministic and

randomized) have been implemented on different parallel machines. These
experimental results indicate that randomized algorithms perform better in
practice than their deterministic counterparts (see e.g., [7], [19], [61], [51]).
The idea of sampling has been employed in deterministic algorithms as

well. Classical examples are the selection algorithms of 1) Blum, Floyd,
Pratt, Rivest, and Tarjan [8]; and 2) Munro and Paterson [41]. A synopsis
of deterministic sampling is: 1) To group the numbers into groups of �

numbers each (for an appropriate �); 2) Sort each group independently; 3)
Collect every qth element from each group (for some q). This collection serves
as a ‘sample’ for the original input. For example, the median of this sample
can be shown to be an approximate median for the input. Deterministic
sampling has also found numerous applications as will be demonstrated in
this paper.

2.1 Sampling Lemmas

Random Sampling. Let X be a sequence of n numbers from a linear
order and let S = {k1, k2, . . . , ks} be a random sample from X. Also let
k′1, k′2, . . . , k′s be the sorted order of this sample. If ri is the rank of k′i in X,
the following lemma provides a high probability confidence interval for ri.
(The rank of any element k in X is the number of elements ≤ k in X.)

Lemma 2.1 For every α, Prob.
(
|ri − in

s | >
√
3α n√

s

√
log n

)
< n−α.
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A proof of the above Lemma can be found in [54]. This lemma can
be used to analyze many of the selection and sorting algorithms based on
random sampling.

A Notation. We say a randomized algorithm has a resource bound of
Õ(f(n)) if there exists a constant c such that the amount of resource used is
no more than cαf(n) on any input of size n with probability ≥ (1− n−α)
(for any α > 0). In an analogous manner, we could also define the functions
õ(.), Ω̃(.), etc.

Deterministic Sampling. Consider a sequence X of n numbers. A de-
terministic sample S from X is obtained as follows: Partition the numbers
into groups with � elements in each group. Pick every qth element from
each group. There will be roughly �

q elements picked from each group and
n
q elements in all. Let k

′
i be the element of S whose rank (in S) is i. Let ri

be the rank of k′i in X. Then, the following Lemma is easy to prove:

Lemma 2.2 ri is in the range [iq, iq + n
� q].

2.2 Organization of this Paper

The rest of this paper is organized as follows. In Section 3, we survey known
sorting algorithms on the network models of our interest. In Section 4, we
provide a summary of known selection algorithms and in Section 5 we provide
a list of open problems.

3 Sorting on Interconnection Networks

3.1 A Generic Algorithm

Algorithm I

Step 1. Randomly sample nε (for some constant ε <

1) keys.

Step 2. Sort this sample (using any nonoptimal algo-
rithm).

Step 3. Partition the input using the sorted sample
as splitter keys.



6 S. RAJASEKARAN

Step 4. Sort each part separately in parallel.

3.2 The PRAM

One of the classical results in parallel sorting is Batcher’s algorithm [3]. This
algorithm is based on the idea of bitonic sorting and was proposed for the
hypercube and hence can be run on any of the PRAMs as well. Batcher’s
algorithm runs in O(log2 n) time using n processors. Followed by this, a very
nearly optimal algorithm was given by Preparata [47]. Preparata’s algorithm
used n log n processors and took O(log n) time. Finding a logarithmic time
optimal parallel algorithm for sorting remained an open problem for a long
time in spite of numerous attempts. Finally in 1981, Reischuk was able
to design a randomized logarithmic time optimal algorithm for the CREW
PRAM [58]. At around the same time Ajtai, Komlós, and Szemerédi an-
nounced their sorting network of depth O(log n) [2]. However the size of the
circuit was O(n log n) and also the underlying constant in the time bound
was enormous. Leighton subsequently was able to reduce the circuit size to
O(n) using the technique of columnsort [33]. Though several attempts have
been made to improve the constant in the time bound, the algorithm of [2]
remains vastly as a result of theoretical interest.
In 1987 Cole presented an optimal logarithmic time EREW PRAM al-

gorithm for sorting, the constant in the time bound being reasonably small
[10]. In the same paper, a sub-logarithmic time algorithm for sorting on the
CRCW PRAM is also given. This algorithm uses n(log n)ε processors, the
run time being O( log n

log log log n). Here ε is any constant > 0. The lower bound
result of Beam and Hastad states that any CRCW PRAM sorting algorithm
will have to take Ω( log n

log log n) time in the worst case as long as the processor
bound is only a polynomial in the input size n [4]. Rajasekaran and Reif
[53] were able to obtain a randomized algorithm for sorting on the CRCW
PRAM that runs in time O( log n

log log n), the processor bound being n(log n)ε,
for any fixed ε > 0. This algorithm is also processor-optimal, i.e., to achieve
the same time bound the processor bound can not be decreased any further.
Table 1 summarizes these algorithms.

3.3 The Mesh

The first asymptotically optimal sorting algorithm for the mesh was given by
Thompson and Kung [63]. Their algorithm can sort n numbers on a

√
n×√

n

Mesh in O(
√
n) time. Since the diameter of an n-node Mesh is 2

√
n − 2,
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AUTHOR(S) YEAR MODEL P T

Preparata [47] 1978 CREW n log n O(log n)
Reischuk [58] 1981 CREW n Õ(log n)
Cole [10] 1987 EREW n O(log n)
Cole [10] 1987 CRCW n(log n)ε O( log n

log log log n)
Rajasekaran & Reif [53] 1988 CRCW n(log n)ε Õ( log n

log log n)

Table 1: Sorting on the PRAM

[63]’s algorithm is clearly optimal. Thompsun and Kung’s algorithm is based
on the idea of odd-even merging. Since a Mesh has a large diameter, it is
imperative to have not only asymptotically optimal algorithms but also they
should have small underlying constants in their time bounds. Often times,
the challenge in designing Mesh algorithms lies in reducing the constants in
time bounds.
Subsequent to Thompson and Kung’s algorithm, Schnorr and Shamir

gave a 3
√
n + o(

√
n) time algorithm [59]. They also proved a lower bound

of 3
√
n− o(

√
n) for sorting. However, both the upper bound and the lower

bound were derived under the assumption of no queueing. Ma, Sen, and
Scherson [37] gave a near optimal algorithm for a related model. Kaklamanis,
Krizanc, Narayanan, and Tsantilas presented a very interesting algorithm
for sorting with a run time of 2.5

√
n + o(

√
n) [25]. This algorithm was

randomized and used queues of size O(1). The underlying idea here is the
same as that of Algorithm I. The same authors latter improved this time
bound to 2

√
n+ õ(

√
n) [24].

The idea of using O(1) sized queues has been successfully employed to
design better deterministic sorting algorithms as well. Kunde has presented
a 2.5

√
n + o(

√
n) step algorithm [31]; Nissam and Sahni have given a (2 +

ε)
√
n + o(

√
n) time algorithm (for any fixed ε > 0) [44]; Also Kaufmann,

Sibeyn, and Torsten have offered a 2
√
n + o(

√
n) time algorithm [26]. The

third algorithm closely resembles the one given by [25] and Algorithm I.
The problem of k − k sorting is to sort a Mesh where k elements are

input at each node. The bisection lower bound for this problem is k
√

n
2 . For

example, if we have to interchange data from one half of the mesh with data
from the other half, k

√
n

2 routing steps will be needed. A very nearly optimal
randomized algorithm for k−k sorting is given in [49]. Recently, Kunde [32]
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AUTHOR(S) YEAR PROBLEM TIME
Thompson & Kung [63] 1977 1− 1 Sort 7

√
n+ o(

√
n)

Schnorr & Shamir [59] 1986 1− 1 Sort 3
√
n+ o(

√
n)

Ma, Sen, & Scherson [37] 1986 1− 1 Sort 4
√
n+ o(

√
n)

KKNT [25] 1991 1− 1 Sort 2.5
√
n+ õ(

√
n)

Kunde [31] 1991 1− 1 Sort 2.5
√
n+ o(

√
n)

KKNT [25] 1992 1− 1 Sort 2
√
n+ õ(

√
n)

Nigam & Sahni [44] 1993 1− 1 Sort (2 + ε)
√
n+ o(

√
n)

KST [26] 1993 1− 1 Sort 2
√
n+ o(

√
n)

Kunde [31] 1991 k − k Sort k
√
n+ o(k

√
n)

Rajasekaran [49] 1991 k − k Sort k
√

n
2 + 2

√
n+ õ(k

√
n)

Table 2: Mesh Algorithms for Sorting

has matched this result with a deterministic algorithm.
Table 2 summarizes sorting results for the Mesh.

3.4 Meshes with Buses

For a Mesh with fixed buses, it is easy to design a logarithmic time algorithm
for sorting n numbers using a polynomial (in n) number of processors (see
e.g., [50]). However, if the Mesh is of size

√
n×√

n, then the bisection lower
bound for sorting will be Ω(

√
n). The same lower bound holds for a Mesh

with a reconfigurable bus system also. In general, we can obtain impressive
speedups onMr andMf if the number of processors used is much more than
the input size.
When the input size n is the same as that of the network size, sorting can

be done using a randomized algorithm onMr in time that is only õ(
√
n) more

than the time needed for packet routing under the same settings as has been
proven in [52]. This randomized algorithm is also similar to Algorithm I. In
[29], Krizanc, Rajasekaran, and Shende show that onMf also, sorting can be
done in time that is nearly the same as the time needed for packet routing.
The best known algorithm for packet routing onMr takes time 17

18

√
n+õ(

√
n)

[9]. For Mf , the best known packet routing time is 0.79
√
n + õ(

√
n) [60].

Therefore, sorting can be done on Mr in time 17
18

√
n+ õ(

√
n) and on Mf in

time 0.79
√
n+ õ(

√
n).

An interesting feature of Mr is that sorting can be done on it in time
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AUTHOR(S) YEAR MODEL P T

Batcher [3] 1968 Network n 1
2 log

2 n

Nassimi & Sahni [43] 1981 Hypercube n1+ε O(log n)
Reif & Valiant [57] 1983 CCC n Õ(log n)
Cypher & Plaxton [12] 1990 Hypercube n O(log n log log n)

Table 3: Sorting on the Hypercube

O(1) using a quadratic number of processors. In contrast, sorting can not
be done in O(1) time even on the CRCW PRAM, given only a polynomial
number of processors [4]. A constant time algorithm using n3 processors
appears in [64]. The processor bound was improved to n2 in independent
works [23], [36], [42], [45].

3.5 The Hypercube

Batcher’s algorithm runs in O(log2 n) time on an n-node hypercube [3]. This
algorithm uses the technique of bitonic sorting. Odd-even merge sorting can
also be employed on the hypercube to obtain the same time bound. Nassimi
and Sahni [43] gave an elegant O(log n) time algorithm for sorting which
uses n1+ε processors (for any fixed ε > 0). This algorithm, known as sparse
enumeration sort, has found numerous applications in the design of other
sorting algorithms on various interconnection networks. A variant of Algo-
rithm I was employed by Reif and Valiant to derive an optimal randomized
algorithm for sorting on the CCC [57]. The best known deterministic algo-
rithm for sorting on the hypercube (or any variant) is due to Cypher and
Plaxton and it takes O(log n log log n) time [12]. This algorithm makes use
of the technique of deterministic sampling and the underlying constant in
the time bound is rather large. An excellent description of this algorithm
can be found in [34]. See Table 3.

3.6 The Star Graph

Menn and Somani [39] employed an algorithm similar to that of Schnorr and
Shamir [59] to show that sorting can be done on a star graph with n! nodes
in O(n3 log n) time. Rajasekaran and Wei [56] have offered a randomized
algorithm with a time bound of Õ(n3). This algorithm is based on a ran-
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AUTHOR(S) YEAR P T

Menn and Somani [39] 1990 n! O(n3 log n)
Rajasekaran and Wei [56] 1992 n! Õ(n3)

Table 4: Sorting on the Star Graph

domized selection algorithm that they derive. A summary of this algorithm
follows:
There are n phases in the algorithm. A star graph with n! nodes is

denoted as Sn. In the first phase they perform a selection of n uniformly
distributed keys and as a consequence route each key to the correct sub-star
graph Sn−1 it belongs to. In the second phase, sorting is local to each Sn−1.
At the end of second phase each key will be in its correct Sn−2. In general, at
the end of the �th phase, each key will be in its right Sn−� (for 1 ≤ � ≤ n−1).
Selection in each phase takes Õ(n2) time. Making use of these selected keys,
every input key figures out the Sn−� it belongs to in O(n2) time. The keys
are routed to the correct Sn−�’s in Õ(n) time. Thus each phase takes Õ(n2)
time, accounting for a total of Õ(n3) time.
The above approach differs from Algorithm I. However, random sampling

is used in the selection algorithm of [56]. For a summary of these results see
Table 4.

3.7 The de Bruijn Network

A directed de Bruijn network DB(d, n) has N = dn nodes. A node v can be
labeled as dndn−1...d1 where each di is a d-ary digit. Node v = dndn−1...d1

is connected to the nodes labeled dn−1...d2d1l, denoted as SH(v, l), where
l is an arbitrary d-ary digit. Note that a rotation of n digits of v, denoted
as SH(v, dn), represents an adjacent node of v. If v is also connected to the
nodes labeled ldndn−1...d2, then the graph is referred to as undirected de
Bruijn network. Hsu and Wei [21] have recently presented an O(dn2 log d)
time algorithm for sorting. If d = 2, their algorithm runs in time 2 log2 N .

4 Selection Algorithms

The sequential selection algorithm of Blum, et. al. works as follows: 1)
Partition the input of n numbers into groups with 5 elements in each group;
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2) Find the median of each group; 3) Recursively compute the median M of
the group medians; 4) Partition the input into two using M as the splitter
key. Part I has all the input keys ≤ M and Part II has the remaining keys.
Identify the part that has the key to be selected and recursively perform an
appropriate selection in this part.
One can easily show that the above algorithm runs in time O(n). This is

a good example of how deterministic sampling can be employed. A variant
of the above has been used in all the deterministic parallel algorithms for
selection.
Likewise, random sampling has been effectively applied to derive optimal

or near optimal selections algorithms on various networks. A summary of
such an algorithm is given below. To begin with all the input keys are alive.
We are interested in selecting the ith smallest key.

Algorithm II

Step 1. Sample a set S of o(n) keys at random from
the collection X of alive keys.

Step 2. Sort the set S.

Step 3. Identify two keys l1 and l2 in S whose ranks
in S are i s

n −δ and i s
n+δ respectively, δ being a ‘small’

integer.
(* The rank of l1 in X is < i, and the rank of l2 in X

is > i, with high probability. *)

Step 4. Eliminate all the keys in X which are either
< l1 or > l2.

Step 5. Repeat Steps 1 through 4 until the number of
alive keys is ‘small’.

Step 6. Finally, concentrate and sort the alive keys.

Step 7. Perform an appropriate selection on the alive
keys.

Next we enumerate known parallel selection algorithms on various models
and show how the above two themes have been used repeatedly.
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AUTHOR(S) P T PROBLEM

Meggido [38] n Õ(1) Maximal
Reischuk [58] n Õ(1) Maximal
Rajasekaran and Sen [55] n Õ(1) Maximal
Folklore n

log n Õ(log n) General
Cole [11] n

log n log∗ n O(log n log∗ n) General
Hagerup and Raman [17] n

log n O(log n) General

Table 5: PRAM Selection

4.1 The PRAM

A straight forward implementation of Algorithm II on any of the PRAMs will
yield an optimal randomized Õ(log n) time parallel algorithm for selection.
On the CRCW PRAM, a similar algorithm can be used to solve the problem
of finding the maximum of n given numbers in Õ(1) time using n processors
[55]. This result was proven in [38, 58] for the parallel comparison tree model.
Cole used the idea of deterministic sampling to design an O(log n log∗ n)
time n

log n log∗ n processor EREW PRAM algorithm [11]. The time bound of
this algorithm has recently been improved to O(log n) using deterministic
sampling as well as algorithms for approximate prefix computation [17].

4.2 The Mesh

The problem of selection where the number of processors is equal to the input
size has been studied well by many researchers. The best known algorithm
is due to Krizanc and Narayanan [27]. This randomized algorithm has a run
time of 1.22

√
n+ õ(

√
n) and is similar to Algorithm II. They also presented

a deterministic algorithm for the case n 
= p [28]. This algorithm had a run
time of O(min{p log n

p ,max{ n
p2/3 ,

√
p}}). Rajasekaran, Chen, and Yooseph

[51] have recently presented both deterministic and randomized algorithms
for selection when n 
= p. Their deterministic algorithm has a run time of
O(np log log p+

√
p log n) and the randomized algorithm resembles Algorithm

II and runs in time Õ((np +
√
p) log log p). A new deterministic selection

scheme has been proposed in [51]. The idea is to employ the sequential
algorithm of Blum et. al. [8] with some crucial modifications.
A summary of the selection scheme of [51] is given below since it can
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be applied to any interconnection network to obtain good performance. To
begin with, each one of the p processors has n

p keys.

Algorithm III

N := n

Step 0. if log(n/p) is ≤ log log p then
sort the elements at each node

else
partition the keys at each node into log p
equal parts such that keys in one part will
be ≤ keys in parts to the right.

repeat
Step 1. In parallel find the median of keys at each
node. Let Mq be the median and Nq be the number
of remaining keys at node q, 1 ≤ q ≤ p.
Step 2. Find the weighted median of M1,M2, . . . ,Mp

where key Mq has a weight of Nq, 1 ≤ q ≤ p. Let
M be the weighted median.
Step 3. Count the rank rM of M from
out of all the remaining keys.
Step 4. if i ≤ rM then

eliminate all the remaining keys that are > M

else
eliminate all the remaining keys that are ≤ M .

Step 5. Compute E, the number of keys eliminated.
if i > rM then i := i− E; N := N − E.

until N ≤ c, c being a constant.
Output the ith smallest key from out of the remaining keys.

An implementation of the above algorithm on the Mesh yields the time
bound of O(np log log p+

√
p log n). Table 6 summarizes known results.

4.3 Meshes with Buses

Here we consider the problem of selection when n = p. On a Mesh with
reconfigurable buses, a lower bound of Ω(log logn) applies for deterministic
selection, since selection even on the parallel comparison tree model has
the same lower bound. ElGindy and Wegrowicz [14] applied an algorithm
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AUTHOR(S) YEAR RUN TIME

Krizanc et. al. [27] n 1.22
√
n+ õ(

√
n)

Krizanc et. al. [28] p O(min{p log n
p ,max{ n

p2/3 ,
√
p}})

Rajasekaran et. al. [51] p O(np log log p+
√
p log n)

Rajasekaran et. al. [51] p Õ((np +
√
p) log log p)

Table 6: Selection on the Mesh

AUTHOR(S) YEAR RUN TIME DET./RAND.

ElGindy et. al. [14] 1991 O(log2 n) DET.
Doctor et. al. [13] 1992 Õ(log2 n) RAND.
Hao et. al. [18] 1992 O(log n) DET.
Rajasekaran [50] 1992 Õ(log∗ n log log n) RAND.

Table 7: Mesh with Reconfigurable Buses: Selection

similar to that of [41] and showed that selection can be done on a p-node
Mr in O(log2 p) time. Followed by this, Doctor and Krizanc [13] presented
a very simple randomized algorithm (similar to Algorithm II) that achieves
the same time bound with high probability. This time bound was improved
to O(log p) by Hao, McKenzie, and Stout [18]. Using an algorithm similar to
that of Algorithm II and some other crucial properties of Mr, Rajasekaran
[50] gave an O(log log p log∗ p) expected time randomized algorithm. See
Table 7.
On the other hand, Ω(p1/6) is a lower bound for selection on Mf [30]. A

very nearly optimal algorithm has been given in [30]. An optimal randomized
algorithm can be found in [50].

4.4 The Hypercube

A plethora of algorithms have been proposed for selection on the hypercube
(both for the case p = n and the case p 
= n). For the case p = n, an
optimal Õ(log n) time randomized algorithm has been given in [57] and [48].
The algorithm in [57] is for sorting and hence can be applied for selection
as well. On the other hand, the algorithm given in [48] is very simple.
[48]’s algorithm has been implemented on CM-2 and empirical results are
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AUTHOR(S) YEAR RUN TIME DET./RAND.

Kumar et. al. [30] 1987 O(n1/6(log n)2/3) DET.
Olariu et. al. 1992 O(n1/6(log n)1/3) DET.
Rajasekaran [50] 1992 Õ(n1/6) RAND.

Table 8: Selection on a Mesh with Fixed Buses

Model Run Time Lower Bound Ref.
Sequential O(np log log p+ log

2 p log(np ))
n
p log log p+ log p [46]

Sequential Õ(np log log p+ log p log log p)
n
p log log p+ log p [48]

Sequential O(log∗ n logn) log n [6]
Sequential Õ(log n) log n [57, 48]
Weak Parallel O(np + log p log log p)

n
p + log p [46]

Weak Parallel Õ(np + log p)
n
p + log p [48]

Table 9: Selection on the Hypercube

promising [51]. The best known deterministic algorithm is due to Berthomé,
et. al. [6] and has a run time of O(log n log∗ n).

For the case of p 
= n, refer to Table 9 for a summary of the best known
algorithms. All the algorithms in this Table use the technique of sampling
(either deterministic or randomized). A slightly better deterministic algo-
rithm can be obtained using Algorithm III as has been shown in [51]. The
run time will be O(np log log p+log

2 p log log p). If a better sorting algorithm
is discovered for the hypercube, this time bound will improve further.

4.5 The Star Graph

The only known selection algorithm on the star graph is due to Rajasekaran
and Wei [56]. This randomized algorithm runs in time Õ(n2) on an n!-node
star graph. Within the same asymptotic time bound, this algorithm can
perform n different selections. A sorting algorithm with a run time of Õ(n3)
follows from this algorithm.
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5 Conclusions and Open Problems

In this paper we have surveyed known parallel algorithms for sorting and
selection on various interconnection networks. We have also identified some
very commonly used techniques for the design of such algorithms. Here is
a partial list of open problems in this exciting area of algorithmic research:
1) Is there a simple 2

√
n− 2 step sorting algorithm for the Mesh with small

queues? 2) What is the best run time achievable for selection on the Mesh
(when p = n)? 3) Is there an O(log log n) time algorithm for selection
on Mr (either randomized or deterministic)? 4) Can one design a simple
deterministic O(log n) time sorting algorithm for the hypercube? 5) Can
the best known sorting times for the star graph and the de Bruijn graph be
improved?
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APPENDIX A: Chernoff Bounds

Lemma A.1 If X is binomial with parameters (n, p), and m > np is an
integer, then

Probability(X ≥ m) ≤
(
np

m

)m

em−np. (1)

Also,
Probability(X ≤ �(1 − ε)pn�) ≤ exp(−ε2np/2) (2)

and
Probability(X ≥ (1 + ε)np�) ≤ exp(−ε2np/3) (3)

for all 0 < ε < 1.
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