Power Flow Analysis

EE 340
Introduction

• **A power flow study (load-flow study)** is a steady-state analysis whose target is to determine the voltages, currents, and real and reactive power flows in a system under a given load conditions.

• The purpose of power flow studies is to plan ahead and account for various hypothetical situations. For example, if a transmission line is be taken off line for maintenance, can the remaining lines in the system handle the required loads without exceeding their rated values.
The basic equation for power-flow analysis is derived from the nodal analysis equations for the power system: For example, for a 4-bus system,

\[
\begin{bmatrix}
Y_{11} & Y_{12} & Y_{13} & Y_{14} \\
Y_{21} & Y_{22} & Y_{23} & Y_{24} \\
Y_{31} & Y_{32} & Y_{33} & Y_{34} \\
Y_{41} & Y_{42} & Y_{43} & Y_{44}
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2 \\
V_3 \\
V_4
\end{bmatrix}
= \begin{bmatrix}
I_1 \\
I_2 \\
I_3 \\
I_4
\end{bmatrix}
\]

where \(Y_{ij}\) are the elements of the bus admittance matrix, \(V_i\) are the bus voltages, and \(I_j\) are the currents injected at each node. The node equation at bus \(i\) can be written as

\[
I_i = \sum_{j=1}^{n} Y_{ij} V_j
\]
Power-flow analysis equations

Relationship between per-unit real and reactive power supplied to the system at bus \(i \) and the per-unit current injected into the system at that bus:

\[
S_i = V_i I_i^* = P_i + jQ_i
\]

where \(V_i \) is the per-unit voltage at the bus; \(I_i^* \) - complex conjugate of the per-unit current injected at the bus; \(P_i \) and \(Q_i \) are per-unit real and reactive powers. Therefore,

\[
I_i^* = \frac{(P_i + jQ_i)}{V_i} \quad \Rightarrow I_i = \frac{(P_i - jQ_i)}{V_i^*}
\]

\[
\Rightarrow P_i - jQ_i = V_i^* \sum_{j=1}^{n} Y_{ij} V_j = \sum_{j=1}^{n} Y_{ij} V_j V_i^*
\]
Power flow equations

Let
\[Y_{ij} = |Y_{ij}| \angle \theta_{ij} \quad \text{and} \quad V_i = |V_i| \angle \delta_i \]

Then
\[P_i - jQ_i = \sum_{j=1}^{n} Y_{ij} \| V_j \| V_i \| \angle(\theta_{ij} + \delta_j - \delta_i) \]

Hence,
\[P_i = \sum_{j=1}^{n} Y_{ij} \| V_j \| V_i \| \cos(\theta_{ij} + \delta_j - \delta_i) \]

and
\[Q_i = -\sum_{j=1}^{n} Y_{ij} \| V_j \| V_i \| \sin(\theta_{ij} + \delta_j - \delta_i) \]
Formulation of power-flow study

- There are 4 variables that are associated with each bus:
 - \(P \),
 - \(Q \),
 - \(V \),
 - \(\delta \).
- Meanwhile, there are two power flow equations associated with each bus.
- In a power flow study, two of the four variables are defined and the other two are unknown. That way, we have the same number of equations as the number of unknown.
- The known and unknown variables depend on the type of bus.
Each bus in a power system can be classified as one of three types:

1. **Load bus (P-Q bus)** – a bus at which the real and reactive power are specified, and for which the bus voltage will be calculated. All busses having no generators are load busses. In here, V and δ are unknown.

2. **Generator bus (P-V bus)** – a bus at which the magnitude of the voltage is defined and is kept constant by adjusting the field current of a synchronous generator. We also assign real power generation for each generator according to the economic dispatch. In here, Q and δ are unknown.

3. **Slack bus (swing bus)** – a special generator bus serving as the reference bus. Its voltage is assumed to be fixed in both magnitude and phase (for instance, $1 \angle 0^\circ$ pu). In here, P and Q are unknown.
Note that the power flow equations are non-linear, thus cannot be solved analytically. A numerical iterative algorithm is required to solve such equations. A standard procedure follows:

1. Create a bus admittance matrix Y_{bus} for the power system;
2. Make an initial estimate for the voltages (both magnitude and phase angle) at each bus in the system;
3. Substitute in the power flow equations and determine the deviations from the solution.
4. Update the estimated voltages based on some commonly known numerical algorithms (e.g., Newton-Raphson or Gauss-Seidel).
5. Repeat the above process until the deviations from the solution are minimal.
Example

Consider a 4-bus power system below. Assume that

- bus 1 is the slack bus and that it has a voltage $V1 = 1.0∠0°$ pu.
- The generator at bus 3 is supplying a real power $P3 = 0.3$ pu to the system with a voltage magnitude 1 pu.
- The per-unit real and reactive power loads at busses 2 and 4 are $P2 = 0.3$ pu, $Q2 = 0.2$ pu, $P4 = 0.2$ pu, $Q4 = 0.15$ pu.
• Y-bus matrix (refer to example in book)

\[
Y_{bus} = \begin{bmatrix}
1.7647 - j7.0588 & -0.5882 + j2.3529 & 0 & -1.1765 + j4.7059 \\
-0.5882 + j2.3529 & 1.5611 - j6.6290 & -0.3846 + j1.9231 & -0.5882 + j2.3529 \\
0 & -0.3846 + j1.9231 & 1.5611 - j6.6290 & -1.1765 + j4.7059 \\
-1.1765 + j4.7059 & -0.5882 + j2.3529 & -1.1765 + j4.7059 & 2.9412 - j11.7647
\end{bmatrix}
\]

\[
V_1 = 1.0 \angle 0^\circ \, \text{pu}
\]

\[
V_2 = 0.964 \angle -0.97^\circ \, \text{pu}
\]

\[
V_3 = 1.0 \angle 1.84^\circ \, \text{pu}
\]

\[
V_4 = 0.98 \angle -0.27^\circ \, \text{pu}
\]

• Power flow solution:

• By knowing the node voltages, the power flow (both active and reactive) in each branch of the circuit can easily be calculated.