The CYK Algorithm

The Cooke-Younger-Kasami (CYK) algorithm determines whether a particular string is in the language generated by a particular context-free grammar \(G \), provided that \(G \) is in Chomsky Normal Form (CNF). CYK can be modified to work for any context-free grammar, however.

For the sake of simplicity of exposition, we will assume that \(G \) has no productions where the empty string is on the right hand side.

Our first step is to replace \(G \) by an equivalent grammar \(G' \) where the right hand side always has at most two symbols. We give an example below.

Suppose that the terminal alphabet of \(G \) is \(\{a, b\} \), the only variable is the start symbol, \(S \), and the productions are:

1. \(S \to SS \)
2. \(S \to aSb \)
3. \(S \to ab \)

(Note that \(G \) is ambiguous.)

We define \(G' \) to have the variables \(\{S, A\} \) and the productions:

1. \(S \to SS \)
2. \(S \to Ab \)
3. \(A \to aS \)
4. \(S \to ab \)

Do you see how that was done?

We then define a dynamic program as follows, which, given a string \(w \), computes one quadratic sized boolean array for each grammar symbol.

Let \(w \) be a string. If \(\alpha \) is any grammar symbol (either a terminal or a variable) and \(1 \leq i \leq j \leq |w| \), we define the boolean value \(G_w[\alpha, i, j] \) to mean that \(\alpha \) derives the substring of \(w \) consisting of the \(i \)th through \(j \)th symbols in zero or more steps. If \(\alpha \) is a terminal then \(G_w[\alpha, i, j] \) is false if \(i < j \), and is true if \(i = j \) and the \(i \)th symbol of \(w \) is \(\alpha \). If \(\alpha \) is a variable, then \(G_w[\alpha, i, j] \) is true if there is some production \(\alpha \to \beta \gamma \) and some \(i \leq k < j \) such that \(\gamma \) and \(G_w[\beta, i, k] \) and \(G_w[\gamma, k + 1, j] \), or if there is a production \(\alpha \to \delta \) such that \(G_w[i, j] \). Otherwise, \(G_w[\alpha, i, j] \) is false.

The value of each \(G_w[\alpha, i, j] \) can be computed in \(O(j - i) \) time, by linear search through all possible values of \(k \). Thus, the time complexity to compute all \(G \) is \(O(n^3) \), where \(n = |w| \).

\(G \) then generates \(w \) if and only if \(G_w[S, 1, n] \).

We will now work through an example. Let \(w = aabbabab \). Thus, \(n = 8 \). We draw a triangular array indexed by ordered pairs \((i, j)\) where \(1 \leq i \leq j \leq 8 \). We draw the array as shown in Figure 1, because CYK
is a “bottom-up” algorithm, and it helps to put the abstract “bottom” subproblems literally at the bottom of the figure.

We then need to place a given grammar symbol \(\alpha \) in a given cell \((i, j)\) if and only if \(G_w[\alpha, i, j] \). The bottom row is filled in immediately. We then fill in each row, ending at the top corner.

We know that \(G' \) generates \(w \) because there is an \(S \) in the top cell.

A cell could contain more than one symbol, although that does not occur in the above example.

Another Example

Consider the context-free grammar \(G \):

1. \(S \rightarrow a \)
2. \(S \rightarrow iS \)
3. \(S \rightarrow iSeS \)
Replace G with an equivalent context-free grammar G' that has no more than two symbols on the right hand side of any production, as follows:

1. $S \rightarrow a$
2. $S \rightarrow iS$
3. $S \rightarrow IE$
4. $I \rightarrow iS$
5. $E \rightarrow eS$

Now, walk through the CYK algorithm for the string $w = iaeiiaea$, using Figure 2 below.

Figure 2: Fill in the cells, using the CYK algorithm.